of inequality indexes in the design-based framework

Size: px
Start display at page:

Download "of inequality indexes in the design-based framework"

Transcription

1 A functional derivative useful for the linearization of inequality indexes in the design-based framework # $ Lucio Barabesi Giancarlo Diana and Pier Francesco Perri Department of Economics and Statistics University of Siena Piazza San Francesco Siena (Italy) # Department of Statistical Sciences University of Padova Via esare Battisti Padova (Italy) $ Department of Economics Statistics and Finance University of alabria Via P. Bucci Arcavacata di Rende (Italy) Abstract. Linearization methods are customarily adopted in sampling surveys to obtain approximated variance formulae for estimators of nonlinear functions of finite-population totals - such as ratios correlation coefficients or measures of income inequality - which can be usually rephrased in terms of statistical functionals. In the present paper by considering the Deville s (1999) approach stemming on the concept of design-based influence curve we provide a general result for linearizing large families of inequality indexes. As an example the achievement is applied to the Gini the Amato the Zenga and the Atkinson indexes respectively. Keywords. Influence function; functional linearization; inequality measure. 1. Introduction. Under the usual design-based approach let Y be a fixed population of identifiable individuals labeled (at least ideally) by the first R integers i.e. Y œ Öß á ß R and let 3 be the variable value on the 3-th individual. In this setting Deville (1999) has considered the discrete measure on Qœ$ 3 3 Y where $ represents the Dirac mass at. Deville (1999) has emphasized that the target population parameter may be generally written as a functional J with respect to Q namely JÐQÑ. In this case by supposing that a sample W of size 8 is selected from Y according to a design with first- order and second-order inclusion probabilities respectively given by 13 and 134 the empirical measure corresponding to Q is given by Qœ s 1 $ 3 3 W 3 and the substitution estimator for JÐQÑmay be obtained as JÐQÑ s. If J α under broad assumptions Deville (1999) has proven the linearization is homogeneous of degree α 8R ÐJ ÐQÑ s J ÐQÑÑ œ α 8R IF J Ð?à QÑd ÐQs QÑÐ?Ñ 9: ÐÑ where Ð?à QÑ œ ÐJ ÐQ > Ñ J ÐQÑÑ > IF J lim $? >Ä! is the influence function in the design-based approach (see also Goga et al. 2009). From a mathematical perspective IF J Ð?à QÑ is actually the Gâteaux differential of J ÐQÑ in the direction

2 of the Dirac mass at?. Hence the role of IF J Ð?àQÑ is central expecially with the aim of variance estimation for the empirical functional JÐQÑ s (Deville 1999). In this setting let us consider the functional which may be expressed as JÐQÑ œ ÐP ÐQÑÑ QÐÑ < d (1) where P ÐQÑ œ ÐPßÐQÑßáßP5ßÐQÑÑ is a vector of functionals (eventually) indexed by and 5 < À È is a function family assumed to be differentiable and regularly indexed by. he inequality measures commonly considered in practice are members of the functional family J or may be expressed at most as : ÐJ ÐQÑÑ œ Ð : J ÑÐQÑ where : À È is a smooth function - in the next Section some illustrative examples are providedþ In order to obtain the linearization of the functional J defined in expression (1) the following results are useful. Lemma 1 is introduced for the sake of completeness since its proof (and the connected assumptions) are not usually reported in statistical literature in its precise version. For more details on Gâteaux and Fréchet differentiability see e.g. Behmardi and Nayeri (2008) and the references therein. Lemma 1. If PÐQÑ œ ÐP ÐQÑßáßP5ÐQÑÑ is a vector of functionals and 9 À È is a differentiable function let us consider the functional 9ÐPÐQÑÑ œ Ð 9 PÑÐQÑ. By assuming that P4 is Fréchet differentiable for each 4 the influence function of Ð 9 PÑis given by 9 P P IF Ð?àQÑ œ f9ðpðqññ IF Ð?àQÑ where IFPÐ?àQÑœÐIFP Ð?àQÑßáßIFP Ð?àQÑÑ. 5 Proof. By Peano's form of aylor's formula it holds 9 ÐPÐQ > $? ÑÑ œ 9ÐPÐQÑÑ f9 ÐPÐQÑÑ ÐPÐQ > $? Ñ PÐQÑÑ 9ÐmPÐQ > $ Ñ PÐQÑmÑ? 5 and since 9ÐmPÐQ > $? Ñ PÐQÑmÑ œ 9Ð>Ñ by definition it follows that IF9 PÐ?à QÑ œ lim Ð9ÐPÐQ > $? ÑÑ 9ÐPÐQÑÑÑ œ lim Ðf9 ÐPÐQÑÑ ÐPÐQ > $? Ñ PÐQÑÑ 9Ð>ÑÑ œ f9 ÐPÐQÑÑ lim ÐPÐQ > $? Ñ PÐQÑÑ œ f9ðpðqññ IFPÐ? àqñ since P is assumed to be Fréchet differentiable. Proposition 1. Let J be the functional defined in (1). If P4ß is Fréchet differentiable for each 4 the influence function of J is given by IFJ Ð?à QÑ œ <? ÐP? ÐQÑÑ f< ÐPÐQÑÑ IFP Ð?à QÑ dqðñ where IFP Ð?àQÑœÐIFP Ð?àQÑßáßIF P Ð?àQÑÑ. ß 5ß Proof. By definition it holds

