Module 5. Lecture 3: Channel routing methods

Size: px
Start display at page:

Download "Module 5. Lecture 3: Channel routing methods"

Transcription

1 Lecture 3: Channel routing methods

2 Hydrologic flow routing 2. Channel Routing In very long channels the entire flood wave also travels a considerable distance resulting in a time redistribution and time of translation as well. Thus, in a river, the redistribution due to storage effects modifies the shape, while the translation changes its position in time. In reservoir, the storage is a unique function of the outflow discharge S = f(o). Storage in the channel is a function of both outflow and inflow discharges and hence a different routing method is needed. The water surface in a channel reach is not only parallel to the channel bottom but also varies with time.

3 Hydrologic flow routing 2. Channel Routing Contd The total volume in storage for a channel reach having a flood wave can be considered as prism storage + wedge storage. Prism storage: The volume that would exist if uniform flow occurred at the downstream depth i.e. the volume formed by an imaginary plane parallel to the channel bottom drawn at the outflow section water surface. Wedge storage: It is the wedge like volume formed between the actual water surface profile and the top surface of the prism storage. At a fixed depth at a downstream section of a river reach the prism storage is constant while the wedge storage changes from a positive value at an advancing flood to a negative value during a receding flood.

4 Hydrologic flow routing 2. Channel Routing Contd Prism Storage: It is the volume that would exits if uniform flow occurred at the downstream depth, i.e. the volume formed by an imaginary plane parallel to the channel bottom drawn at the outflow section water surface.

5 Hydrologic flow routing 2. Channel Routing Contd Wedge storage : It is the wedge-like volume formed between the actual water surface profile and the top surface of the prism storage.

6 Hydrologic flow routing 2. Channel Routing Contd At a fixed depth at a downstream section of a river reach, the prism storage is constant while, the wedge storage changes from a positive value for advancing flood to a negative value during a receding flood. Total storage in the channel reach can be expressed as : where k and x are coefficients and m= a constant exponent. It has been found that m varies from 0.6 for rectangular channels to a value of about 1.0 for natural channels, Q = outflow

7 Channel routing Assuming that the cross sectional area of the flood flow section is directly proportional to the discharge at the section, the volume of prism storage is equal to KQ where K is a proportionality coefficient, and the volume of the wedge storage is equal to KX(I- Q), where X is a weighing factor having the range 0 < X < 0.5. The total storage is therefore the sum of two components S = KQ + KX ( I Q) It is known as Muskingum storage equation representing a linear model for routing flow in streams.

8 Channel routing Contd S S = Prism Wedge KQ = KX ( I Q) K is a proportionality coefficient, X is a weighing factor on inflow versus outflow (0 X 0.5) X = Natural stream Advancing Flood Wave I > Q I I Q Q I Q Q Q S S = = KQ + KX ( I Q) K[ XI + (1 X ) Q] Receding Flood Wave Q > I I Q I I

9 Channel routing Contd S = K[ XI + (1 X ) Q] The value of X depends on the shape of the modeled wedge storage. It is zero for reservoir type storage (zero wedge storage or level pool case S = KQ) and 0.5 for a full wedge. In natural streams mean value of X is near 0.2. The parameter K is the time of travel of the flood wave through the channel reaches also known as storage time constant and has the dimensions of time.

10 Channel routing Contd From the Muskingum storage equation, the values of storage at time j and j+1 can be written as and So, change in storage over time interval t is, From the continuity equation the storage for the same time interval t is,

11 Channel routing Contd Equating these two equations, Collecting similar terms and simplifying This is the Muskingum s routing equation for channels

12 Channel routing Contd Muskingum s routing equation for channels: where For best results, the routing interval t should be so chosen that K> t>2kx. If t<2kx, the coefficient C1 will be negative. Generally negative values of coefficients are avoided by choosing appropriate values of t.

13 Channel routing Contd To use Muskingum equation to route a given inflow hydrograph through a channel reach: K, X and Oj should be known. Procedure: (i)knowing K and X, select an appropriate value of t (ii) calculate C1, C2, and C3 (iii) starting from the initial conditions known inflow, outflow calculate the outflow for the next time step. (iv) Repeat the calculations for the entire inflow hydrograph.

