Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Save this PDF as:

Size: px
Start display at page:

Download "Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5"

Transcription

1 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5

2 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand connections between each neuron and its neighbors, we have about 100 trillion connections, each capable of a simultaneous calculation... (but) only 200 calculations per second... With 100 trillion connections, each computing at 200 calculations per second, we get 20 million billion calculations per second. This is a conservatively high estimate... by the year 2020, (a massively parallel neural net computer) will have doubled about 23 times (from 1997's $2,000 modestly parallel computer that could perform around 2 billion connection calculations per second)... resulting in a speed of about 20 million billion neural connection calculations per second, which is equal to the human brain. Ray Kurzweil, "The Age of Spiritual Machines", 1999

3 Biologically Inspired Models We want to add biological constraints to our model as well as behavioral (output data) constraints Our molar level tends to be the neuron If neurons are the hardware that the system we re trying to model is operating with, let s consider what we know about them

4 Basic Structure of a Neuron We typically think of the neuron as the basic unit of thought: Ø Dendrite (input) Ø Cell body/soma (integrator) Ø Axon (communication line) Ø Terminal (output) Ø Synapses (connections) Ø Neurotransmitters (messages)

5

6

7 Some Structural Facts There is competition for connections among neurons, and unconnected cells die (50% before birth) neurons are left in the brain after birth (with no new generation) neural connections. Each neuron connects to a small fraction of others (few hundred or thousand) Unused or unconnected neurons die Excitatory connections increase a cell s firing potential; inhibitory connections reduce it Electrical response of neuron is an all-or-none potential or spike

8 Some Structural Facts A single cell can have several thousand synapses on it The inputs from different synapses approximately add at the cell body Function relating integrated activation to firing rate is a nonlinear sigmoidal function OK, now lets incorporate some of these constraints into our models (starting with simple tasks)

9 Types of Neural Nets: 1. Feedforward Perceptrons, linear associators 2. Recurrent Hidden layer s state depends on it s state at a previous time SRNs, Hopfield nets 3. Stochastic Boltzman machines (noisy networks)

10 Types of Training: 1. Supervised Give data and correct response 2. Unsupervised Give data only 3. Reinforcement Data not provided, but determined by the models interaction w/ environment. Goal is to discover a policy for selecting actions that minimizes longterm costs Autoassociative vs. heteroassociative Learning rules: delta rule, backprop, gradient descent, evolutionary, expectation maximization

11 Datasets online: ANNs are very good a pattern recognition/classification On our website, you ll find some sets of training and testing exemplars to try the algorithms out on Feature lists for capital letters (from Rumelhart & McClelland) Handwritten letters, numbers, and math symbols (NIST and some of my own) Fingerprint vectors (NIST) Elman s cat chase mouse artificial language VSM vectors on Reuters's documents

12 Rumelhart & McClelland (1981) PR Uppercase letters are represented by binary vectors of these 14 features

13 E = [ ]

14 X = [ ]

15

16 Single-Layer Perceptron X 1 X 2 X 3 X 4 w 1 w 2 w 3 w 4 w n Σ X n "The road to wisdom? Well, it's plain and simple to express: Err and err and err again, but less and less and less." - Piet Hein Δw ij = α(t i y i )x j

17 Single-Layer Perceptron X 1 w 1 X 2 X 3 X 4 w 2 w 3 w 4 w n Σ X n Artificial Retina Input Nodes Input Summation THD (McCulloch-Pitts neuron) If y = t, do nothing If y t, then delta update: Δw ij = α(t i y i )x j

18 Multiclass Single-Layer Perceptron X 1 X 2 X 3 X 4 Σ Σ Σ X n

19 SLP Classification Model: X 1 X 2 A o i = Nx j=1 x j w i, j X 3 X 4 B Δw ij = α(t i o i )x j X n How do we decide which output node to choose? Choose the highest Choose the highest in a field of Gaussian decision noise Luce s choice axiom (separate decision process and classification process)

20 Shepard-Luce Choice Rule More realistic decision rule: The probability of choosing category A is based on a ratio of strength of the output activations The ratio rule (from Luce, 1959): p(a x) = e λ A e λo A + eλ B, where λ > 0 Lamda is a sensitivity parameter which determines the sensitivity of choice probability to the activation of each category Reducing λ makes responding more random, and increasing λ makes responding more deterministic

21 Shepard-Luce Choice Rule More realistic decision rule: The probability of choosing category A is based on a ratio of strength of the output activations The ratio rule (from Luce, 1959): p(a x) = eλo A Σe λ i Lamda is a sensitivity parameter which determines the sensitivity of choice probability to the activation of each category Reducing λ makes responding more random, and increasing λ makes responding more deterministic

22 Our SLP Classification Model: X 1 X 2 A o i = Nx j=1 x j w i, j 1 o i = 1+ exp o i X 3 X 4 B p(a x) = e λ A e λo A + eλ B X n Δw ij = α(t i o i )x j

23 The death of perceptrons Minsky & Papert (1969) Perceptrons They can only learn categories that are linearly separable They cannot do XOR This led to a decline in funding, and it took more than a decade for neural nets to make a comeback with Grossberg s work