3 IF Ð?à QÑ œ lim ÐJ ÐQ > $ Ñ J ÐQÑÑ œ lim Ð < ÐPÐQ > $? ÑÑ dðq > $? ÑÐÑ < ÐPÐQÑÑ dqðññ œ lim Ð< ÐPÐQ > $? ÑÑ < ÐPÐQÑÑÑ dqðñ lim <? ÐP? ÐQ > $? ÑÑ. >Ä! J? For a fixed? we have lim < ÐP ÐQ > $ ÑÑ œ < ÐP ÐQÑÑ >Ä!????? and since < is continuously indexed by it reads IF Ð?à QÑ œ lim Ð< ÐPÐQ > $ ÑÑ < ÐP ÐQÑÑÑ dqðñ < ÐP? ÐQÑÑ œ f< ÐP ÐQÑÑ IFP Ð?à QÑ d QÐÑ <? ÐP? ÐQÑÑ J?? on the basis of the differentiability of < and Lemma 1. Hence Proposition 1 provides a simple rule for obtaining the influence function corresponding to the functional (1). Finally it should be remarked that by means of Lemma 1 the influence function of Ð : JÑ also follows i.e. IF Ð?à QÑ œ : ÐJ ÑIF Ð?à QÑ : J by assuming that : be differentiable. 2. Application to some inequality indexes. We show the usefulness of Proposition 1 for the linearization of some inequality measures commonly adopted in practice (for a general treatment of inequality indexes see the classical monograph by owell 2011). As a first example the celebrated concentration index is considered. In this setting Langel and illé (2012a) have provided the expression of the influence function by developing an ad hoc differential rule. he same result may be simply achieved by using Proposition 1. Indeed the finite-population version of the concentration index (see e.g. Berger 2008) may be expressed as the functional where #LÐQÑ KÐQÑ œ d QÐÑ RÐQÑXÐQÑ w J RÐQÑ œ dqðbñ is actually the population size R rephrased as a functional and XÐQÑ œ BdQÐBÑ is the population total. In addition by assuming that MF is the usual indicator function of a set F

4 LÐ QÑ œ MÒBß ÒÐÑdQÐBÑ actually represents the number of individuals whose variable value is less than or equal to a given. In the following we also assume that OÐ QÑ œ BMÒß ÒÐBÑd QÐBÑ which obviously turns out to be the total of the variable values greater than or equal to a given. Hence in this case we have PÐQÑ œ ÐLÐ QÑßRÐQÑßXÐQÑÑ while < ÐP ÐQÑÑ #LÐQÑ œ RÐQÑXÐQÑ and :ÐJ Ñ œ J Þ hus with a slight abuse in notation i.e. by suppressing the argument of the functionals for the sake of simplicity it holds that # L L f< ÐP ÐQÑÑ œ ß ß RX R X and IF P Ð?à QÑ œ ÐMÒ?ß ÒÐÑßß?Ñ. Hence by applying Proposition 1 after some algebra it follows that IF K Ð?à QÑ œ # Ð? L Ñ ÐK Ñ?? O? RX R X which coincides with the expression given by Langel and illé (2012a). As a second example we consider the Amato index which has recently received renewed interest for its properties (Arnold 2012). he influence function for the Amato index is not available in literature. o this aim on the basis of the continuous-population expression of the Amato index (Arnold 2012) the finite-population counterpart of this inequality measure may be given as the functional # EÐQÑ œ QÐÑ RÐQÑ # XÐQÑ # d. Hence in this case PÐQÑ œ ÐRÐQÑßXÐQÑÑ while < ÐP ÐQÑÑ œ # RÐQÑ XÐQÑ # # and trivially :ÐJ Ñ œ J. By adopting the same notational simplification as above and by assuming that. œxîris the population mean it holds that # f < X ÐPÐQÑÑ œ ß. # # R $ X $ and IF P Ð?à QÑ œ Ðß?Ñ. Hence by applying Proposition 1 it turns out that

5 IF E Ð?à QÑ œ.?.#?# dqðñ d QÐÑ. X R#. # # X#. # # As a third example we consider an inequality measure recently proposed by Zenga (2007) - the so-called Zenga new index - which has received considerable attention (see e.g. Langel and illé 2012b). Langel and illé (2012b) have introduced the finite-population version of the Zenga new index based on smoothed quantiles and have provided the linearization of the corresponding functional. However by considering the continuous-population expression as proposed by Zenga (2007 expression (5.6) in his paper) the natural finite-population counterpart of the Zenga new index may be given as the functional ^ÐQÑ œ ÐRÐQÑ LÐ QÑÑÐX ÐQÑ OÐ QÑÑ d QÐÑ. RÐQÑLÐQÑOÐQÑ Hence in this case PÐQÑ œ ÐLÐQÑß OÐQÑß RÐQÑßXÐQÑÑ while < ÐP ÐQÑÑ ÐRÐQÑ LÐ QÑÑÐX ÐQÑ OÐ QÑÑ œ RÐQÑLÐQÑOÐQÑ and :ÐJ Ñ œ J Þ By adopting in turn the same notational simplification for the argument of the functionals it holds that XO. ÐRLÑ X O RL f< ÐPÐQÑÑ œ ß ß ß LO # LO # R# O RLO and IF P Ð?à QÑ œ ÐM ÐÑß? M ÐÑßß?Ñ from which it follows that IF Ò?ß Ò Ò?ß Ò ÐR L? ÑÐX O? Ñ ÐX Ñ Ð?à QÑ œ M Ò?ß Ò Ð Ñ O dqðñ RLO?? LO MÒ?ß ÒÐÑÐRLÑ XO.? dqðñ dqðñ LO R # # O? RL d QÐÑ. R LO ^ # For the final example the Atkinson index is assumed. he finite-population counterpart of this inequality measure may be expressed as the functional # EÐQÑœ % % RÐQÑ XÐQÑ % % ÎÐ% Ñ d QÐÑ where % Ò!ß Ò. Hence in this case P ÐQÑ œ ÐRÐQÑß X ÐQÑÑ > while < ÐP ÐQÑÑ œ % RÐQÑ XÐQÑ % % and :ÐJ Ñ œ J ÎÐ% Ñ. Hence with the usual notational simplification for the argument of the functionals it holds that