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

9. Flood Routing. chapter Two

9. Flood Routing. chapter Two 9. Flood Routing Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time at one or more points along a watercourse (waterway

More information

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Flood routing Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya Q (m 3 /sec)

More information

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1 3 FLOOD PROPAGATION 3.1 Reservoir routing The most important equation to describe the water balance of a reservoir is the water balance: ds = I Q + A P E dt ( ) In finite differences form this equation

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

Reverse stream flow routing by using Muskingum models

Reverse stream flow routing by using Muskingum models Sādhanā Vol. 34, Part 3, June 009, pp. 483 499. Printed in India Reverse stream flow routing by using Muskingum models AMLAN DAS Civil Engineering Department, National Institute of Technology, Durgapur

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS INDIAN INSTITUTE OF TECHNOLOGY ROORKEE EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS Muthiah Perumal and C. Madhusudana

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Parameter estimation of linear and nonlinear Muskingum models for river flood routing D. Papamichail, P. Georgiou Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture,

More information

INTRODUCTION TO HEC-HMS

INTRODUCTION TO HEC-HMS INTRODUCTION TO HEC-HMS Hydrologic Engineering Center- Hydrologic Modeling System US Army Corps of Engineers Hydrologic Engineering Center HEC-HMS Uses Schematics Enter properties: watershed, rivers (reaches),

More information

Numerical Hydraulics

Numerical Hydraulics ETH Zurich, Fall 2017 Numerical Hydraulics Assignment 2 Numerical solution of shallow water wave propagation (www.surfertoday.com) 1 Introduction 1.1 Equations Understanding the propagation of shallow

More information

Workshop: Build a Basic HEC-HMS Model from Scratch

Workshop: Build a Basic HEC-HMS Model from Scratch Workshop: Build a Basic HEC-HMS Model from Scratch This workshop is designed to help new users of HEC-HMS learn how to apply the software. Not all the capabilities in HEC-HMS are demonstrated in the workshop

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

Water Resources Systems: Modeling Techniques and Analysis

Water Resources Systems: Modeling Techniques and Analysis INDIAN INSTITUTE OF SCIENCE Water Resources Systems: Modeling Techniques and Analysis Lecture - 20 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. 1 Summary of the previous lecture

More information

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL

EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL EFFICIENCY OF THE INTEGRATED RESERVOIR OPERATION FOR FLOOD CONTROL IN THE UPPER TONE RIVER OF JAPAN CONSIDERING SPATIAL DISTRIBUTION OF RAINFALL Dawen YANG, Eik Chay LOW and Toshio KOIKE Department of

More information

Predictive Model of Rainfall-Runoff: A Case Study of the Sanaga Basin at Bamendjin Watershed in Cameroon

Predictive Model of Rainfall-Runoff: A Case Study of the Sanaga Basin at Bamendjin Watershed in Cameroon Predictive Model of Rainfall-Runoff: A Case Study of the Sanaga Basin at Bamendjin Watershed in Cameroon Terence Kibula Lukong (Corresponding author) Hydrology Division, AES SONEL Douala, P.O. Box 433,

More information

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023

UNIVERSITY OF BOLTON. ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2014/2015 WATER ENGINEERING MODULE NO: BLT3023 [TW59] UNIVERSITY OF BOLTON ENGINEERING, SPORTS and SCIENCES BSC CIVIL ENGINEERING SEMESTER 1 EXAMINATION 014/015 WATER ENGINEERING MODULE NO: BLT303 Date: Tuesday, 0 January 015 Time: 10.00-1.00 INSTRUCTIONS

More information

Section 4: Model Development and Application

Section 4: Model Development and Application Section 4: Model Development and Application The hydrologic model for the Wissahickon Act 167 study was built using GIS layers of land use, hydrologic soil groups, terrain and orthophotography. Within

More information

Pompton Lakes Dam Downstream Effects of the Floodgate Facility. Joseph Ruggeri Brian Cahill Michael Mak Andy Bonner

Pompton Lakes Dam Downstream Effects of the Floodgate Facility. Joseph Ruggeri Brian Cahill Michael Mak Andy Bonner Pompton Lakes Dam Downstream Effects of the Joseph Ruggeri Brian Cahill Michael Mak Andy Bonner ASFPM 2013: Overview Page 2 Overview Page 3 Overview Page 4 Overview Page 5 Overview - Historical Pompton

More information

Technical Memorandum No

Technical Memorandum No Pajaro River Watershed Study in association with Technical Memorandum No. 1.2.10 Task: Evaluation of Four Watershed Conditions - Sediment To: PRWFPA Staff Working Group Prepared by: Gregory Morris and

More information

LECTURE NOTES - III. Prof. Dr. Atıl BULU

LECTURE NOTES - III. Prof. Dr. Atıl BULU LECTURE NOTES - III «FLUID MECHANICS» Istanbul Technical University College of Civil Engineering Civil Engineering Department Hydraulics Division CHAPTER KINEMATICS OF FLUIDS.. FLUID IN MOTION Fluid motion

