Machine Learning: Logistic Regression. Lecture 04

Size: px
Start display at page:

Download "Machine Learning: Logistic Regression. Lecture 04"

Transcription

1 Machine Learning: Logistic Regression Razvan C. Bunescu School of Electrical Engineering and Computer Science

2 Supervised Learning Task = learn an (unkon function t : X T that maps input instances x Î X to output targets t(x Î T: Classification: The output t(x Î T is one of a finite set of discrete categories. Regression: The output t(x Î T is continuous, or has a continuous component. Target function t(x is knon (only through (noisy set of training examples: (x 1,t 1, (x 2,t 2, (x n,t n

3 Supervised Learning Training Training Examples (x k, t k Learning Algorithm Model h Testing Test Examples (x, t Model h Generalization Performance

4 Parametric Approaches to Supervised Learning Task = build a function h(x such that: h matches t ell on the training data: => h is able to fit data that it has seen. h also matches t ell on test data: => h is able to generalize to unseen data. Task = choose h from a nice class of functions that depend on a vector of parameters : h(x º h (x º h(,x hat classes of functions are nice?

5 Neurons Soma is the central part of the neuron: here the input signals are combined. Dendrites are cellular extensions: here majority of the input occurs. Axon is a fine, long projection: carries nerve signals to other neurons. Synapses are molecular structures beteen axon terminals and other neurons: here the communication takes place.

6 Neuron Models

7 Spiking/LIF Neuron Function

8 Neuron Models

9 McCulloch-Pitts Neuron Function x activation / output function x 1 x Σ i x i f h (x x 3 Algebraic interpretation: The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic eights. eights i correspond to the synaptic eights (activating or inhibiting. summation corresponds to combination of signals in the soma. It is often transformed through an activation / output function.

10 Activation Functions " $ unit step f (z = # %$ Perceptron 0 if z < 0 1 if z logistic f (z = 1+ e z Logistic Regression identity f (z = z Linear Regression 0

11 Linear Regression x activation / output function x Σ f x 2 3 i x i f (z = z h (x = i x i x 3 Polynomial curve fitting is Linear Regression: x = φ(x = [1, x, x 2,..., x M ] T h(x = T x

12 McCulloch-Pitts Neuron Function x activation / output function x 1 x Σ i x i f h (x x 3 Algebraic interpretation: The output of the neuron is a linear combination of inputs from other neurons, rescaled by the synaptic eights. eights i correspond to the synaptic eights (activating or inhibiting. summation corresponds to combination of signals in the soma. It is often transformed through a monotonic activation / output function.

13 Logistic Regression x 0 x 1 x 2 x Σ activation function f i x i 1 h (x = 3 1 f (z = 1+ exp( T x 1+ exp( z Training set is (x 1,t 1, (x 2,t 2, (x n,t n. x = [1, x 1, x 2,..., x k ] T h(x = σ( T x Can be used for both classification and regression: Classification: T = {C 1, C 2 } = {1, 0}. Regression: T = [0, 1] (i.e. output needs to be normalized.

14 Logistic Regression for Binary Classification Model output can be interpreted as posterior class probabilities: p(c 1 x = σ ( T x = 1 1+ exp( T x p(c 2 x =1 σ ( T x = exp( T x 1+ exp( T x Ho do e train a logistic regression model? What error/cost function to minimize?

15 Logistic Regression Learning Learning = finding the right parameters T = [ 0, 1,, k ] Find that minimizes an error function E( hich measures the misfit beteen h(x n, and t n. Expect that h(x, performing ell on training examples x n Þ h(x, ill perform ell on arbitrary test examples x Î X. Least Squares error function? E( = 1 2 N n=1 {h(x n, t n } 2 Differentiable => can use gradient descent Non-convex => not guaranteed to find the global optimum

16 Maximum Likelihood Training set is D = {áx n, t n ñ t n Î {0,1}, n Î 1 N} Let h n = p(c 1 x n h n = p(t n =1 x n = σ ( T x n Maximum Likelihood (ML principle: find parameters that maximize the likelihood of the labels. The likelihood function is N p(t = h n t n (1 h n (1 t n n=1 The negative log-likelihood (cross entropy error function: N { } E( = ln p(t x = t n lnh n + (1 t n ln(1 h n n=1