6 % % % f< ÐPÐQÑÑ œ ß RX % % R X and IF P Ð?à QÑ œ Ðß?Ñ. By applying Proposition 1 and after some algebra it follows % E%?? % IF E% Ð?à QÑ œ R Ð%. Ñ. % % where. < œr < d QÐÑ represents the < -th population moment. Bibliography Arnold B.. (2012) On the Amato inequality index Statistics & Probability Letters Behmardi D. and Nayeri E. (2008) Introduction of Fréchet and Gâteaux derivative Applied Mathematical Sciences Berger Y.G. (2008) A note on the asymptotic equivalence of jackknife and linearization variance estimation for the Gini coefficient Journal of Official Statistics owell F.A. (2011) Measuring inequality 3rd edition Oxford University Press New York. Deville J.. (1999) Variance estimation for complex statistics and estimators: linearization and residual techniques Survey Methodology Goga. Deville J.. and Ruiz-Gazen A. (2009) Use of functionals in linearization and composite estimation with application to two-sample survey data Biometrika Langel M. and illé Y. (2012a) Variance estimation of the Gini index: revisiting a result several times published Journal of the Royal Statistical Society Series A Langel M. and illé Y. (2012b) Inference by linearization for Zenga s new inequality index: a comparison with the Gini index Metrika Zenga M. (2007) Inequality curve and inequality index based on the ratios between lower and upper arithmetic means Statistica e Applicazioni

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University MAP METHODS FOR MACHINE LEARNING Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University Example: Control System 1. Paradigm: Machine learning

More information

Proofs Involving Quantifiers. Proof Let B be an arbitrary member Proof Somehow show that there is a value

Proofs Involving Quantifiers. Proof Let B be an arbitrary member Proof Somehow show that there is a value Proofs Involving Quantifiers For a given universe Y : Theorem ÐaBÑ T ÐBÑ Theorem ÐbBÑ T ÐBÑ Proof Let B be an arbitrary member Proof Somehow show that there is a value of Y. Call it B œ +, say Þ ÐYou can

More information

From Handout #1, the randomization model for a design with a simple block structure can be written as

From Handout #1, the randomization model for a design with a simple block structure can be written as Hout 4 Strata Null ANOVA From Hout 1 the romization model for a design with a simple block structure can be written as C œ.1 \ X α % (4.1) w where α œðα á α > Ñ E ÐÑœ % 0 Z œcov ÐÑ % with cov( % 3 % 4

More information

SVM example: cancer classification Support Vector Machines

SVM example: cancer classification Support Vector Machines SVM example: cancer classification Support Vector Machines 1. Cancer genomics: TCGA The cancer genome atlas (TCGA) will provide high-quality cancer data for large scale analysis by many groups: SVM example:

More information

Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products

Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products One of the fundamental problems in group theory is to catalog all the groups of some given

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

MATH 1301 (College Algebra) - Final Exam Review

MATH 1301 (College Algebra) - Final Exam Review MATH 1301 (College Algebra) - Final Exam Review This review is comprehensive but should not be the only material used to study for the final exam. It should not be considered a preview of the final exam.

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :) â SpanÖ?ß@ œ Ö =? > @ À =ß> real numbers : SpanÖ?ß@ œ Ö: =? > @ À =ß> real numbers œ the previous plane with each point translated by : Ðfor example, is translated to :) á In general: Adding a vector :

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

Definition Suppose M is a collection (set) of sets. M is called inductive if

Definition Suppose M is a collection (set) of sets. M is called inductive if Definition Suppose M is a collection (set) of sets. M is called inductive if a) g M, and b) if B Mß then B MÞ Then we ask: are there any inductive sets? Informally, it certainly looks like there are. For

More information

THE DOMINATION NUMBER OF GRIDS *

THE DOMINATION NUMBER OF GRIDS * SIAM J. DISCRETE MATH. Vol. 2, No. 3, pp. 1443 143 2011 Society for Industrial and Applied Mathematics THE DOMINATION NUMBER OF GRIDS * DANIEL GONÇALVES, ALEXANDRE PINLOU, MICHAËL RAO, AND STÉPHAN THOMASSÉ

More information

International Journal of Pure and Applied Mathematics Volume 21 No , THE VARIANCE OF SAMPLE VARIANCE FROM A FINITE POPULATION

International Journal of Pure and Applied Mathematics Volume 21 No , THE VARIANCE OF SAMPLE VARIANCE FROM A FINITE POPULATION International Journal of Pure and Applied Mathematics Volume 21 No. 3 2005, 387-394 THE VARIANCE OF SAMPLE VARIANCE FROM A FINITE POPULATION Eungchun Cho 1, Moon Jung Cho 2, John Eltinge 3 1 Department

