Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / )

Size: px
Start display at page:

Download "Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / )"

Transcription

1 Monic Adjuncts of Quadratics (eveloped, Composed & Typeset by: J B Barksdale Jr / ) Article 00.: Introduction. Given a univariant, Quadratic polynomial with, say, real number coefficients, (0.1) QÐBÑ +B,B - ß there is an associated monic, quadratic polynomial, QÐBÑß the following, which is described by EFINITION: To each quadratic polynomial as in (0.1), there is an associated monic, quadratic polynomial ß QÐBÑß called the monic adjunct of UÐBÑß and which is defined by, (0.2) QÐBÑ B,B %+- monic adjunct of Q. As a consequence of some casual, algebraic, gymnastic doodling, several functional relationships (and connections) regarding the zeros of UÐBÑ and QÐBÑ did emerge. An account of such doodling--and the results there of--are below presented in the following sequel of Articles. Article 01.: Monic (Quadratic) Adjunct Polynomials. Consider a quadratic, UÐBÑß as in Item (0.1). Now, note that (1.1) %+ UÐBÑ %+ B %+,B %+- Ð+BÑ,Ð+BÑ %+-. So by declaring that +B; and, that QÐÑ be defined as (1.2) QÐÑ, %+-, the following relationships emerge. " (1.3) (A): %+ UÐBÑ QÐ+BÑ and (B): UÐ Ñ QÐÑ Þ + %+ Appealing to (1.2), further exploration in such manner reveals that Ðfor Á!Ñ %+- "'+ -, %+- %+- %+- (1.4) QÐ Ñ QÐÑ. And then, from applications of Items (1.4) and (1.3A), we have that (1.5) %+- % QÐÑQÐ Ñ QÐ+ Ñ%+UÐ Ñß - 1 -

2 from which we conclude that Ðfor Á!Ñ - - (1.6) UÐ Ñ QÐÑ Þ Items (1.3B), (1.4) and (1.6) are now, hereby, organized together and conveniently displayed as a below boxed bundle of relationships in the spirit of convenience and ease of application. " %+- % (1.7) A: UÐ Ñ QÐÑ B: QÐ Ñ QÐÑ C: UÐ Ñ QÐÑ. + %+ Appealing to the relationships of (1.7), another interesting functional relationship presents itself. Hence, consider the following Theorem 1. Given a quadratic Uand its monic adjunct Qß suppose that that for ß A : A %+- Á!Þ Then: QÐAÑ AQÐÑ Þ Proof: Referencing Item (1.7B), note thatß A %+- %+- A A QÐAÑQÐ Ñ QÐ Ñ QÐÑ QÐÑ QÐÑÞ Therefore, it now follows that, (1.8) QÐAÑ AQÐÑ Þ Article 02.: Novel Curiosities of Q and M Pairs. By implementing the functional relationships between a quadratic U and its monic adjunct Qß novel relationships involving the zeros of such Uand Q polynomial pairs can be developed. We begin with the following theorem demonstrations. Theorem 2. Given a quadratic Uand its monic adjunct Qß suppose that for ßA : A%+-Á!Þ Then: QÐÑ! Í QÐAÑ!Þ Proof: Given the hypothesis, (1.8) is applicable. Also, Á!ÁAÞHence, by (1.8) À AQÐÑ! Í QÐAÑ! Þ Thus, we have that, QÐÑ! Í AQÐÑ! Í QÐAÑ! Í QÐAÑ!Þ Therefore: QÐÑ! Í QÐAÑ!Þ COROLLARY 2.1 If A %+-! for two non-zero values, z,w, then: Either both are zeros of Qß or else, Neither is a zero of M. Zeros of a quadratic polynomial ßUßand those of its monic adjunct, Qßcan now be related to each other by applying--in concert with each other--the results of Item (1.7A) together with Theorem

3 Theorem 3. Given a quadratic Uand its monic adjunct Qß suppose that - QÐÑ! for where Á!. Then: UÐ Ñ! UÐ Ñ Þ + Proof: Given that QÐÑ! and Á!, and then appealing to Items (1.7A) " - - and (1.7C), it follows that: UÐ Ñ QÐÑ! QÐÑUÐ Ñ. + %+ COROLLARY. Given a quadratic (polynomial) UÐBÑ, suppose that Á!ßand that is a fixed zero of the monic adjunct QÐBÑÞ Then, zeros of UÐBÑ are given by the formulas (2.1) - B" and B + ß Ð Á!Ñ. Theorem 4. Given a quadratic Uand its monic adjunct Qß suppose that QÐÑ! for where Á!. Then, the zeros of UÐBÑ given by the formulas in Item (2.1) are distinct zeros iff Á,Þ Proof: We proceed to demonstrate that: B" B Í,Þ Hence, for Á! and QÐÑ!ßsuppose that B" B ÞThen, - B" B Ê + Ê %+-! Þ Also, since QÐÑ!ß, %+-!Þ Adding equations in, we arrive at!,ð,ñþgiven Á!ßit we conclude,þ Consequently, the implication: B" B Ê, follows. Conversely, now suppose that,þthen, we see that!qðñqð,ñð,ñ,ð,ñ %+-, %+-Þ Thus,, Ê, %+-! Ê, - +, Ê B" BÞ Therefore, we have established: B" B Í,. Hence, the inverse biconditional: B Á B Í Á, can be concluded. " Theorem 5. Given a quadratic (polynomial) UÐBÑ, suppose that Á!ßand that is a fixed zero of the monic adjunct QÐBÑÞ Then, zeros of UÐBÑ, B" and B ß given by the formulas of Item (2.1) satisfy the following equalities: (2.2), - (i) B" B and (ii) B " B Þ Proof: Given that QÐÑ! and Á!, and observing that!qðñ, %+- Ê %+-,Þ - %+-,, Hence, B" B Þ - - And, also, B B Þ "