24 Multilayer Perceptrons

25 Multilayer Perceptrons But let s use a smarter update rule based on gradient descent and assigning blame where blame is due a.k.a. Error Backpropagation

26 O Reilly: Fitting behavioral data without biological constraints is of questionable value in understanding how the brain actually subserves behavior Ratcliff: but few neurally plausible models fit data as well as global memory models

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs. artifical neural

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs artifical neural networks

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Neural Networks (Part 1) Goals for the lecture

Neural Networks (Part 1) Goals for the lecture Neural Networks (Part ) Mark Craven and David Page Computer Sciences 760 Spring 208 www.biostat.wisc.edu/~craven/cs760/ Some of the slides in these lectures have been adapted/borrowed from materials developed

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks 鮑興國 Ph.D. National Taiwan University of Science and Technology Outline Perceptrons Gradient descent Multi-layer networks Backpropagation Hidden layer representations Examples

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 Neural Networks Neural Networks Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 An Introduction to Neural Networks (nd Ed). Morton, IM, 1995 Neural Networks

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks Facultés Universitaires Notre-Dame de la Paix 27 March 2007 Outline 1 Introduction 2 Fundamentals Biological neuron Artificial neuron Artificial Neural Network Outline 3 Single-layer ANN Perceptron Adaline

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation Neural Networks Plan Perceptron Linear discriminant Associative memories Hopfield networks Chaotic networks Multilayer perceptron Backpropagation Perceptron Historically, the first neural net Inspired

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

Artificial Neural Networks The Introduction

Artificial Neural Networks The Introduction Artificial Neural Networks The Introduction 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001 00100000

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Chapter 8, Section 7 Artificial Intelligence, spring 203, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 8, Section 7 Outline Brains Neural

More information

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Learning Neural Networks Classifier Short Presentation INPUT: classification data, i.e. it contains an classification (class) attribute.

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Neural networks Daniel Hennes 21.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Logistic regression Neural networks Perceptron

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

More information

Linear Regression, Neural Networks, etc.

Linear Regression, Neural Networks, etc. Linear Regression, Neural Networks, etc. Gradient Descent Many machine learning problems can be cast as optimization problems Define a function that corresponds to learning error. (More on this later)

More information

CN2 1: Introduction. Paul Gribble. Sep 10,

CN2 1: Introduction. Paul Gribble. Sep 10, CN2 1: Introduction Paul Gribble http://gribblelab.org Sep 10, 2012 Administrivia Class meets Mondays, 2:00pm - 3:30pm and Thursdays, 11:30am - 1:00pm, in NSC 245A Contact me with any questions or to set

More information

Revision: Neural Network

Revision: Neural Network Revision: Neural Network Exercise 1 Tell whether each of the following statements is true or false by checking the appropriate box. Statement True False a) A perceptron is guaranteed to perfectly learn

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

2018 EE448, Big Data Mining, Lecture 5. (Part II) Weinan Zhang Shanghai Jiao Tong University

2018 EE448, Big Data Mining, Lecture 5. (Part II) Weinan Zhang Shanghai Jiao Tong University 2018 EE448, Big Data Mining, Lecture 5 Supervised Learning (Part II) Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html Content of Supervised Learning

More information

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 2. Perceptrons COMP9444 17s2 Perceptrons 1 Outline Neurons Biological and Artificial Perceptron Learning Linear Separability Multi-Layer Networks COMP9444 17s2

More information

Multilayer Perceptron Tutorial

Multilayer Perceptron Tutorial Multilayer Perceptron Tutorial Leonardo Noriega School of Computing Staffordshire University Beaconside Staffordshire ST18 0DG email: l.a.noriega@staffs.ac.uk November 17, 2005 1 Introduction to Neural

More information

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks Sections 18.6 and 18.7 Analysis of Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Univariate regression

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

COMP-4360 Machine Learning Neural Networks

COMP-4360 Machine Learning Neural Networks COMP-4360 Machine Learning Neural Networks Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

ECE 471/571 - Lecture 17. Types of NN. History. Back Propagation. Recurrent (feedback during operation) Feedforward

ECE 471/571 - Lecture 17. Types of NN. History. Back Propagation. Recurrent (feedback during operation) Feedforward ECE 47/57 - Lecture 7 Back Propagation Types of NN Recurrent (feedback during operation) n Hopfield n Kohonen n Associative memory Feedforward n No feedback during operation or testing (only during determination

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir Supervised (BPL) verses Hybrid (RBF) Learning By: Shahed Shahir 1 Outline I. Introduction II. Supervised Learning III. Hybrid Learning IV. BPL Verses RBF V. Supervised verses Hybrid learning VI. Conclusion

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET Unit-. Definition Neural network is a massively parallel distributed processing system, made of highly inter-connected neural computing elements that have the ability to learn and thereby acquire knowledge

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

Back-Propagation Algorithm. Perceptron Gradient Descent Multilayered neural network Back-Propagation More on Back-Propagation Examples