More information

Narrowing confidence interval width of PAC learning risk function by algorithmic inference

Narrowing confidence interval width of PAC learning risk function by algorithmic inference Narrowing confidence interval width of PAC learning risk function by algorithmic inference Bruno Apolloni, Dario Malchiodi Dip. di Scienze dell Informazione, Università degli Studi di Milano Via Comelico

More information

The Hahn-Banach and Radon-Nikodym Theorems

The Hahn-Banach and Radon-Nikodym Theorems The Hahn-Banach and Radon-Nikodym Theorems 1. Signed measures Definition 1. Given a set Hand a 5-field of sets Y, we define a set function. À Y Ä to be a signed measure if it has all the properties of

More information

Ð"Ñ + Ð"Ñ, Ð"Ñ +, +, + +, +,,

ÐÑ + ÐÑ, ÐÑ +, +, + +, +,, Handout #11 Confounding: Complete factorial experiments in incomplete blocks Blocking is one of the important principles in experimental design. In this handout we address the issue of designing complete

More information

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples)

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples) Can Neural Network and Statistical Learning Theory be Formulated in terms of Continuous Complexity Theory? 1. Neural Networks and Statistical Learning Theory Many areas of mathematics, statistics, and

More information

Math 131 Exam 4 (Final Exam) F04M

Math 131 Exam 4 (Final Exam) F04M Math 3 Exam 4 (Final Exam) F04M3.4. Name ID Number The exam consists of 8 multiple choice questions (5 points each) and 0 true/false questions ( point each), for a total of 00 points. Mark the correct

More information

A Note on the Asymptotic Equivalence of Jackknife and Linearization Variance Estimation for the Gini Coefficient

A Note on the Asymptotic Equivalence of Jackknife and Linearization Variance Estimation for the Gini Coefficient Journal of Official Statistics, Vol. 4, No. 4, 008, pp. 541 555 A Note on the Asymptotic Equivalence of Jackknife and Linearization Variance Estimation for the Gini Coefficient Yves G. Berger 1 The Gini

More information

1. Classify each number. Choose all correct answers. b. È # : (i) natural number (ii) integer (iii) rational number (iv) real number

1. Classify each number. Choose all correct answers. b. È # : (i) natural number (ii) integer (iii) rational number (iv) real number Review for Placement Test To ypass Math 1301 College Algebra Department of Computer and Mathematical Sciences University of Houston-Downtown Revised: Fall 2009 PLEASE READ THE FOLLOWING CAREFULLY: 1. The

More information

Solving SVM: Quadratic Programming

Solving SVM: Quadratic Programming MA 751 Part 7 Solving SVM: Quadratic Programming 1. Quadratic programming (QP): Introducing Lagrange multipliers α 4 and. 4 (can be justified in QP for inequality as well as equality constraints) we define

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Inner Product Spaces. Another notation sometimes used is X.?

Inner Product Spaces. Another notation sometimes used is X.? Inner Product Spaces X In 8 we have an inner product? @? @?@ ÞÞÞ? 8@ 8Þ Another notation sometimes used is X? ß@? @? @? @ ÞÞÞ? @ 8 8 The inner product in?@ ß in 8 has several essential properties ( see

More information

PART I. Multiple choice. 1. Find the slope of the line shown here. 2. Find the slope of the line with equation $ÐB CÑœ(B &.

PART I. Multiple choice. 1. Find the slope of the line shown here. 2. Find the slope of the line with equation $ÐB CÑœ(B &. Math 1301 - College Algebra Final Exam Review Sheet Version X This review, while fairly comprehensive, should not be the only material used to study for the final exam. It should not be considered a preview

More information

You may have a simple scientific calculator to assist with arithmetic, but no graphing calculators are allowed on this exam.

You may have a simple scientific calculator to assist with arithmetic, but no graphing calculators are allowed on this exam. Math 131 Exam 3 Solutions You may have a simple scientific calculator to assist ith arithmetic, but no graphing calculators are alloed on this exam. Part I consists of 14 multiple choice questions (orth

More information

Examples of non-orthogonal designs

Examples of non-orthogonal designs Examples of non-orthogonal designs Incomplete block designs > treatments,, blocks of size 5, 5 > The condition of proportional frequencies cannot be satisfied by the treatment and block factors. ¾ g Z

More information

Population Dynamics in a Microfounded Predator-Prey Model. Thomas Christiaans. University of Siegen. Discussion Paper No

Population Dynamics in a Microfounded Predator-Prey Model. Thomas Christiaans. University of Siegen. Discussion Paper No Volkswirtschaftliche Diskussionsbeiträge V W L Population Dynamics in a Microfounded Predator-Prey Model Thomas Christiaans University of Siegen Discussion Paper No. 8-04 ISSN 433-058x UNIVERSITÄT SIEGEN

More information

Section 1.3 Functions and Their Graphs 19

Section 1.3 Functions and Their Graphs 19 23. 0 1 2 24. 0 1 2 y 0 1 0 y 1 0 0 Section 1.3 Functions and Their Graphs 19 3, Ÿ 1, 0 25. y œ 26. y œ œ 2, 1 œ, 0 Ÿ " 27. (a) Line through a!ß! band a"ß " b: y œ Line through a"ß " band aß! b: y œ 2,

More information

Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / )

Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / ) Monic Adjuncts of Quadratics (eveloped, Composed & Typeset by: J B Barksdale Jr / 04 18 15) Article 00.: Introduction. Given a univariant, Quadratic polynomial with, say, real number coefficients, (0.1)