17 Maximum Likelihood Learning for Logistic Regression The ML solution is: ML = argmax p(t = argmin E( convex in ML solution is given by ÑE( = 0. Cannot solve analytically => solve numerically ith gradient based methods: (stochastic gradient descent, conjugate gradient, L-BFGS, etc. Gradient is (prove it: E( = N n=1 (h n t n x n T

18 Regularized Logistic Regression Use a Gaussian prior over the parameters: = [ 0, 1,, M ] T Bayes Theorem: MAP solution: þ ý ü î í ì - ø ö ç è æ = = + - I 0 T M Ν p 2 exp 2, ( ( 2 1 / ( 1 a p a a ( ( ( ( ( ( t t t t p p p p p p µ = ( max arg t p MAP =

19 Regularized Logistic Regression MAP solution: = MAP arg max p( t = arg max p ( t p ( = arg min- ln p( t p( = arg min- ln p( t - ln p( = arg min E D ( - ln p( a T = arg min E D ( + 2 = arg mine D ( + E ( E E D ( ( = - N å{ tn ln yn + (1 - tnln(1 - yn } n= 1 a = 2 T regularization term data term

20 Regularized Logistic Regression MAP solution: MAP = arg min E D ( + E ( still convex in ML solution is given by ÑE( = 0. ÑE( = ÑE D ( + ÑE ( Cannot solve analytically => solve numerically: N = (h n t n x n T +α T n=1 (stochastic gradient descent [PRML 3.1.3], Neton Raphson iterative optimization [PRML 4.3.3], conjugate gradient, LBFGS. here h n = σ ( T x n

21 Softmax Regression = Logistic Regression for Multiclass Classification Multiclass classification: T = {C 1, C 2,..., C K } = {1, 2,..., K}. Training set is (x 1,t 1, (x 2,t 2, (x n,t n. x = [1, x 1, x 2,..., x M ] t 1, t 2, t n Î {1, 2,..., K} One eight vector per class [PRML 4.3.4]: p(c k x = exp( k T x exp( j T x j

22 Softmax Regression (K ³ 2 Inference: C* = arg max p( Ck x C k = argmax C k exp( T k x exp( T j x j Z(x a normalization constant Training using: = argmax C k exp( k T x = argmax C k k T x Maximum Likelihood (ML Maximum A Posteriori (MAP ith a Gaussian prior on.

23 Softmax Regression The negative log-likelihood error function is: E D ( = 1 N ln p(t n x n = 1 N = 1 N N n=1 N N n=1 ln exp( T t n x n Z(x n K n=1 k=1 δ k (t n ln exp( T k x n Z(x n convex in here d ( x t = ì1 í î0 x x = ¹ t t is the Kronecker delta function.

24 Softmax Regression The ML solution is: = arg min ML E D ( The gradient is (prove it: k E D ( = 1 N = 1 N N n=1 N n=1 ( δ k (t n p(c k x n x n δ k (t n exp( T k x n Z(x n x n E D ( = " # T E 1 D (, T 2 E D (,, T K E D ( $ % T

25 Regularized Softmax Regression The ne cost function is: E( = E D (+ E ( = 1 N N K δ k (t n ln exp( T k x n + α Z(x n 2 n=1 k=1 K k=1 T k k The ne gradient is (prove it: k E( = 1 N N n=1 T ( δ k (t n p(c k x n x n +α k T

26 Softmax Regression ML solution is given by ÑE D ( = 0. Cannot solve analytically. Solve numerically, by pluging [cost, gradient] = [E D (, ÑE D (] values into general convex solvers: L-BFGS Neton methods conjugate gradient (stochastic / minibatch gradient-based methods. gradient descent (ith / ithout momentum. AdaGrad, AdaDelta RMSProp ADAM,...

27 Implementation Need to compute [cost, gradient]: cost = 1 N gradient k N δ k (t n ln p(c k x n + α 2 n=1 k=1 => need to compute, for k = 1,..., K: K = 1 N N n=1 K k=1 T k k T T ( δ k (t n p(c k x n x n +α k output p(c k x n = exp( T k x n exp( T j x n j Overflo hen kt x n are too large.