Back-Propagation Algorithm. Perceptron Gradient Descent Multilayered neural network Back-Propagation More on Back-Propagation Examples Back-Propagation Algorithm Perceptron Gradient Descent Multilayered neural network Back-Propagation More on Back-Propagation Examples 1 Inner-product net =< w, x >= w x cos(θ) net = n i=1 w i x i A measure

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Perceptron. (c) Marcin Sydow. Summary. Perceptron

Perceptron. (c) Marcin Sydow. Summary. Perceptron Topics covered by this lecture: Neuron and its properties Mathematical model of neuron: as a classier ' Learning Rule (Delta Rule) Neuron Human neural system has been a natural source of inspiration for

More information

CSCI 252: Neural Networks and Graphical Models. Fall Term 2016 Prof. Levy. Architecture #7: The Simple Recurrent Network (Elman 1990)

CSCI 252: Neural Networks and Graphical Models. Fall Term 2016 Prof. Levy. Architecture #7: The Simple Recurrent Network (Elman 1990) CSCI 252: Neural Networks and Graphical Models Fall Term 2016 Prof. Levy Architecture #7: The Simple Recurrent Network (Elman 1990) Part I Multi-layer Neural Nets Taking Stock: What can we do with neural

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Alexandre Allauzen Anne Auger Michèle Sebag LIMSI LRI Oct. 4th, 2012 This course Bio-inspired algorithms Classical Neural Nets History

More information

Multilayer Neural Networks. (sometimes called Multilayer Perceptrons or MLPs)

Multilayer Neural Networks. (sometimes called Multilayer Perceptrons or MLPs) Multilayer Neural Networks (sometimes called Multilayer Perceptrons or MLPs) Linear separability Hyperplane In 2D: w x + w 2 x 2 + w 0 = 0 Feature x 2 = w w 2 x w 0 w 2 Feature 2 A perceptron can separate

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

Fundamentals of Neural Networks

Fundamentals of Neural Networks Fundamentals of Neural Networks : Soft Computing Course Lecture 7 14, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html

More information

In the Name of God. Lecture 9: ANN Architectures

In the Name of God. Lecture 9: ANN Architectures In the Name of God Lecture 9: ANN Architectures Biological Neuron Organization of Levels in Brains Central Nervous sys Interregional circuits Local circuits Neurons Dendrite tree map into cerebral cortex,

More information

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler + Machine Learning and Data Mining Multi-layer Perceptrons & Neural Networks: Basics Prof. Alexander Ihler Linear Classifiers (Perceptrons) Linear Classifiers a linear classifier is a mapping which partitions

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Neural Networks Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Brains as Computational Devices Brains advantages with respect to digital computers: Massively parallel Fault-tolerant Reliable

More information

Neural Networks: Introduction

Neural Networks: Introduction Neural Networks: Introduction Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others 1

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks CPSC 533 Winter 2 Christian Jacob Neural Networks in the Context of AI Systems Neural Networks as Mediators between Symbolic AI and Statistical Methods 2 5.-NeuralNets-2.nb Neural

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Historical Perspective A first wave of interest

More information

Unit 8: Introduction to neural networks. Perceptrons

Unit 8: Introduction to neural networks. Perceptrons Unit 8: Introduction to neural networks. Perceptrons D. Balbontín Noval F. J. Martín Mateos J. L. Ruiz Reina A. Riscos Núñez Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

100 inference steps doesn't seem like enough. Many neuron-like threshold switching units. Many weighted interconnections among units

100 inference steps doesn't seem like enough. Many neuron-like threshold switching units. Many weighted interconnections among units Connectionist Models Consider humans: Neuron switching time ~ :001 second Number of neurons ~ 10 10 Connections per neuron ~ 10 4 5 Scene recognition time ~ :1 second 100 inference steps doesn't seem like

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

Multilayer Perceptron

Multilayer Perceptron Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Single Perceptron 3 Boolean Function Learning 4

More information

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net.

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. 2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. - For an autoassociative net, the training input and target output

More information

Neural Networks biological neuron artificial neuron 1

Neural Networks biological neuron artificial neuron 1 Neural Networks biological neuron artificial neuron 1 A two-layer neural network Output layer (activation represents classification) Weighted connections Hidden layer ( internal representation ) Input

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Threshold units Gradient descent Multilayer networks Backpropagation Hidden layer representations Example: Face Recognition Advanced topics 1 Connectionist Models Consider humans:

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

Machine Learning (CSE 446): Neural Networks

Machine Learning (CSE 446): Neural Networks Machine Learning (CSE 446): Neural Networks Noah Smith c 2017 University of Washington nasmith@cs.washington.edu November 6, 2017 1 / 22 Admin No Wednesday office hours for Noah; no lecture Friday. 2 /

More information

Introduction and Perceptron Learning

Introduction and Perceptron Learning Artificial Neural Networks Introduction and Perceptron Learning CPSC 565 Winter 2003 Christian Jacob Department of Computer Science University of Calgary Canada CPSC 565 - Winter 2003 - Emergent Computing

More information

Neural Networks and Deep Learning.

Neural Networks and Deep Learning. Neural Networks and Deep Learning www.cs.wisc.edu/~dpage/cs760/ 1 Goals for the lecture you should understand the following concepts perceptrons the perceptron training rule linear separability hidden

More information