More information

A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN VARIANCE ESTIMATORS FOR THE COMBINED RATIO ESTIMATOR

A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN VARIANCE ESTIMATORS FOR THE COMBINED RATIO ESTIMATOR Statistica Sinica 8(1998), 1165-1173 A MODEL-BASED EVALUATION OF SEVERAL WELL-KNOWN VARIANCE ESTIMATORS FOR THE COMBINED RATIO ESTIMATOR Phillip S. Kott National Agricultural Statistics Service Abstract:

More information

Observations on the Stability Properties of Cooperative Systems

Observations on the Stability Properties of Cooperative Systems 1 Observations on the Stability Properties of Cooperative Systems Oliver Mason and Mark Verwoerd Abstract We extend two fundamental properties of positive linear time-invariant (LTI) systems to homogeneous

More information

Relations. Relations occur all the time in mathematics. For example, there are many relations between # and % À

Relations. Relations occur all the time in mathematics. For example, there are many relations between # and % À Relations Relations occur all the time in mathematics. For example, there are many relations between and % À Ÿ% % Á% l% Ÿ,, Á ß and l are examples of relations which might or might not hold between two

More information

Cellular Automaton Growth on # : Theorems, Examples, and Problems

Cellular Automaton Growth on # : Theorems, Examples, and Problems Cellular Automaton Growth on : Theorems, Examples, and Problems (Excerpt from Advances in Applied Mathematics) Exactly 1 Solidification We will study the evolution starting from a single occupied cell

More information

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why Definition If V is a relation from E to F, then a) the domain of V œ dom ÐVÑ œ Ö+ E À b, F such that Ð+ß,Ñ V b) the range of V œ ran( VÑ œ Ö, F À b+ E such that Ð+ß,Ñ V " c) the inverse relation of V œ

More information

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' % 7 9 9 7 The two basic variable types in a connector potential (or across) variable and flow (or through) variable are not sufficient to describe in a numerically sound way the bi-directional flow of matter

More information

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS International Workshop Quarkonium Working Group QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS ALBERTO POLLERI TU München and ECT* Trento CERN - November 2002 Outline What do we know for sure?

More information

Observer design for a general class of triangular systems

Observer design for a general class of triangular systems 1st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 014. Observer design for a general class of triangular systems Dimitris Boskos 1 John Tsinias Abstract The paper deals

More information

Notes on the Unique Extension Theorem. Recall that we were interested in defining a general measure of a size of a set on Ò!ß "Ó.

Notes on the Unique Extension Theorem. Recall that we were interested in defining a general measure of a size of a set on Ò!ß Ó. 1. More on measures: Notes on the Unique Extension Theorem Recall that we were interested in defining a general measure of a size of a set on Ò!ß "Ó. Defined this measure T. Defined TÐ ( +ß, ) Ñ œ, +Þ

More information

Binomial Randomization 3/13/02

Binomial Randomization 3/13/02 Binomial Randomization 3/13/02 Define to be the product space 0,1, á, m â 0,1, á, m and let be the set of all vectors Ðs, á,s Ñ in such that s á s t. Suppose that \, á,\ is a multivariate hypergeometric

More information

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis

Statistical machine learning and kernel methods. Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis Part 5 (MA 751) Statistical machine learning and kernel methods Primary references: John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern Analysis Christopher Burges, A tutorial on support

More information

Asymptotic efficiency and small sample power of a locally most powerful linear rank test for the log-logistic distribution

Asymptotic efficiency and small sample power of a locally most powerful linear rank test for the log-logistic distribution Math Sci (2014) 8:109 115 DOI 10.1007/s40096-014-0135-4 ORIGINAL RESEARCH Asymptotic efficiency and small sample power of a locally most powerful linear rank test for the log-logistic distribution Hidetoshi

More information

ACT455H1S - TEST 2 - MARCH 25, 2008

ACT455H1S - TEST 2 - MARCH 25, 2008 ACT455H1S - TEST 2 - MARCH 25, 2008 Write name and student number on each page. Write your solution for each question in the space provided. For the multiple decrement questions, it is always assumed that

More information

arxiv: v1 [math.st] 5 Jul 2007

arxiv: v1 [math.st] 5 Jul 2007 EXPLICIT FORMULA FOR COSTRUCTIG BIOMIAL COFIDECE ITERVAL WITH GUARATEED COVERAGE PROBABILITY arxiv:77.837v [math.st] 5 Jul 27 XIJIA CHE, KEMI ZHOU AD JORGE L. ARAVEA Abstract. In this paper, we derive

More information

Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / )

Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / ) Monic Adjuncts of Quadratics (eveloped, Composed & Typeset by: J B Barksdale Jr / 04 18 15) Article 00.: Introduction. Given a univariant, Quadratic polynomial with, say, real number coefficients, (0.1)

More information

7. Random variables as observables. Definition 7. A random variable (function) X on a probability measure space is called an observable

7. Random variables as observables. Definition 7. A random variable (function) X on a probability measure space is called an observable 7. Random variables as observables Definition 7. A random variable (function) X on a probability measure space is called an observable Note all functions are assumed to be measurable henceforth. Note that

More information

ASYMPTOTICS FOR STATIONARY VERY NEARLY UNIT ROOT PROCESSES

ASYMPTOTICS FOR STATIONARY VERY NEARLY UNIT ROOT PROCESSES doi:1.1111/j.1467-9892.27.552.x ASYMPTOTICS FOR STATIONARY VERY NEARLY UNIT ROOT PROCESSES By Donald W. K. Andrews and Patrik Guggenberger Cowles Foundation, Yale University and Department of Economics,