4 In order to present the developments (and observations) of the preceding Articles as a conveniently organized list of itemized results, a summary of such results is now displayed below. Summary of Established Results and Observations: (2.3) For and Á! : is a zero of Q iff is a zero of + %+- (2.4) For and Á! : is a zero of Q iff is a zero of UÞ Q Þ (2.5) For and Á!ß suppose that is a zero of Q, then: ÐA: Ñ and - are zeros of U (B): istinct zeros iff Á, Þ + (2.6) For and Á!ß suppose that is a zero of Q; then, the zeros of Uß B" and B, displayed in Item (2.1) satisfy the equalities (i) B B, and (ii) B B - " " Þ (2.7) Note that the condition, %+- Á!, restricts U from having zero values for either the leading coefficient, a, or the constant term, c. Of course, the condition that + Á! is implicit; otherwise, Uwould not be a quadratic. Observe that -Á! excludes the instance of Uwith a zero which has a zero value. (2.8) The condition that, - Á! would restrict the admittance of the trivial Uß +B!Þ Hence, exclusion of such trivial U can be assured by considering only admissible quadratic (polynomials) U as defined by the following (2.9) EFINITION: egenerate and trivial quadraticsßußcan be excluded by considering only admissible quadratics, Uß which satisfy the condition that: + Ð, - ÑÁ!Þ Article 03.: Alternative Renditions to the Quadratic Formula. By appealing to the results of the preceding Articles, novel and alternative renditions to the standard quadratic formula can be developed and formulated. In order to accomplish this objective, we introduce the following expression references. EFINITION: Given a general quadratic equation, UÐBÑ! ß the expressions created by the plus and minus sign options in the formulaß (3.1) I,, %+- ß (root effectors formula) are hereby defined as quadratic root Effectors

5 (3.2) We now note the following observations regarding quadratic root effectors: (i) Hegenerate and trivial quadratics are avoided by considering only admissible forms which satisfy the condition: + Ð, - ÑÁ! (as detailed in Item (2.9) ). (ii) IÁ!, for at least one of the root effector options (for admissible forms ). Theorem 6. The roots of an admissible quadratic equation, UÐBÑ!ß can be determined by using the following quadratic root effector formulas ÐUVIJ Ñ with a non-zero root effector. I - (3.3) B" and B Þ ÐUVIJ Ñ + I Proof : From (3.2) we see that there does exist at least one non-zero root effector option of that admissible Q. Further, we note that for the monic adjunct, Qß we have that QÐBÑB,B, Ð, %+-Ñ ÐB,Ñ Ð, %+-Ñßandß consequently, QÐ IÑÒÐ,, %+- Ñ, Ó Ð, %+-Ñ!ß for either option of the root effectors. Now, by applying an I Á! option, Ð IÑ Á! and QÐ IÑ!, together with (2.1) of Theorem 3, establishes Item (3.3), and so, completes this proof. Theorem 7. The roots of an admissible quadratic equation, UÐBÑ!ß which are formulated by the root effector formulas of Item (3.3) satisfy the equalities, - (3.4) (i) B" B and (ii) B " B Þ Proof: Here, we simply apply Theorem 5 where: Ð IÑÁ! that QÐ IÑ! as developed in the proof of Theorem 6. and observing Having observed the fundamental relationships and connective interplay between a quadratic U and its monic adjunct M as presented in the preceding Articles, this next result should actually come a as no surprise. Theorem 8. The roots of an admissible quadratic equation, UÐBÑ!ß as determined by quadratic root effector formulas of Item (3.3), can be classified by the monic adjunct discriminant M Ð,Ñ as follows: (3.5) Ð3Ñ QÐ,Ñ! Ê Ð33Ñ QÐ,Ñ! Ê Ð333Ñ QÐ,Ñ! Ê distinct, real roots one, real root complex conjugate roots Proof: Note that QÐ,Ñ Ð,Ñ,Ð,Ñ %+-, %+- Þ Now, by referencing the root effectors formula in Item (3.1) and observing that since QÐ,Ñ is, in fact, the radicand thereof, then the parity and value of QÐ,Ñ clearly classify the roots of UÐBÑ! as described in Item (3.5) Þ - 5 -

Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / )

Monic Adjuncts of Quadratics (Developed, Composed & Typeset by: J B Barksdale Jr / ) Monic Adjuncts of Quadratics (eveloped, Composed & Typeset by: J B Barksdale Jr / 04 18 15) Article 00.: Introduction. Given a univariant, Quadratic polynomial with, say, real number coefficients, (0.1)

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

Math 131 Exam 4 (Final Exam) F04M

Math 131 Exam 4 (Final Exam) F04M Math 3 Exam 4 (Final Exam) F04M3.4. Name ID Number The exam consists of 8 multiple choice questions (5 points each) and 0 true/false questions ( point each), for a total of 00 points. Mark the correct

More information

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Gene expression experiments Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Gene expression experiments Question: Gene

More information

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :) â SpanÖ?ß@ œ Ö =? > @ À =ß> real numbers : SpanÖ?ß@ œ Ö: =? > @ À =ß> real numbers œ the previous plane with each point translated by : Ðfor example, is translated to :) á In general: Adding a vector :

More information

B-9= B.Bà B 68 B.Bß B/.Bß B=38 B.B >+8 ab b.bß ' 68aB b.bà

B-9= B.Bà B 68 B.Bß B/.Bß B=38 B.B >+8 ab b.bß ' 68aB b.bà 8.1 Integration y Parts.@ a.? a Consider. a? a @ a œ? a @ a Þ....@ a..? a We can write this as? a œ a? a @ a@ a Þ... If we integrate oth sides, we otain.@ a a.?. œ a? a @ a..? a @ a. or...? a.@ œ? a @

More information

SVM example: cancer classification Support Vector Machines

SVM example: cancer classification Support Vector Machines SVM example: cancer classification Support Vector Machines 1. Cancer genomics: TCGA The cancer genome atlas (TCGA) will provide high-quality cancer data for large scale analysis by many groups: SVM example:

More information

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r )

T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a. A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) v e r. E N G O u t l i n e T i t l e o f t h e w o r k : L a M a r e a Y o k o h a m a A r t i s t : M a r i a n o P e n s o t t i ( P l a y w r i g h t, D i r e c t o r ) C o n t e n t s : T h i s w o

More information

The Rational Numbers

The Rational Numbers The Rational Numbers Fields The system of integers that e formally defined is an improvement algebraically on the hole number system = (e can subtract in ) But still has some serious deficiencies: for

More information

Solving SVM: Quadratic Programming

Solving SVM: Quadratic Programming MA 751 Part 7 Solving SVM: Quadratic Programming 1. Quadratic programming (QP): Introducing Lagrange multipliers α 4 and. 4 (can be justified in QP for inequality as well as equality constraints) we define

More information

Here are proofs for some of the results about diagonalization that were presented without proof in class.

Here are proofs for some of the results about diagonalization that were presented without proof in class. Suppose E is an 8 8 matrix. In what follows, terms like eigenvectors, eigenvalues, and eigenspaces all refer to the matrix E. Here are proofs for some of the results about diagonalization that were presented

More information

Théorie Analytique des Probabilités

Théorie Analytique des Probabilités Théorie Analytique des Probabilités Pierre Simon Laplace Book II 5 9. pp. 203 228 5. An urn being supposed to contain the number B of balls, e dra from it a part or the totality, and e ask the probability

More information

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa. ( ) X é X é Q Ó / 8 ( ) Q / ( ) ( ) : ( ) : 44-3-8999 433 4 z 78-19 941, #115 Z 385-194 77-51 76-51 74-7777, 75-5 47-55 74-8141 74-5115 78-3344 73-3 14 81-4 86-784 78-33 551-888 j 48-4 61-35 z/ zz / 138

More information

Æ Å not every column in E is a pivot column (so EB œ! has at least one free variable) Æ Å E has linearly dependent columns

Æ Å not every column in E is a pivot column (so EB œ! has at least one free variable) Æ Å E has linearly dependent columns ßÞÞÞß @ is linearly independent if B" @" B# @# ÞÞÞ B: @: œ! has only the trivial solution EB œ! has only the trivial solution Ðwhere E œ Ò@ @ ÞÞÞ@ ÓÑ every column in E is a pivot column E has linearly

More information

PART I. Multiple choice. 1. Find the slope of the line shown here. 2. Find the slope of the line with equation $ÐB CÑœ(B &.

PART I. Multiple choice. 1. Find the slope of the line shown here. 2. Find the slope of the line with equation $ÐB CÑœ(B &. Math 1301 - College Algebra Final Exam Review Sheet Version X This review, while fairly comprehensive, should not be the only material used to study for the final exam. It should not be considered a preview

More information

Definition Suppose M is a collection (set) of sets. M is called inductive if

Definition Suppose M is a collection (set) of sets. M is called inductive if Definition Suppose M is a collection (set) of sets. M is called inductive if a) g M, and b) if B Mß then B MÞ Then we ask: are there any inductive sets? Informally, it certainly looks like there are. For

More information

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.)