More information

Muskingum model. Notation. ds dt ¼ I Q. 1. Introduction

Muskingum model. Notation. ds dt ¼ I Q. 1. Introduction Proceedings of the Institution of Civil Engineers Water Management 167 May 2014 Issue WM5 Pages 288 298 http://dx.doi.org/10.1680/wama.12.0011 Paper 120011 Received 22/09/2012 Accepted 11/01/201 Published

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi

MATHEMATICAL MODELING OF FLUVIAL SEDIMENT DELIVERY, NEKA RIVER, IRAN. S.E. Kermani H. Golmaee M.Z. Ahmadi JOURNAL OF ENVIRONMENTAL HYDROLOGY The Electronic Journal of the International Association for Environmental Hydrology On the World Wide Web at http://www.hydroweb.com VOLUME 16 2008 MATHEMATICAL MODELING

More information

Session: For more information:

Session: For more information: Session: For more information: www.hydropower.org/congress San Juan, Puerto Rico www.glmengineers.com 2015 World Hydropower Congress Sustainable Sediment Management and Hydropower Reservoirs 21 May 2015

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

Integrating Weather Forecasts into Folsom Reservoir Operations

Integrating Weather Forecasts into Folsom Reservoir Operations Integrating Weather Forecasts into Folsom Reservoir Operations California Extreme Precipitation Symposium September 6, 2016 Brad Moore, PE US Army Corps of Engineers Biography Brad Moore is a Lead Civil

More information

Delaware River Basin Flood Analysis Model Independent External Peer Review Report

Delaware River Basin Flood Analysis Model Independent External Peer Review Report Delaware River Basin Flood Analysis Model Independent External Peer Review Report Map source: DRBC Prepared for: Federal Emergency Management Agency, Region III Delaware River Basin Commission Prepared

More information

Bushkill Creek 3 rd Street Dam Removal Analysis

Bushkill Creek 3 rd Street Dam Removal Analysis Bushkill Creek 3 rd Street Dam Removal Analysis HEC HMS Runoff and Routing Model Stephen Beavan, Melanie DeFazio, David Gold, Peter Mara and Dan Moran CE 421: Hydrology Fall 2010 December 15, 2010 Contents

More information

ISSN Vol.03,Issue.10 May-2014, Pages:

ISSN Vol.03,Issue.10 May-2014, Pages: www.semargroup.org, www.ijsetr.com ISSN 2319-8885 Vol.03,Issue.10 May-2014, Pages:2187-2191 YIN YIN HTWE 1, AYE AYE THANT 2 1 Dept of Civil Engineering, Mandalay Technological University, Mandalay, Myanmar,

More information

Large-Scale Sediment Inflow and Bed-Variation from 12th Typhoon (2011) in the Asahi River Basin

Large-Scale Sediment Inflow and Bed-Variation from 12th Typhoon (2011) in the Asahi River Basin ICHE 214, Hamburg - Lehfeldt & Kopmann (eds) - 214 Bundesanstalt für Wasserbau ISBN 978-3-93923-32-8 Large-Scale Sediment Inflow and Bed-Variation from 12th Typhoon (211) in the Asahi River Basin Y. Tsukamoto

More information

Sediment Transport in Stream Assessment and Design July 31 August 4, Logan, Utah

Sediment Transport in Stream Assessment and Design July 31 August 4, Logan, Utah DEPARTMENT OF WATERSHED SCIENCES Sediment Transport in Stream Assessment and Design July 31 August 4, Logan, Utah This course is intended for those who wish to understand and apply the principles of sediment

More information

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK OPEN CHANNEL FLOW Numerical Methods and Computer Applications Roland Jeppson TECHNISCHE INFORMATlONSBiBUOTHEK UNIVERSITATSB'BUOTHEK HANNOVER Si. i. CRC Press Taylor &.Francis Group Boca Raton London New

More information

Estimation of the Muskingum routing coefficients by using fuzzy regression

Estimation of the Muskingum routing coefficients by using fuzzy regression European Water 57: 33-40, 207. 207 E.W. Publications Estimation of the Muskingum routing coefficients by using fuzzy regression M. Spiliotis * and L. Garrote 2 Democritus University of Thrace, School of

More information

ResSIMLite vs. ResSIM Model Comparison

ResSIMLite vs. ResSIM Model Comparison ResSIMLite vs. ResSIM Model Comparison 06/05/2013 M. Cox, OSU The outflow calculations represented in the Envision model have been closely modeled after the representation in the USACE HEC ResSIM model