More information

Flexible Estimation of Treatment Effect Parameters

Flexible Estimation of Treatment Effect Parameters Flexible Estimation of Treatment Effect Parameters Thomas MaCurdy a and Xiaohong Chen b and Han Hong c Introduction Many empirical studies of program evaluations are complicated by the presence of both

More information

Convergence of a linear recursive sequence

Convergence of a linear recursive sequence int. j. math. educ. sci. technol., 2004 vol. 35, no. 1, 51 63 Convergence of a linear recursive sequence E. G. TAY*, T. L. TOH, F. M. DONG and T. Y. LEE Mathematics and Mathematics Education, National

More information

NECESSARY AND SUFFICIENT CONDITION FOR ASYMPTOTIC NORMALITY OF STANDARDIZED SAMPLE MEANS

NECESSARY AND SUFFICIENT CONDITION FOR ASYMPTOTIC NORMALITY OF STANDARDIZED SAMPLE MEANS NECESSARY AND SUFFICIENT CONDITION FOR ASYMPTOTIC NORMALITY OF STANDARDIZED SAMPLE MEANS BY RAJESHWARI MAJUMDAR* AND SUMAN MAJUMDAR University of Connecticut and University of Connecticut The double sequence

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS REVSTAT Statistical Journal Volume 5, Number 3, November 2007, 285 304 A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS Authors: M. Isabel Fraga Alves

More information

Small sample corrections for LTS and MCD

Small sample corrections for LTS and MCD Metrika (2002) 55: 111 123 > Springer-Verlag 2002 Small sample corrections for LTS and MCD G. Pison, S. Van Aelst*, and G. Willems Department of Mathematics and Computer Science, Universitaire Instelling

More information

Probability basics. Probability and Measure Theory. Probability = mathematical analysis

Probability basics. Probability and Measure Theory. Probability = mathematical analysis MA 751 Probability basics Probability and Measure Theory 1. Basics of probability 2 aspects of probability: Probability = mathematical analysis Probability = common sense Probability basics A set-up of

More information

Estimation de mesures de risques à partir des L p -quantiles

Estimation de mesures de risques à partir des L p -quantiles 1/ 42 Estimation de mesures de risques à partir des L p -quantiles extrêmes Stéphane GIRARD (Inria Grenoble Rhône-Alpes) collaboration avec Abdelaati DAOUIA (Toulouse School of Economics), & Gilles STUPFLER

More information

Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points.

Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points. Math 131 Exam 1 Solutions Part I consists of 14 multiple choice questions (orth 5 points each) and 5 true/false question (orth 1 point each), for a total of 75 points. 1. The folloing table gives the number

More information

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA LIVIO CLEMENTE PICCININI G-convergence for ordinary differential equations with Peano phaenomenon Rendiconti del Seminario Matematico della

More information

Income distribution and inequality measurement: The problem of extreme values

Income distribution and inequality measurement: The problem of extreme values Journal of Econometrics ] (]]]]) ]]] ]]] www.elsevier.com/locate/jeconom Income distribution and inequality measurement: The problem of extreme values Frank A. Cowell a,, Emmanuel Flachaire b a STICERD,

More information

Stat 643 Problems. a) Show that V is a sub 5-algebra of T. b) Let \ be an integrable random variable. Find EÐ\lVÑÞ

Stat 643 Problems. a) Show that V is a sub 5-algebra of T. b) Let \ be an integrable random variable. Find EÐ\lVÑÞ Stat 643 Problems 1. Let ( HT, ) be a measurable space. Suppose that., T and Uare 5-finite positive measures on this space with T Uand U...T.T.U a) Show that T. and œ a.s......u.....u.u Š.. b) Show that

More information

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series C.7 Numerical series Pag. 147 Proof of the converging criteria for series Theorem 5.29 (Comparison test) Let and be positive-term series such that 0, for any k 0. i) If the series converges, then also

More information

On Urquhart s C Logic

On Urquhart s C Logic On Urquhart s C Logic Agata Ciabattoni Dipartimento di Informatica Via Comelico, 39 20135 Milano, Italy ciabatto@dsiunimiit Abstract In this paper we investigate the basic many-valued logics introduced

More information

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.)

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.) Engineering Mathematics (ESE 317) Exam 4 April 23, 200 This exam contains seven multiple-choice problems worth two points each, 11 true-false problems worth one point each, and some free-response problems

More information

Equivalent Sets. It is intuitively clear that for finite sets E F iff Eand Fhave the same number of elementsþ

Equivalent Sets. It is intuitively clear that for finite sets E F iff Eand Fhave the same number of elementsþ Equivalent Sets Definition Let Eß F be sets. We say that E is equivalent to F iff there exists a bijection 0ÀEÄF. If Eis equivalent to F, we write E FÐor E For EµFor something similar: the notation varies

More information

Testing for a Change in Mean under Fractional Integration

Testing for a Change in Mean under Fractional Integration J. Time Ser. Econom. 206; aop Fabrizio Iacone*, Stephen J. Leybourne and A.M. Robert Taylor Testing for a Change in Mean under Fractional Integration DOI 0.55/jtse-205-0006 Abstract: We consider testing

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces In 8 X, we defined an inner product? @? @?@ ÞÞÞ? 8@ 8. Another notation sometimes used is? @? ß@. The inner product in 8 has several important properties ( see Theorem, p. 33) that

More information

Example: A Markov Process

Example: A Markov Process Example: A Markov Process Divide the greater metro region into three parts: city such as St. Louis), suburbs to include such areas as Clayton, University City, Richmond Heights, Maplewood, Kirkwood,...)