2. Let 0 be as in problem 1. Find the Fourier coefficient,&. (In other words, find the constant,& the Fourier series for 0.) Engineering Mathematics (ESE 317) Exam 4 April 23, 200 This exam contains seven multiple-choice problems worth two points each, 11 true-false problems worth one point each, and some free-response problems

More information

Proofs Involving Quantifiers. Proof Let B be an arbitrary member Proof Somehow show that there is a value

Proofs Involving Quantifiers. Proof Let B be an arbitrary member Proof Somehow show that there is a value Proofs Involving Quantifiers For a given universe Y : Theorem ÐaBÑ T ÐBÑ Theorem ÐbBÑ T ÐBÑ Proof Let B be an arbitrary member Proof Somehow show that there is a value of Y. Call it B œ +, say Þ ÐYou can

More information

Creating Good Equations for the Classroom: Rational, Logarithmic and Square Root aversion ""Î# 9Î#!"'

Creating Good Equations for the Classroom: Rational, Logarithmic and Square Root aversion Î# 9Î#!' Creating Good Equations for the Classroom: Rational, Logarithmic and Square Root aversion ""Î 9Î!"' Alan Roeuck Chaffey College alan.roeuck@chaffey.edu We're math teachers. We don't just solve equations,

More information

Inner Product Spaces. Another notation sometimes used is X.?

Inner Product Spaces. Another notation sometimes used is X.? Inner Product Spaces X In 8 we have an inner product? @? @?@ ÞÞÞ? 8@ 8Þ Another notation sometimes used is X? ß@? @? @? @ ÞÞÞ? @ 8 8 The inner product in?@ ß in 8 has several essential properties ( see

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces In 8 X, we defined an inner product? @? @?@ ÞÞÞ? 8@ 8. Another notation sometimes used is? @? ß@. The inner product in 8 has several important properties ( see Theorem, p. 33) that

More information

Probability basics. Probability and Measure Theory. Probability = mathematical analysis

Probability basics. Probability and Measure Theory. Probability = mathematical analysis MA 751 Probability basics Probability and Measure Theory 1. Basics of probability 2 aspects of probability: Probability = mathematical analysis Probability = common sense Probability basics A set-up of

More information

MATH 1301 (College Algebra) - Final Exam Review

MATH 1301 (College Algebra) - Final Exam Review MATH 1301 (College Algebra) - Final Exam Review This review is comprehensive but should not be the only material used to study for the final exam. It should not be considered a preview of the final exam.

More information

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Microarray experiment: Question: Gene expression - when is the DNA in

More information

Section 1.3 Functions and Their Graphs 19

Section 1.3 Functions and Their Graphs 19 23. 0 1 2 24. 0 1 2 y 0 1 0 y 1 0 0 Section 1.3 Functions and Their Graphs 19 3, Ÿ 1, 0 25. y œ 26. y œ œ 2, 1 œ, 0 Ÿ " 27. (a) Line through a!ß! band a"ß " b: y œ Line through a"ß " band aß! b: y œ 2,

More information

7. Random variables as observables. Definition 7. A random variable (function) X on a probability measure space is called an observable

7. Random variables as observables. Definition 7. A random variable (function) X on a probability measure space is called an observable 7. Random variables as observables Definition 7. A random variable (function) X on a probability measure space is called an observable Note all functions are assumed to be measurable henceforth. Note that

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

Math 131, Exam 2 Solutions, Fall 2010

Math 131, Exam 2 Solutions, Fall 2010 Math 131, Exam 2 Solutions, Fall 2010 Part I consists of 14 multiple choice questions (orth 5 points each) and 5 true/false questions (orth 1 point each), for a total of 75 points. Mark the correct anser

More information

Full file at 2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT

Full file at   2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT 2CT.2 UNIT IMPULSE 2CT.2. CHAPTER 2CT 2CT.2.2 (d) We can see from plot (c) that the limit?7 Ä!, B :?7 9 œb 9$ 9. This result is consistent with the sampling property: B $ œb $ 9 9 9 9 2CT.2.3 # # $ sin

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

1. Classify each number. Choose all correct answers. b. È # : (i) natural number (ii) integer (iii) rational number (iv) real number

1. Classify each number. Choose all correct answers. b. È # : (i) natural number (ii) integer (iii) rational number (iv) real number Review for Placement Test To ypass Math 1301 College Algebra Department of Computer and Mathematical Sciences University of Houston-Downtown Revised: Fall 2009 PLEASE READ THE FOLLOWING CAREFULLY: 1. The

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Notes on the Unique Extension Theorem. Recall that we were interested in defining a general measure of a size of a set on Ò!ß "Ó.