28 Implementation: Preventing Overflos Subtract from each product kt x n the maximum product: c = max 1 k K k T x n p(c k x n = exp( k T x n c exp( j T x n c j

29 Implementation: Gradient Checking Want to minimize J(θ, here θ is a scalar. Mathematical definition of derivative: d J(θ +ε J(θ ε J(θ = lim dθ ε 2ε Numerical approximation of derivative: d J(θ +ε J(θ ε J(θ dθ 2ε here ε =

30 Implementation: Gradient Checking If θ is a vector of parameters θ i, Compute numerical derivative ith respect to each θ i. Aggregate all derivatives into numerical gradient G num (θ. Compare numerical gradient G num (θ ith implementation of gradient G imp (θ: G num (θ G imp (θ G num (θ+ G imp (θ 10 6

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Machine Learning: The Perceptron. Lecture 06

Machine Learning: The Perceptron. Lecture 06 Machine Learning: he Perceptron Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu 1 McCulloch-Pitts Neuron Function 0 1 w 0 activation / output function 1 w 1 w w

More information

Machine Learning: Fisher s Linear Discriminant. Lecture 05

Machine Learning: Fisher s Linear Discriminant. Lecture 05 Machine Learning: Fisher s Linear Discriinant Lecture 05 Razvan C. Bunescu chool of Electrical Engineering and Coputer cience bunescu@ohio.edu Lecture 05 upervised Learning ask learn an (unkon) function

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Stochastic gradient descent; Classification

Stochastic gradient descent; Classification Stochastic gradient descent; Classification Steve Renals Machine Learning Practical MLP Lecture 2 28 September 2016 MLP Lecture 2 Stochastic gradient descent; Classification 1 Single Layer Networks MLP

More information

Machine Learning: Logistic Regression. Lecture 04

Machine Learning: Logistic Regression. Lecture 04 Machie Learig: Logistic Regressio Razva C. Buescu School of Electrical Egieerig ad Computer Sciece buescu@ohio.edu Supervised Learig ask = lear a uko fuctio t : X that maps iput istaces x Î X to output

More information

Multiclass Logistic Regression

Multiclass Logistic Regression Multiclass Logistic Regression Sargur. Srihari University at Buffalo, State University of ew York USA Machine Learning Srihari Topics in Linear Classification using Probabilistic Discriminative Models

More information

GRADIENT DESCENT. CSE 559A: Computer Vision GRADIENT DESCENT GRADIENT DESCENT [0, 1] Pr(y = 1) w T x. 1 f (x; θ) = 1 f (x; θ) = exp( w T x)

GRADIENT DESCENT. CSE 559A: Computer Vision GRADIENT DESCENT GRADIENT DESCENT [0, 1] Pr(y = 1) w T x. 1 f (x; θ) = 1 f (x; θ) = exp( w T x) 0 x x x CSE 559A: Computer Vision For Binary Classification: [0, ] f (x; ) = σ( x) = exp( x) + exp( x) Output is interpreted as probability Pr(y = ) x are the log-odds. Fall 207: -R: :30-pm @ Lopata 0

More information

Ch 4. Linear Models for Classification

Ch 4. Linear Models for Classification Ch 4. Linear Models for Classification Pattern Recognition and Machine Learning, C. M. Bishop, 2006. Department of Computer Science and Engineering Pohang University of Science and echnology 77 Cheongam-ro,

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

Neural networks and support vector machines

Neural networks and support vector machines Neural netorks and support vector machines Perceptron Input x 1 Weights 1 x 2 x 3... x D 2 3 D Output: sgn( x + b) Can incorporate bias as component of the eight vector by alays including a feature ith

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Lecture 3a: The Origin of Variational Bayes

Lecture 3a: The Origin of Variational Bayes CSC535: 013 Advanced Machine Learning Lecture 3a: The Origin of Variational Bayes Geoffrey Hinton The origin of variational Bayes In variational Bayes, e approximate the true posterior across parameters

More information

Linear discriminant functions

Linear discriminant functions Andrea Passerini passerini@disi.unitn.it Machine Learning Discriminative learning Discriminative vs generative Generative learning assumes knowledge of the distribution governing the data Discriminative