More information

A NICE DIOPHANTINE EQUATION. 1. Introduction

A NICE DIOPHANTINE EQUATION. 1. Introduction A NICE DIOPHANTINE EQUATION MARIA CHIARA BRAMBILLA Introduction One of the most interesting and fascinating subjects in Number Theory is the study of diophantine equations A diophantine equation is a polynomial

More information

CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

More information

P -adic root separation for quadratic and cubic polynomials

P -adic root separation for quadratic and cubic polynomials P -adic root separation for quadratic and cubic polynomials Tomislav Pejković Abstract We study p-adic root separation for quadratic and cubic polynomials with integer coefficients. The quadratic and reducible

More information

PMC-optimal nonparametric quantile estimator. Ryszard Zieliński Institute of Mathematics Polish Academy of Sciences

PMC-optimal nonparametric quantile estimator. Ryszard Zieliński Institute of Mathematics Polish Academy of Sciences PMC-optimal nonparametric quantile estimator Ryszard Zieliński Institute of Mathematics Polish Academy of Sciences According to Pitman s Measure of Closeness, if T 1 and T are two estimators of a real

More information

Feedback between US and UK Prices: a Frequency Domain Analysis. Abstract

Feedback between US and UK Prices: a Frequency Domain Analysis. Abstract Feedback between US and UK Prices: a Frequency Domain Analysis Jahyeong Koo Federal Reserve Bank of Dallas Paul A Johnson Vassar College Abstract This paper decomposes the feedback between US and UK price

More information

Some Concepts of Uniform Exponential Dichotomy for Skew-Evolution Semiflows in Banach Spaces

Some Concepts of Uniform Exponential Dichotomy for Skew-Evolution Semiflows in Banach Spaces Theory and Applications of Mathematics & Computer Science 6 (1) (2016) 69 76 Some Concepts of Uniform Exponential Dichotomy for Skew-Evolution Semiflows in Banach Spaces Diana Borlea a, a Department of

More information

Handout #5 Computation of estimates, ANOVA Table and Orthogonal Designs

Handout #5 Computation of estimates, ANOVA Table and Orthogonal Designs Hout 5 Computation of estimates, ANOVA Table Orthogonal Designs In this hout e ill derive, for an arbitrary design, estimates of treatment effects in each stratum. Then the results are applied to completely

More information

Optimal data-independent point locations for RBF interpolation

Optimal data-independent point locations for RBF interpolation Optimal dataindependent point locations for RF interpolation S De Marchi, R Schaback and H Wendland Università di Verona (Italy), Universität Göttingen (Germany) Metodi di Approssimazione: lezione dell

More information

Appendix A Finite or Galois Fields

Appendix A Finite or Galois Fields Appendix A Finite or Galois Fields Finite or Galois fields are used in the design and in the interpretation of the operation of some arithmetic and algebraic circuits. The axioms and the main properties

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Here are proofs for some of the results about diagonalization that were presented without proof in class.

Here are proofs for some of the results about diagonalization that were presented without proof in class. Suppose E is an 8 8 matrix. In what follows, terms like eigenvectors, eigenvalues, and eigenspaces all refer to the matrix E. Here are proofs for some of the results about diagonalization that were presented

More information

Math 1AA3/1ZB3 Sample Test 3, Version #1

Math 1AA3/1ZB3 Sample Test 3, Version #1 Math 1AA3/1ZB3 Sample Test 3, Version 1 Name: (Last Name) (First Name) Student Number: Tutorial Number: This test consists of 16 multiple choice questions worth 1 mark each (no part marks), and 1 question

More information

TOTAL DIFFERENTIALS. In Section B-4, we observed that.c is a pretty good approximation for? C, which is the increment of

TOTAL DIFFERENTIALS. In Section B-4, we observed that.c is a pretty good approximation for? C, which is the increment of TOTAL DIFFERENTIALS The differential was introduced in Section -4. Recall that the differential of a function œ0ðñis w. œ 0 ÐÑ.Þ Here. is the differential with respect to the independent variable and is

More information

Asymptotics of minimax stochastic programs $

Asymptotics of minimax stochastic programs $ Statistics & Probability Letters 78 (2008) 150 157 www.elsevier.com/locate/stapro Asymptotics of minimax stochastic programs $ Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute

More information

The Rational Numbers

The Rational Numbers The Rational Numbers Fields The system of integers that e formally defined is an improvement algebraically on the hole number system = (e can subtract in ) But still has some serious deficiencies: for

More information

Fuzzy Statistical Limits

Fuzzy Statistical Limits Fuzzy Statistical Limits Mark Burgin a and Oktay Duman b a Department of Mathematics, University of California, Los Angeles, California 90095-1555, USA b TOBB Economics and Technology University, Faculty

More information

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati Complex Analysis PH 503 Course TM Charudatt Kadolkar Indian Institute of Technology, Guwahati ii Copyright 2000 by Charudatt Kadolkar Preface Preface Head These notes were prepared during the lectures

More information

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ.