Notes on the Unique Extension Theorem. Recall that we were interested in defining a general measure of a size of a set on Ò!ß Ó. 1. More on measures: Notes on the Unique Extension Theorem Recall that we were interested in defining a general measure of a size of a set on Ò!ß "Ó. Defined this measure T. Defined TÐ ( +ß, ) Ñ œ, +Þ

More information

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' % 7 9 9 7 The two basic variable types in a connector potential (or across) variable and flow (or through) variable are not sufficient to describe in a numerically sound way the bi-directional flow of matter

More information

Relations and Functions (for Math 026 review)

Relations and Functions (for Math 026 review) Section 3.1 Relations and Functions (for Math 026 review) Objective 1: Understanding the s of Relations and Functions Relation A relation is a correspondence between two sets A and B such that each element

More information

Implicit in the definition of orthogonal arrays is a projection propertyþ

Implicit in the definition of orthogonal arrays is a projection propertyþ Projection properties Implicit in the definition of orthogonal arrays is a projection propertyþ factor screening effect ( factor) sparsity A design is said to be of projectivity : if in every subset of

More information

SIMULATION - PROBLEM SET 1

SIMULATION - PROBLEM SET 1 SIMULATION - PROBLEM SET 1 " if! Ÿ B Ÿ 1. The random variable X has probability density function 0ÐBÑ œ " $ if Ÿ B Ÿ.! otherwise Using the inverse transform method of simulation, find the random observation

More information

Systems of Equations 1. Systems of Linear Equations

Systems of Equations 1. Systems of Linear Equations Lecture 1 Systems of Equations 1. Systems of Linear Equations [We will see examples of how linear equations arise here, and how they are solved:] Example 1: In a lab experiment, a researcher wants to provide

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

Dr. Nestler - Math 2 - Ch 3: Polynomial and Rational Functions

Dr. Nestler - Math 2 - Ch 3: Polynomial and Rational Functions Dr. Nestler - Math 2 - Ch 3: Polynomial and Rational Functions 3.1 - Polynomial Functions We have studied linear functions and quadratic functions Defn. A monomial or power function is a function of the

More information

Summer MA Lesson 11 Section 1.5 (part 1)

Summer MA Lesson 11 Section 1.5 (part 1) Summer MA 500 Lesson Section.5 (part ) The general form of a quadratic equation is a + b + c = 0, where a, b, and c are real numbers and a 0. This is a second degree equation. There are four ways to possibly

More information

Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products

Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products Dr. H. Joseph Straight SUNY Fredonia Smokin' Joe's Catalog of Groups: Direct Products and Semi-direct Products One of the fundamental problems in group theory is to catalog all the groups of some given

More information

CSC Discrete Math I, Spring Propositional Logic

CSC Discrete Math I, Spring Propositional Logic CSC 125 - Discrete Math I, Spring 2017 Propositional Logic Propositions A proposition is a declarative sentence that is either true or false Propositional Variables A propositional variable (p, q, r, s,...)

More information

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation

recognise quadratics of the form y = kx 2 and y = (x + a) 2 + b ; a, b Î Z, from their graphs solve quadratic equations by factorisation QUADRATIC FUNCTIONS B the end of this unit, ou should be able to: (a) (b) (c) (d) (e) recognise quadratics of the form = k 2 and = ( + a) 2 + b ; a, b Î Z, from their graphs identif the nature and coordinates

More information

Math 132, Spring 2003 Exam 2: Solutions

Math 132, Spring 2003 Exam 2: Solutions Math 132, Spring 2003 Exam 2: Solutions No calculators with a CAS are allowed. e sure your calculator is set for radians, not degrees if you do any calculus computations with trig functions. Part I, Multiple

More information

PreCalc 11 Chapter 5 Review Pack v1 Answer Section

PreCalc 11 Chapter 5 Review Pack v1 Answer Section PreCalc 11 Chapter 5 Review Pack v1 Answer Section MULTIPLE CHOICE 1. ANS: A PTS: 0 DIF: Easy REF: 5.1 Solving Quadratic Inequalities in One Variable LOC: 11.RF8. ANS: D PTS: 0 DIF: Easy REF: 5.1 Solving

More information

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why Definition If V is a relation from E to F, then a) the domain of V œ dom ÐVÑ œ Ö+ E À b, F such that Ð+ß,Ñ V b) the range of V œ ran( VÑ œ Ö, F À b+ E such that Ð+ß,Ñ V " c) the inverse relation of V œ

More information

Block-tridiagonal matrices

Block-tridiagonal matrices Block-tridiagonal matrices. p.1/31 Block-tridiagonal matrices - where do these arise? - as a result of a particular mesh-point ordering - as a part of a factorization procedure, for example when we compute

More information

Randomized Simultaneous Messages: Solution of a Problem of Yao in Communication Complexity

Randomized Simultaneous Messages: Solution of a Problem of Yao in Communication Complexity Randomized Simultaneous Messages: Solution of a Problem of Yao in Communication Complexity László Babai Peter G. Kimmel Department of Computer Science The University of Chicago 1100 East 58th Street Chicago,

More information

Draft. Lecture 14 Eigenvalue Problems. MATH 562 Numerical Analysis II. Songting Luo. Department of Mathematics Iowa State University

Draft. Lecture 14 Eigenvalue Problems. MATH 562 Numerical Analysis II. Songting Luo. Department of Mathematics Iowa State University Lecture 14 Eigenvalue Problems Songting Luo Department of Mathematics Iowa State University MATH 562 Numerical Analysis II Songting Luo ( Department of Mathematics Iowa State University[0.5in] MATH562

More information

ABSTRACT ALGEBRA 1 COURSE NOTES, LECTURE 11: SYLOW THEORY.