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Iterative Reweighted Least Squares

Iterative Reweighted Least Squares Iterative Reweighted Least Squares Sargur. University at Buffalo, State University of ew York USA Topics in Linear Classification using Probabilistic Discriminative Models Generative vs Discriminative

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Day 4: Classification, support vector machines

Day 4: Classification, support vector machines Day 4: Classification, support vector machines Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 21 June 2018 Topics so far

More information

Lecture 16: Modern Classification (I) - Separating Hyperplanes

Lecture 16: Modern Classification (I) - Separating Hyperplanes Lecture 16: Modern Classification (I) - Separating Hyperplanes Outline 1 2 Separating Hyperplane Binary SVM for Separable Case Bayes Rule for Binary Problems Consider the simplest case: two classes are

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Machine Learning. 7. Logistic and Linear Regression

Machine Learning. 7. Logistic and Linear Regression Sapienza University of Rome, Italy - Machine Learning (27/28) University of Rome La Sapienza Master in Artificial Intelligence and Robotics Machine Learning 7. Logistic and Linear Regression Luca Iocchi,

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1 90 8 80 7 70 6 60 0 8/7/ Preliminaries Preliminaries Linear models and the perceptron algorithm Chapters, T x + b < 0 T x + b > 0 Definition: The Euclidean dot product beteen to vectors is the expression

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D.

April 9, Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá. Linear Classification Models. Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 9, 2018 Content 1 2 3 4 Outline 1 2 3 4 problems { C 1, y(x) threshold predict(x) = C 2, y(x) < threshold, with threshold

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS16 COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS6 Lecture 3: Classification with Logistic Regression Advanced optimization techniques Underfitting & Overfitting Model selection (Training-

More information

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods.

Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Lecture 5: Linear models for classification. Logistic regression. Gradient Descent. Second-order methods. Linear models for classification Logistic regression Gradient descent and second-order methods

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Computer Vision Group Prof. Daniel Cremers. 3. Regression

Computer Vision Group Prof. Daniel Cremers. 3. Regression Prof. Daniel Cremers 3. Regression Categories of Learning (Rep.) Learnin g Unsupervise d Learning Clustering, density estimation Supervised Learning learning from a training data set, inference on the

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 8 Feb. 12, 2018 1 10-601 Introduction

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Intelligent Systems Discriminative Learning, Neural Networks

Intelligent Systems Discriminative Learning, Neural Networks Intelligent Systems Discriminative Learning, Neural Networks Carsten Rother, Dmitrij Schlesinger WS2014/2015, Outline 1. Discriminative learning 2. Neurons and linear classifiers: 1) Perceptron-Algorithm

More information

Lecture 6. Regression

Lecture 6. Regression Lecture 6. Regression Prof. Alan Yuille Summer 2014 Outline 1. Introduction to Regression 2. Binary Regression 3. Linear Regression; Polynomial Regression 4. Non-linear Regression; Multilayer Perceptron

More information

Logistic Regression. William Cohen

Logistic Regression. William Cohen Logistic Regression William Cohen 1 Outline Quick review classi5ication, naïve Bayes, perceptrons new result for naïve Bayes Learning as optimization Logistic regression via gradient ascent Over5itting

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

probability of k samples out of J fall in R.

probability of k samples out of J fall in R. Nonparametric Techniques for Density Estimation (DHS Ch. 4) n Introduction n Estimation Procedure n Parzen Window Estimation n Parzen Window Example n K n -Nearest Neighbor Estimation Introduction Suppose

More information

Machine Learning. Linear Models. Fabio Vandin October 10, 2017

Machine Learning. Linear Models. Fabio Vandin October 10, 2017 Machine Learning Linear Models Fabio Vandin October 10, 2017 1 Linear Predictors and Affine Functions Consider X = R d Affine functions: L d = {h w,b : w R d, b R} where ( d ) h w,b (x) = w, x + b = w

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks Jan Drchal Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science Topics covered

More information

Gradient-Based Learning. Sargur N. Srihari

Gradient-Based Learning. Sargur N. Srihari Gradient-Based Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation and Other Differentiation