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ. Page 1 Calculus III : Bonus Problems: Set 1 Grade /42 Name Due at Exam 1 6/29/2018 1. (2 points) Give the equations for the following geometrical objects : a) A sphere of radius & centered at the point

More information

Some Practical Aspects in Multi-Phase Sampling

Some Practical Aspects in Multi-Phase Sampling Working Paper Series, N. 2, February 2005 Some Practical Aspects in Multi-Phase Sampling Giancarlo Diana, Paolo Preo Department of Statistical Sciences University of Padua Italy Chiara Tommasi Department

More information

COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS

COMPUTER ALGEBRA DERIVATION OF THE BIAS OF LINEAR ESTIMATORS OF AUTOREGRESSIVE MODELS doi:10.1111/j.1467-9892.2005.00459.x COMPUTER ALGEBRA DERIVATION OF THE BIA OF LINEAR ETIMATOR OF AUTOREGREIVE MODEL By Y. Zhang A. I. McLeod Acadia University The University of Western Ontario First Version

More information

solve EB œ,, we can row reduce the augmented matrix

solve EB œ,, we can row reduce the augmented matrix Motivation To PY Decomposition: Factoring E œ P Y solve EB œ,, we can row reduce the augmented matrix Ò + + ÞÞÞ+ ÞÞÞ + l, Ó µ ÞÞÞ µ Ò- - ÞÞÞ- ÞÞÞ-. Ó " # 3 8 " # 3 8 we get to Ò-" -# ÞÞÞ -3 ÞÞÞ-8Ó in an

More information

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS Chung, Y-.M. Osaka J. Math. 38 (200), 2 TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS YONG MOO CHUNG (Received February 9, 998) Let Á be a compact interval of the real line. For a continuous

More information

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator Capter Seven Te Quantum Mecanical Simple Harmonic Oscillator Introduction Te potential energy function for a classical, simple armonic oscillator is given by ZÐBÑ œ 5B were 5 is te spring constant. Suc

More information

Functional central limit theorems for single-stage sampling designs

Functional central limit theorems for single-stage sampling designs Functional central limit theorems for single-stage sampling designs Hélène Boistard Toulouse School of Economics, 2 allée de Brienne, 3000 Toulouse, France Hendrik P. Lopuhaä Delft Institute of Applied

More information

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model

It's Only Fitting. Fitting model to data parameterizing model estimating unknown parameters in the model It's Only Fitting Fitting model to data parameterizing model estimating unknown parameters in the model Likelihood: an example Cohort of 8! individuals observe survivors at times >œ 1, 2, 3,..., : 8",

More information

EXCERPTS FROM ACTEX STUDY MANUAL FOR SOA EXAM P/CAS EXAM 1

EXCERPTS FROM ACTEX STUDY MANUAL FOR SOA EXAM P/CAS EXAM 1 EXCERPTS FROM ACTEX STUDY MANUAL FOR SOA EXAM P/CAS EXAM 1 Table of Contents Introductory Comments Section 2 - Conditional Probability and Independence TABLE OF CONTENTS INTRODUCTORY COMMENTS SECTION 0

More information

Convex Feasibility Problems

Convex Feasibility Problems Laureate Prof. Jonathan Borwein with Matthew Tam http://carma.newcastle.edu.au/drmethods/paseky.html Spring School on Variational Analysis VI Paseky nad Jizerou, April 19 25, 2015 Last Revised: May 6,

More information

The Hilbert functions which force the Weak Lefschetz Property

The Hilbert functions which force the Weak Lefschetz Property The Hilbert functions which force the Weak Lefschetz Property JUAN MIGLIORE Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA E-mail: Juan.C.Migliore.1@nd.edu FABRIZIO ZANELLO

More information

Generalized Method of Moments Estimation

Generalized Method of Moments Estimation Generalized Method of Moments Estimation Lars Peter Hansen March 0, 2007 Introduction Generalized methods of moments (GMM) refers to a class of estimators which are constructed from exploiting the sample

More information

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation QUADRATIC FUNCTIONS B the end of this unit, ou should be able to: (a) (b) (c) (d) (e) recognise quadratics of the form = k 2 and = ( + a) 2 + b ; a, b Î Z, from their graphs identif the nature and coordinates

More information

Asymptotic stability for difference equations with decreasing arguments

Asymptotic stability for difference equations with decreasing arguments Journal of Difference Equations and Applications ISSN: 1023-6198 (Print) 1563-5120 (Online) Journal homepage: http://www.tandfonline.com/loi/gdea20 Asymptotic stability for difference equations with decreasing

More information

Implicit in the definition of orthogonal arrays is a projection propertyþ

Implicit in the definition of orthogonal arrays is a projection propertyþ Projection properties Implicit in the definition of orthogonal arrays is a projection propertyþ factor screening effect ( factor) sparsity A design is said to be of projectivity : if in every subset of

More information

Number of Complete N-ary Subtrees on Galton-Watson Family Trees

Number of Complete N-ary Subtrees on Galton-Watson Family Trees Methodol Comput Appl Probab (2006) 8: 223 233 DOI: 10.1007/s11009-006-8549-6 Number of Complete N-ary Subtrees on Galton-Watson Family Trees George P. Yanev & Ljuben Mutafchiev Received: 5 May 2005 / Revised:

More information

Mathematics for Engineers and Scientists

Mathematics for Engineers and Scientists Mathematics for Engineers and Scientists Fourth edition ALAN JEFFREY University of Newcastle-upon-Tyne B CHAPMAN & HALL University and Professional Division London New York Tokyo Melbourne Madras Contents

More information