ABSTRACT ALGEBRA 1 COURSE NOTES, LECTURE 11: SYLOW THEORY. ABSTRACT ALGEBRA 1 COURSE NOTES, LECTURE 11: SYLOW THEORY. ANDREW SALCH Here s a quick definition we could have introduced a long time ago: Definition 0.1. If n is a positive integer, we often write C

More information

Periodic monopoles and difference modules

Periodic monopoles and difference modules Periodic monopoles and difference modules Takuro Mochizuki RIMS, Kyoto University 2018 February Introduction In complex geometry it is interesting to obtain a correspondence between objects in differential

More information

of inequality indexes in the design-based framework

of inequality indexes in the design-based framework A functional derivative useful for the linearization of inequality indexes in the design-based framework # $ Lucio Barabesi Giancarlo Diana and Pier Francesco Perri Department of Economics and Statistics

More information

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero Solving Other Types of Equations Rational Equations Examine each denominator to find values that would cause the denominator to equal zero Multiply each term by the LCD or If two terms cross-multiply Solve,

More information

There are four irrational roots with approximate values of

There are four irrational roots with approximate values of Power of the Quadratic Formula 1 y = (x ) - 8(x ) + 4 a = 1, b = -8, c = 4 Key 1. Consider the equation y = x 4 8x + 4. It may be a surprise, but we can use the quadratic formula to find the x-intercepts

More information

ALGEBRA II (COMMON CORE) FACTS YOU MUST KNOW COLD FOR THE REGENTS EXAM

ALGEBRA II (COMMON CORE) FACTS YOU MUST KNOW COLD FOR THE REGENTS EXAM ALGEBRA II (COMMON CORE) FACTS YOU MUST KNOW COLD FOR THE REGENTS EXAM NYS Mathematics Regents Preparation Created by Trevor Clark Algebra II [Common Core] Regents Exam Study Guide ALGEBRA & FUNCTIONS

More information

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof Ch. 1.6 Introduction to Proofs The following techniques for methods of proofs are discussed in our text - Vacuous proof - Trivial proof - Direct proof - Indirect proof (our book calls this by contraposition)

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Local behaviour of Galois representations

Local behaviour of Galois representations Local behaviour of Galois representations Devika Sharma Weizmann Institute of Science, Israel 23rd June, 2017 Devika Sharma (Weizmann) 23rd June, 2017 1 / 14 The question Let p be a prime. Let f ř 8 ně1

More information

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure Product Overview XI025100V036NM1M Input Voltage (Vac) Output Power (W) Output Voltage Range (V) Output urrent (A) Efficiency@ Max Load and 70 ase Max ase Temp. ( ) Input urrent (Arms) Max. Input Power

More information

MATH 1314 Test 2 Review

MATH 1314 Test 2 Review Name: Class: Date: MATH 1314 Test 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find ( f + g)(x). f ( x) = 2x 2 2x + 7 g ( x) = 4x 2 2x + 9

More information

THE CLASSIFICATION PROBLEM REPRESENTATION-FINITE, TAME AND WILD QUIVERS

THE CLASSIFICATION PROBLEM REPRESENTATION-FINITE, TAME AND WILD QUIVERS October 28, 2009 THE CLASSIFICATION PROBLEM REPRESENTATION-FINITE, TAME AND WILD QUIVERS Sabrina Gross, Robert Schaefer In the first part of this week s session of the seminar on Cluster Algebras by Prof.

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION Preliminaries. Perturbation theory is the study of the effects of small disturbances in the mathematical model of a physical system. The model could be expressed as an algebraic

More information

ALGEBRA 2 FINAL EXAM REVIEW

ALGEBRA 2 FINAL EXAM REVIEW Class: Date: ALGEBRA 2 FINAL EXAM REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question.. Classify 6x 5 + x + x 2 + by degree. quintic c. quartic cubic d.

More information

TOTAL DIFFERENTIALS. In Section B-4, we observed that.c is a pretty good approximation for? C, which is the increment of

TOTAL DIFFERENTIALS. In Section B-4, we observed that.c is a pretty good approximation for? C, which is the increment of TOTAL DIFFERENTIALS The differential was introduced in Section -4. Recall that the differential of a function œ0ðñis w. œ 0 ÐÑ.Þ Here. is the differential with respect to the independent variable and is

More information

The Gauss-Jordan Elimination Algorithm

The Gauss-Jordan Elimination Algorithm The Gauss-Jordan Elimination Algorithm Solving Systems of Real Linear Equations A. Havens Department of Mathematics University of Massachusetts, Amherst January 24, 2018 Outline 1 Definitions Echelon Forms

More information

Cellular Automaton Growth on # : Theorems, Examples, and Problems

Cellular Automaton Growth on # : Theorems, Examples, and Problems Cellular Automaton Growth on : Theorems, Examples, and Problems (Excerpt from Advances in Applied Mathematics) Exactly 1 Solidification We will study the evolution starting from a single occupied cell

More information

hal , version 1-27 Mar 2014

hal , version 1-27 Mar 2014 Author manuscript, published in "2nd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2005), New York, NY. : United States (2005)" 2 More formally, we denote by

More information

Redoing the Foundations of Decision Theory

Redoing the Foundations of Decision Theory Redoing the Foundations of Decision Theory Joe Halpern Cornell University Joint work with Larry Blume and David Easley Economics Cornell Redoing the Foundations of Decision Theory p. 1/21 Decision Making:

More information

Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points.

Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points. Math 131 Exam 1 Solutions Part I consists of 14 multiple choice questions (orth 5 points each) and 5 true/false question (orth 1 point each), for a total of 75 points. 1. The folloing table gives the number

More information

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ.

e) D œ < f) D œ < b) A parametric equation for the line passing through Ð %, &,) ) and (#,(, %Ñ. Page 1 Calculus III : Bonus Problems: Set 1 Grade /42 Name Due at Exam 1 6/29/2018 1. (2 points) Give the equations for the following geometrical objects : a) A sphere of radius & centered at the point

More information

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, 2015 Examiners: Drs. K. M. Ramachandran and G. S. Ladde INSTRUCTIONS: a. The quality is more important than the quantity. b. Attempt

More information

CH 73 THE QUADRATIC FORMULA, PART II

CH 73 THE QUADRATIC FORMULA, PART II 1 CH THE QUADRATIC FORMULA, PART II INTRODUCTION W ay back in Chapter 55 we used the Quadratic Formula to solve quadratic equations like 6x + 1x + 0 0, whose solutions are 5 and 8. In fact, all of the

More information

Classification of Isometries

Classification of Isometries Chapter 3 Classification of Isometries From our work in Chapter 1 we know that reflections, translations, glide reflections and rotations are isometries. Furthermore, the Fundamental Theorem tells us that

More information

The Hahn-Banach and Radon-Nikodym Theorems

The Hahn-Banach and Radon-Nikodym Theorems The Hahn-Banach and Radon-Nikodym Theorems 1. Signed measures Definition 1. Given a set Hand a 5-field of sets Y, we define a set function. À Y Ä to be a signed measure if it has all the properties of

More information

Section 4.1: Polynomial Functions and Models

Section 4.1: Polynomial Functions and Models Section 4.1: Polynomial Functions and Models Learning Objectives: 1. Identify Polynomial Functions and Their Degree 2. Graph Polynomial Functions Using Transformations 3. Identify the Real Zeros of a Polynomial

More information

On Least Squares Linear Regression Without Second Moment

On Least Squares Linear Regression Without Second Moment On Least Squares Linear Regression Without Second Moment BY RAJESHWARI MAJUMDAR University of Connecticut If \ and ] are real valued random variables such that the first moments of \, ], and \] exist and

More information

â, Đ (Very Long Baseline Interferometry, VLBI)

â, Đ (Very Long Baseline Interferometry, VLBI) ½ 55 ½ 5 Í Vol.55 No.5 2014 9 ACTA ASTRONOMICA SINICA Sep., 2014» Á Çý è 1,2 1,2 å 1,2 Ü ô 1,2 ï 1,2 ï 1,2 à 1,3 Æ Ö 3 ý (1 Á Í 200030) (2 Á Í û À 210008) (3 541004) ÇÅè 1.5 GHz Á è, î Í, û ÓÆ Å ò ½Ò ¼ï.

More information

Subtraction Property of Equality terms. x-axis x-coordinate x-intercept y-axis y-coordinate y-intercept

Subtraction Property of Equality terms. x-axis x-coordinate x-intercept y-axis y-coordinate y-intercept Algebra I Chapter 1 Chapter 2 additive identity range absolute value algebraic expression reciprocal additive inverses Associative Property Reflexive Property of Equality back-to-back stem and leaf bar

More information

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples)

E.G., data mining, prediction. Function approximation problem: How >9 best estimate the function 0 from partial information (examples) Can Neural Network and Statistical Learning Theory be Formulated in terms of Continuous Complexity Theory? 1. Neural Networks and Statistical Learning Theory Many areas of mathematics, statistics, and

More information

Algebra 1 / 8 th Grade Algebra Curriculum

Algebra 1 / 8 th Grade Algebra Curriculum 1 st Quarter 9 weeks Write algebraic examples. Evaluate expressions and solve open sentences. Use algebraic properties of identity and equality. Use conditional statements and counterexamples. variable

More information

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University

MAP METHODS FOR MACHINE LEARNING. Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University MAP METHODS FOR MACHINE LEARNING Mark A. Kon, Boston University Leszek Plaskota, Warsaw University, Warsaw Andrzej Przybyszewski, McGill University Example: Control System 1. Paradigm: Machine learning

More information

This document has been prepared by Sunder Kidambi with the blessings of

This document has been prepared by Sunder Kidambi with the blessings of Ö À Ö Ñ Ø Ò Ñ ÒØ Ñ Ý Ò Ñ À Ö Ñ Ò Ú º Ò Ì ÝÊ À Å Ú Ø Å Ê ý Ú ÒØ º ÝÊ Ú Ý Ê Ñ º Å º ² ºÅ ý ý ý ý Ö Ð º Ñ ÒÜ Æ Å Ò Ñ Ú «Ä À ý ý This document has been prepared by Sunder Kidambi with the blessings of Ö º