More information

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 1 Associated Professor, Irrigation and Hydraulic Department, College of Technical Engineering,

More information

Accuracy of Muskingum-Cunge flood routing

Accuracy of Muskingum-Cunge flood routing Alternative Hydraulics Paper 3, 02.03.2011 Accuracy of Musingum-Cunge flood routing Institute of Hydraulic and Water Resources Engineering Vienna University of Technology Karlsplatz 13/222, 1040 Vienna,

More information

Rucker Pond. Background

Rucker Pond. Background Rucker Pond Background The Rucker Basin consists of two subbasins (East and West) that drain to a single area known as Rucker Pond. Both subbasins have the same hydraulic parameters, but have different

More information

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013 Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013 John Pomeroy, Xing Fang, Kevin Shook, Tom Brown Centre for Hydrology, University of Saskatchewan, Saskatoon

More information

Transactions on Ecology and the Environment vol 8, 1994 WIT Press, ISSN

Transactions on Ecology and the Environment vol 8, 1994 WIT Press,   ISSN Dam breachfloods- downstream inundation analyses M. Hartnett,' T. Hayes,* B. Mangan,* o Department of Civil, Structural & Environmental Engineering, Trinity College, Dublin 2, Ireland, UK * ESB International,

More information

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Engineering Hydrology (ECIV 4323) CHAPTER FOUR Stream flow measurement Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib -١ 4.1 Introduction - Surface water hydrology deals with the movement of water

More information

Comparative Analysis of Flood Routing Methods

Comparative Analysis of Flood Routing Methods US Army Corps of Engineers Hydrologic Engineering Center Comparative Analysis of Flood Routing Methods September 1980 Approved for Public Release. Distribution Unlimited. RD-24 REPORT DOCUMENTATION PAGE

More information

INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS

INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS INTRODUCTION TO HYDROLOGIC MODELING USING HEC-HMS By Thomas T. Burke, Jr., PhD, PE Luke J. Sherry, PE, CFM Christopher B. Burke Engineering, Ltd. October 8, 2014 1 SEMINAR OUTLINE Overview of hydrologic

More information

Implementing a vector-based river routing scheme within the WRF-Hydro modeling system

Implementing a vector-based river routing scheme within the WRF-Hydro modeling system Implementing a vector-based river routing scheme within the WRF-Hydro modeling system Peirong Lin 1, Zong-Liang Yang 1, David Gochis 2, Wei Yu 2, Cédric H. David 3, David Maidment 4 1. Jackson School of

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets Equation of Continuity Our equations of hydrogeology are a combination of o Conservation of mass o Some empirical

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

Inflow forecasting for lakes using Artificial Neural Networks

Inflow forecasting for lakes using Artificial Neural Networks Flood Recovery Innovation and Response III 143 Inflow forecasting for lakes using Artificial Neural Networks R. K. Suryawanshi 1, S. S. Gedam 1 & R. N. Sankhua 2 1 CSRE, IIT Bombay, Mumbai, India 2 National

More information

AD-AI COMPRATIVE ANALYSIS OF FLOOD ROUTING NETNODSMU 1/2 HYDROLOGIC ENGINEERING CENTER DAVIS CA T STRELKOFF SEP 89 HEC-RD-24 UNCLSSIFIED F/G

AD-AI COMPRATIVE ANALYSIS OF FLOOD ROUTING NETNODSMU 1/2 HYDROLOGIC ENGINEERING CENTER DAVIS CA T STRELKOFF SEP 89 HEC-RD-24 UNCLSSIFIED F/G AD-AI50 856 COMPRATIVE ANALYSIS OF FLOOD ROUTING NETNODSMU 1/2 HYDROLOGIC ENGINEERING CENTER DAVIS CA T STRELKOFF SEP 89 HEC-RD-24 UNCLSSIFIED F/G 13/2 NL 114- I III'II 11125 11111 III1.8 1*416 NATIOt4A

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X A new Crank-Nicholson algorithm for solving the diffusive wave flood routing equation along a complex channel network R. Moussa," C. BouquilW* " Institut National de la Recherche Agronomique, 34060 Montpellier,

More information

ENGINEERING HYDROLOGY

ENGINEERING HYDROLOGY ENGINEERING HYDROLOGY Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

Numerical modeling of sediment flushing from Lewis and Clark Lake

Numerical modeling of sediment flushing from Lewis and Clark Lake University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2013 Numerical modeling of sediment flushing from Lewis and Clark Lake Jungkyu

More information

Engineering Hydrology

Engineering Hydrology Engineering Hydrology Prof. Rajesh Bhagat Asst. Professor Civil Engineering Department Yeshwantrao Chavan College Of Engineering Nagpur B. E. (Civil Engg.) M. Tech. (Enviro. Engg.) GCOE, Amravati VNIT,

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Course Contents Introduction to Random Variables (RVs) Probability Distributions

More information

The data presented in this graph are provisional and are intended to provide an estimate of Libby Dam forebay elevation (Lake Koocanusa).