More information

Machine Learning. Neural Networks. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 7, September 11, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Neural Networks. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 7, September 11, 2012 Based on slides from Eric Xing, CMU Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Neural Networks Le Song Lecture 7, September 11, 2012 Based on slides from Eric Xing, CMU Reading: Chap. 5 CB Learning highly non-linear functions f:

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

CS-E3210 Machine Learning: Basic Principles

CS-E3210 Machine Learning: Basic Principles CS-E3210 Machine Learning: Basic Principles Lecture 3: Regression I slides by Markus Heinonen Department of Computer Science Aalto University, School of Science Autumn (Period I) 2017 1 / 48 In a nutshell

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Chapter ML:VI. VI. Neural Networks. Perceptron Learning Gradient Descent Multilayer Perceptron Radial Basis Functions

Chapter ML:VI. VI. Neural Networks. Perceptron Learning Gradient Descent Multilayer Perceptron Radial Basis Functions Chapter ML:VI VI. Neural Networks Perceptron Learning Gradient Descent Multilayer Perceptron Radial asis Functions ML:VI-1 Neural Networks STEIN 2005-2018 The iological Model Simplified model of a neuron:

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Lecture 3: Multiclass Classification

Lecture 3: Multiclass Classification Lecture 3: Multiclass Classification Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Some slides are adapted from Vivek Skirmar and Dan Roth CS6501 Lecture 3 1 Announcement v Please enroll in

More information

Application: Can we tell what people are looking at from their brain activity (in real time)? Gaussian Spatial Smooth

Application: Can we tell what people are looking at from their brain activity (in real time)? Gaussian Spatial Smooth Application: Can we tell what people are looking at from their brain activity (in real time? Gaussian Spatial Smooth 0 The Data Block Paradigm (six runs per subject Three Categories of Objects (counterbalanced

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 9 Sep. 26, 2018 1 Reminders Homework 3:

More information

LECTURE NOTE #NEW 6 PROF. ALAN YUILLE

LECTURE NOTE #NEW 6 PROF. ALAN YUILLE LECTURE NOTE #NEW 6 PROF. ALAN YUILLE 1. Introduction to Regression Now consider learning the conditional distribution p(y x). This is often easier than learning the likelihood function p(x y) and the

More information

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber Machine Learning Regression-Based Classification & Gaussian Discriminant Analysis Manfred Huber 2015 1 Logistic Regression Linear regression provides a nice representation and an efficient solution to

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Kernel Methods and Support Vector Machines Oliver Schulte - CMPT 726 Bishop PRML Ch. 6 Support Vector Machines Defining Characteristics Like logistic regression, good for continuous input features, discrete

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Classification. Sandro Cumani. Politecnico di Torino

Classification. Sandro Cumani. Politecnico di Torino Politecnico di Torino Outline Generative model: Gaussian classifier (Linear) discriminative model: logistic regression (Non linear) discriminative model: neural networks Gaussian Classifier We want to

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

Logistic Regression. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

Logistic Regression. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 Logistic Regression Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Please start HW 1 early! Questions are welcome! Two principles for estimating parameters Maximum Likelihood

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 2012 Engineering Part IIB: Module 4F10 Introduction In

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

MACHINE LEARNING ADVANCED MACHINE LEARNING

MACHINE LEARNING ADVANCED MACHINE LEARNING MACHINE LEARNING ADVANCED MACHINE LEARNING Recap of Important Notions on Estimation of Probability Density Functions 22 MACHINE LEARNING Discrete Probabilities Consider two variables and y taking discrete

More information

Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch.

Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch. Neural Networks Oliver Schulte - CMPT 726 Bishop PRML Ch. 5 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will

More information

Machine Learning Basics III

Machine Learning Basics III Machine Learning Basics III Benjamin Roth CIS LMU München Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62 Outline 1 Classification Logistic Regression 2 Gradient Based Optimization Gradient

More information

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods Pattern Recognition and Machine Learning Chapter 6: Kernel Methods Vasil Khalidov Alex Kläser December 13, 2007 Training Data: Keep or Discard? Parametric methods (linear/nonlinear) so far: learn parameter

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information