More information

Ð"Ñ + Ð"Ñ, Ð"Ñ +, +, + +, +,,

ÐÑ + ÐÑ, ÐÑ +, +, + +, +,, Handout #11 Confounding: Complete factorial experiments in incomplete blocks Blocking is one of the important principles in experimental design. In this handout we address the issue of designing complete

More information

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ

ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ ÒÞ ÔÓÐÝÒÓÑ Ð º Ì ÛÓ¹ÐÓÓÔ ÙÒÖ Ö Ô Û Ö Ö ÖÝ Ñ ¹ ÝÓÒ ÑÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò ÝÒÑ Ò Ò Ö Ð Ö Ò Ó Ò Ö ÀÍ ÖÐ Òµ Ó Ò ÛÓÖ Û Ö Ò ÖÓÛÒ Ö Ú ½ ¼¾º ¾½ Û Åº Ä Ö Ö Ú ½ ¼¾º ¼¼ Û Äº Ñ Ò Ëº Ï ÒÞ ÖÐ Å ÒÞ ½ º¼ º¾¼½ ÇÙÐ Ò ½º ÅÙÐ ÔÐ ÔÓÐÝÐÓ Ö Ñ Ò Ú Ö Ð Ú Ö Ð ¾º Ä Ò Ö Ö Ù Ð Ý Ó ËÝÑ

More information

A Local System for Linear Logic

A Local System for Linear Logic Lutz Straßburger Technische Universität Dresden Fakultät Informatik 01062 Dresden Germany lutz.strassburger@inf.tu-dresden.de Abstract. In this paper I will present a deductive system for linear logic

More information

Example: A Markov Process

Example: A Markov Process Example: A Markov Process Divide the greater metro region into three parts: city such as St. Louis), suburbs to include such areas as Clayton, University City, Richmond Heights, Maplewood, Kirkwood,...)

More information

Math 1AA3/1ZB3 Sample Test 3, Version #1

Math 1AA3/1ZB3 Sample Test 3, Version #1 Math 1AA3/1ZB3 Sample Test 3, Version 1 Name: (Last Name) (First Name) Student Number: Tutorial Number: This test consists of 16 multiple choice questions worth 1 mark each (no part marks), and 1 question

More information

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS

THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS THE REAL NUMBER SYSTEM C O M P E T E N C Y 1 THE TEACHER UNDERSTANDS THE REAL NUMBER SYSTEM AND ITS STRUCTURE, OPERATIONS, ALGORITHMS, AND REPRESENTATIONS This competency section reviews some of the fundamental

More information

Mathematical contributions to the theory of Dirac matrices

Mathematical contributions to the theory of Dirac matrices Contributions mathématiques à la théorie des matrices de Dirac nn. de l Inst. Henri Poincaré 6 (936) 09-36. Mathematical contributions to the theory of Dirac matrices By W. PULI Zurich Translated by D

More information

S u p e r v i s o r y C o m m i t t e e : T i n a G u r u c h a r r i, C h a i r M a r i a n n e S c h m i n k, M e m b e r

S u p e r v i s o r y C o m m i t t e e : T i n a G u r u c h a r r i, C h a i r M a r i a n n e S c h m i n k, M e m b e r T i e r r a D e s p i e r t a : A S o c i a l a n d P h y s i c a l S t u d y o f t h e A g r i c u l t u r e L a n d i n S a n t a C r u z, G a l a p a g o s, E c u a d o r A F i e l d P r a c t i c u

More information

Page 1 College Algebra : Computing Lab 1 /5 Due 1/18/18

Page 1 College Algebra : Computing Lab 1 /5 Due 1/18/18 Page 1 College Algebra : Computing Lab 1 /5 Name Due 1/18/18 Using your calculator evaluate the following for B œ % and C œ. 1. ( œ 2. Ð (Ñ œ 3. $ÐBCÑC &B$C B œ 4. C C B Š B " " œ Winplot is a free general-purpose

More information

Constructive Decision Theory

Constructive Decision Theory Constructive Decision Theory Joe Halpern Cornell University Joint work with Larry Blume and David Easley Economics Cornell Constructive Decision Theory p. 1/2 Savage s Approach Savage s approach to decision

More information

Review of Elementary Probability Theory Math 495, Spring 2011

Review of Elementary Probability Theory Math 495, Spring 2011 Revie of Elementary Probability Theory Math 495, Spring 2011 0.1 Probability spaces 0.1.1 Definition. A probability space is a triple ( HT,,P) here ( 3Ñ H is a non-empty setà Ð33Ñ T is a collection of

More information

Inverses of Square Matrices

Inverses of Square Matrices Inverses of Square Matrices A. Havens Department of Mathematics University of Massachusetts, Amherst February 23-26, 2018 Outline 1 Defining Inverses Inverses for Products and Functions Defining Inverse

More information

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator Capter Seven Te Quantum Mecanical Simple Harmonic Oscillator Introduction Te potential energy function for a classical, simple armonic oscillator is given by ZÐBÑ œ 5B were 5 is te spring constant. Suc

More information