The data presented in this graph are provisional and are intended to provide an estimate of Libby Dam forebay elevation (Lake Koocanusa). Elevation (ft) 2470 2460 2450 2440 2430 2420 2410 2400 2390 2380 2370 2360 2350 2340 2330 2320 2310 2300 2290 Lake Koocanusa Elevation - Probability Chart 2280 2270 The data presented in this graph are

More information

Elevation (ft) 50th to 75th Percentile 25th to 50th Percentile Median Observed

Elevation (ft) 50th to 75th Percentile 25th to 50th Percentile Median Observed 2470 Lake Koocanusa Elevation - Probability Chart Elevation (ft) 2460 2450 2440 2430 2420 2410 2400 2390 2380 2370 2360 2350 2340 2330 2320 2310 2300 The data presented in this graph are provisional and

More information

2017 Fall Conditions Report

2017 Fall Conditions Report 2017 Fall Conditions Report Prepared by: Hydrologic Forecast Centre Date: November 15, 2017 Table of Contents TABLE OF FIGURES... ii EXECUTIVE SUMMARY... 1 BACKGROUND... 4 SUMMER AND FALL PRECIPITATION...

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS Hydrologic Engineering Center Hydrologic Modeling System HEC-HMS Quick Start Guide Version 3.3 September 2008 Approved for Public Release Distribution Unlimited CPD-74D REPORT DOCUMENTATION PAGE Form Approved

More information

EFFECTIVE DAM OPERATION METHOD BASED ON INFLOW FORECASTING FOR SENANAYAKA SAMUDRA RESERVOIR, SRI LANKA

EFFECTIVE DAM OPERATION METHOD BASED ON INFLOW FORECASTING FOR SENANAYAKA SAMUDRA RESERVOIR, SRI LANKA EFFECTIVE DAM OPERATION METHOD BASED ON INFLOW FORECASTING FOR SENANAYAKA SAMUDRA RESERVOIR, SRI LANKA Muthubanda Appuhamige Sanath Susila GUNASENA (MEE13632) Supervisors: Dr. Mamoru Miyamoto, Dr. Duminda

More information

The Use of Synthetic Floods for Defining the Regulated Volume Duration Frequency Curves for the Red River at Fargo, ND

The Use of Synthetic Floods for Defining the Regulated Volume Duration Frequency Curves for the Red River at Fargo, ND The Use of Synthetic Floods for Defining the Regulated Volume Duration Frequency Curves for the Red River at Fargo, ND Prepared by the USACE - St. Paul District Hydrology & Water Management Section June

More information

STREAM RESTORATION AWRA Summer Specialty Conference, GIS and Water Resources IX

STREAM RESTORATION AWRA Summer Specialty Conference, GIS and Water Resources IX STREAM RESTORATION 2016 AWRA Summer Specialty Conference, GIS and Water Resources IX Innovative Use of 2D Hydraulic Modeling in Stream Restoration Design Presented by: Li Gao, PE and Robert Scrafford,

More information

Technical Review of Pak Beng Hydropower Project (1) Hydrology & Hydraulics and (2) Sediment Transport & River Morphology

Technical Review of Pak Beng Hydropower Project (1) Hydrology & Hydraulics and (2) Sediment Transport & River Morphology Technical Review of Pak Beng Hydropower Project (1) Hydrology & Hydraulics and (2) Sediment Transport & River Morphology The 2 nd Regional Stakeholder Forum The Pak Beng Hydropower Project 5 th May 2017

More information

CASE STUDY BINGA, PHILIPPINES

CASE STUDY BINGA, PHILIPPINES SEDIMENT MANAGEMENT CASE STUDY BINGA, PHILIPPINES Key project features Name: Binga Country: Philippines Category: modify operating rule (focus or redistribute sediment); adaptive strategies Reservoir volume

More information

Flood modelling and impact of debris flow in the Madarsoo River, Iran

Flood modelling and impact of debris flow in the Madarsoo River, Iran Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows 69 Flood modelling and impact of debris flow in the Madarsoo River, Iran S. Tjerry 1, O. Z. Jessen 2, K. Morishita 3 & H. G.

More information

CASE STUDY BINGA, PHILIPPINES

CASE STUDY BINGA, PHILIPPINES SEDIMENT MANAGEMENT CASE STUDY BINGA, PHILIPPINES Key project features Name: Binga Country: Philippines Category: modify operating rule (focus or redistribute sediment); adaptive strategies Binga hydropower

More information

Improved ensemble representation of soil moisture in SWAT for data assimilation applications

Improved ensemble representation of soil moisture in SWAT for data assimilation applications Improved ensemble representation of soil moisture in SWAT for data assimilation applications Amol Patil and RAAJ Ramsankaran Hydro-Remote Sensing Applications (H-RSA) Group, Department of Civil Engineering

More information

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details

Project Description. Project Options. End Analysis On... Apr 26, :00:00. Rainfall Details Project Description File Name... 323 - Att Pond 3 East PIPES ONLY.SPF Project Options Flow Units... Elevation Type... Hydrology Method... EPA SWMM Infiltration Method... Link Routing Method... Enable Overflow

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS Hydrologic Engineering Center Hydrologic Modeling System HEC-HMS Quick Start Guide Version 3.5 August 2010 Approved for Public Release Distribution Unlimited CPD-74D REPORT DOCUMENTATION PAGE Form Approved

More information

SECTION G SEDIMENT BUDGET

SECTION G SEDIMENT BUDGET SECTION G SEDIMENT BUDGET INTRODUCTION A sediment budget has been constructed for the for the time period 1952-2000. The purpose of the sediment budget is to determine the relative importance of different

More information

Study on Flushing Mechanism of Dam Reservoir Sedimentation and Recovery of Riffle-Pool in Downstream Reach by a Flushing Bypass Tunnel

Study on Flushing Mechanism of Dam Reservoir Sedimentation and Recovery of Riffle-Pool in Downstream Reach by a Flushing Bypass Tunnel Study on Flushing Mechanism of Dam Reservoir Sedimentation and Recovery of -Pool in Downstream Reach by a Flushing Bypass Tunnel Tomoo Fukuda Department of Science and Engineering, Chuo University, Tokyo,

More information

PRELIMINARY DRAFT FOR DISCUSSION PURPOSES

PRELIMINARY DRAFT FOR DISCUSSION PURPOSES Memorandum To: David Thompson From: John Haapala CC: Dan McDonald Bob Montgomery Date: February 24, 2003 File #: 1003551 Re: Lake Wenatchee Historic Water Levels, Operation Model, and Flood Operation This

More information

HEC-RAS v5.0: 2-D applications

HEC-RAS v5.0: 2-D applications HEC-RAS v5.0: 2-D applications Tom Molls, Will Sicke, Holly Canada, Mike Konieczki, Ric McCallan David Ford Consulting Engineers, Inc. Sacramento, CA September 10, 2015: Palm Springs FMA conference What

More information

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan

Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan Mississippi River West Bay Diversion Geomorphic Assessment and 1-D Modeling Plan Freddie Pinkard and Charlie Little Research Hydraulic Engineers ERDC-CHL-River Engineering Branch 27 February 2009 Lane

More information

Elevation (ft) 50th to 75th Percentile 25th to 50th Percentile Median Observed /1 11/1 12/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 Date

Elevation (ft) 50th to 75th Percentile 25th to 50th Percentile Median Observed /1 11/1 12/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 Date Elevation (ft) 2470 2460 2450 2440 2430 2420 2410 2400 2390 2380 2370 2360 2350 2340 2330 2320 2310 2300 2290 2280 2270 2260 2250 2240 2230 2220 Bars Indicate 5th and 95th percentiles Lake Koocanusa Elevation

More information

SNOW AND GLACIER HYDROLOGY

SNOW AND GLACIER HYDROLOGY SNOW AND GLACIER HYDROLOGY by PRATAP SINGH National Institute of Hydrology, Roorkee, India and VIJAY P. SINGH Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge,

More information

Study 16.5 Probable Maximum Flood (PMF)

Study 16.5 Probable Maximum Flood (PMF) Initial Study Report Meeting Study 16.5 Probable Maximum Flood (PMF) March 30, 2016 Prepared by 3/30/2016 1 Study 16.5 Status ISR documents (ISR Part D Overview): Status: Initial Study Report: Parts A,

More information

Abstract. 1 Introduction

Abstract. 1 Introduction One-dimensional unsteady flow computation in channels with floodplains D. Bousmar, R. Scherer & Y. Zech Civil Engineering Dept., Universite Catholique de Louvain, Place du Levant, 1, B-1348 Louvain-la-Neuve,

More information

3.0 TECHNICAL FEASIBILITY

3.0 TECHNICAL FEASIBILITY 3.0 TECHNICAL FEASIBILITY 3.1 INTRODUCTION To enable seasonal storage and release of water from Lake Wenatchee, an impoundment structure would need to be constructed on the lake outlet channel. The structure

More information

Delft-FEWS User Days 2 nd & 3 rd November 2011

Delft-FEWS User Days 2 nd & 3 rd November 2011 Delft-FEWS User Days 2 nd & 3 rd November 2011 Recent developments in EA Midlands Flood Forecasting using FEWS NFFS Ian Clayton Flood Forecasting Technical Specialist Environment Agency Midlands Flood

More information

NRC Workshop Probabilistic Flood Hazard Assessment (PFHA) Jan 29-31, Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc.

NRC Workshop Probabilistic Flood Hazard Assessment (PFHA) Jan 29-31, Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc. Stochastic Event Flood Model (SEFM) Stochastic Modeling of Extreme Floods A Hydrological Tool for Analysis of Extreme Floods Mel Schaefer Ph.D. P.E. MGS Engineering Consultants, Inc. Olympia, WA NRC Workshop

More information

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY Solichin 1 Abstract: A serious erosion problem takes place in Cipamingkis River in west Java, Indonesia. As

More information

FLOOD REPORT FOR MANITOBA. June 28, A Gale wind warning is in effect for Lake Manitoba and Lake Winnipeg

FLOOD REPORT FOR MANITOBA. June 28, A Gale wind warning is in effect for Lake Manitoba and Lake Winnipeg FLOOD REPORT FOR MANITOBA June 28, 2014 A Gale wind warning is in effect for Lake Manitoba and Lake Winnipeg Flood Warning*: Flood Watch*: High Water Advisory*: - Assiniboine River, from Shellmouth Dam

More information

Squaw Creek. General Information

Squaw Creek. General Information General Information is a tributary to the Salmon River. It enters the north side of the river about 0 miles downstream of North Fork, Idaho. The study reach is about a 30 ft length of stream about 2 miles

More information

City of Columbia BMP Manual. Detailed Unified Sizing Criteria Example Wet Pond Design

City of Columbia BMP Manual. Detailed Unified Sizing Criteria Example Wet Pond Design City of Columbia BMP Manual Detailed Unified Sizing Criteria Example Wet Pond Design April 17, 2013 Wet Pond Example: Unified Sizing Criteria Methodology Base Data Location: Rome, GA Site Drainage Area

More information

FORECAST-BASED OPERATIONS AT FOLSOM DAM AND LAKE

FORECAST-BASED OPERATIONS AT FOLSOM DAM AND LAKE FORECAST-BASED OPERATIONS AT FOLSOM DAM AND LAKE 255 237 237 237 217 217 217 200 200 200 0 163 131 Bridging the Gap163Conference 255 0 132 255 0 163 122 The Dana on Mission Bay San Diego, CA January 28,

More information

Environmental Geology Chapter 9 Rivers and Flooding

Environmental Geology Chapter 9 Rivers and Flooding Environmental Geology Chapter 9 Rivers and Flooding Flooding in Pakistan 2010-1600 killed/20000 affected The hydrologic cycle is powered by the Sun The cycle includes evaporation, precipitation, infiltration,

More information

EXAMPLE WATERSHED CONFIGURATIONS

EXAMPLE WATERSHED CONFIGURATIONS APPENDIX B EXAMPLE WATERSHED CONFIGURATIONS The watershed configuration file defines the spatial relationship of objects within the watershed. The three techniques used to subdivide a watershed are the

More information

FFGS Additional Functionalities and Products. Konstantine P. Georgakakos, Sc.D. HYDROLOGIC RESEARCH CENTER 23 May 2018

FFGS Additional Functionalities and Products. Konstantine P. Georgakakos, Sc.D. HYDROLOGIC RESEARCH CENTER 23 May 2018 FFGS Additional Functionalities and Products Konstantine P. Georgakakos, Sc.D. HYDROLOGIC RESEARCH CENTER 23 May 2018 Advanced Functionalities 0. Multi-Model QPF A. Urban Flash Flood Warning B. Riverine

More information

Appendix C MIKEFLOOD Model Predictions for 28 October 1998 Flood Event

Appendix C MIKEFLOOD Model Predictions for 28 October 1998 Flood Event Appendix C MIKEFLOOD Model Predictions for 28 October 1998 Flood Event Status Issue 2 Page 99 January 2013 The predictions of the MIKEFLOOD model were checked against anecdotal evidence of flood inundation

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS Hydrologic Engineering Center Hydrologic Modeling System HEC-HMS Quick Start Guide Version 4.1 July 2015 Approved for Public Release Distribution Unlimited CPD-74D REPORT DOCUMENTATION PAGE Form Approved

More information

FINAL STREAM. Prepared For: Discharge. Draft Stream. Level Hay Street, Subiaco WA Indiana Street. Golden, CO USA

FINAL STREAM. Prepared For: Discharge. Draft Stream. Level Hay Street, Subiaco WA Indiana Street. Golden, CO USA Draft Stream Discharge and Water Supply Estimates S F FINAL STREAM DISCHARGE AND WATER SUPPLYS ESTIMATES CITRONEN FJORD F DEVELOPMENT PROJECT Prepared For: Ironbark Zinc Limited Level 1 350 Hay Street,

More information

Hazard-specific Flash Flood Management Measures

Hazard-specific Flash Flood Management Measures Chapter 6 Hazard-specific Flash Flood Management Measures Chapter 5 outlined general, non-structural measures of risk management that are applicable to any type of flash flood. However, proper management

More information

A real-time flood forecasting system based on GIS and DEM

A real-time flood forecasting system based on GIS and DEM Remote Sensing and Hydrology 2000 (Proceedings of a symposium held at Santa Fe, New Mexico, USA, April 2000). IAHS Publ. no. 267, 2001. 439 A real-time flood forecasting system based on GIS and DEM SANDRA

More information

Process controls on regional flood frequency: Coefficient of variation and basin scale

Process controls on regional flood frequency: Coefficient of variation and basin scale WATER RESOURCES RESEARCH, VOL. 33, NO. 12, PAGES 2967 2980, DECEMBER 1997 Process controls on regional flood frequency: Coefficient of variation and basin scale Günter Blöschl and Murugesu Sivapalan 1

More information

2016 Fall Conditions Report

2016 Fall Conditions Report 2016 Fall Conditions Report Prepared by: Hydrologic Forecast Centre Date: December 13, 2016 Table of Contents TABLE OF FIGURES... ii EXECUTIVE SUMMARY... 1 BACKGROUND... 5 SUMMER AND FALL PRECIPITATION...

More information

On variational data assimilation for 1D and 2D fluvial hydraulics

On variational data assimilation for 1D and 2D fluvial hydraulics On variational data assimilation for D and D fluvial hydraulics I. Gejadze, M. Honnorat, FX Le Dimet, and J. Monnier LJK - MOISE project-team, Grenoble, France. Contact: Jerome.Monnier@imag.fr Civil Engineering

More information

Simulation of flow discharge on Danube River

Simulation of flow discharge on Danube River Annals of the University of Craiova, Mathematics and Computer Science Series Volume 41(1), 2014, Pages 129 137 ISSN: 1223-6934 Simulation of flow discharge on Danube River PETRE BĂZĂVAN ABSTRACT. River

More information

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria,

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria, Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria, Abstract This paper deals with the application of the Muskingum-Cunge

More information

BREACH: AN EROSION MODEL FOR EARTHEN DAM FAILURES. by D.L. Fread 1. July 1988 (Revision 1, August 1991)

BREACH: AN EROSION MODEL FOR EARTHEN DAM FAILURES. by D.L. Fread 1. July 1988 (Revision 1, August 1991) BREACH: AN EROSION MODEL FOR EARTHEN DAM FAILURES by D.L. Fread 1 July 1988 (Revision 1, August 1991) ABSTRACT. A physically based mathematical model (BREACH) to predict the breach characteristics (size,

More information

Leveraging new models and data to improve flood stage forecast. Improving Flood Stage Forecasting in the Feather River Watershed. September 11 th 2015

Leveraging new models and data to improve flood stage forecast. Improving Flood Stage Forecasting in the Feather River Watershed. September 11 th 2015 Leveraging new models and data to improve flood stage forecast Improving Flood Stage Forecasting in the Feather River Watershed September 11 th 2015 Mitch Russo, P.E. (DWR) Ashok Bathulla, P.E., CFM (GEI)

More information

Merced Irrigation District Hydrologic and Hydraulic Operations (MIDH2O) Model

Merced Irrigation District Hydrologic and Hydraulic Operations (MIDH2O) Model Merced Irrigation District Hydrologic and Hydraulic Operations (MIDH2O) Model September 05, 2018 Marco Bell, Merced Irrigation District Bibek Joshi, Dewberry Objective Introduce HEC-RTS Benefits of MIDH2O

More information