Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 One-dimensional unsteady flow computation in channels with floodplains D. Bousmar, R. Scherer & Y. Zech Civil Engineering Dept., Universite Catholique de Louvain, Place du Levant, 1, B-1348 Louvain-la-Neuve, Belgium Abstract A new one-dimensional unsteady flow model is presented for overbank flow computation in natural rivers. This model takes into account floodplains acting not only as a storage volume but also as a river element carrying a fraction of the total discharge and interacting with the main channel. The model is incorporated in a hydraulic software and simulations are compared with an experimental case found in the literature. 1 Introduction During flood events, river floodplains generally act as a storage volume contributing to peak flow mitigation. Nevertheless, if not too much obstructed by vegetation or constructions, they also can concur to the channel conveyance. In both cases, there will be an interaction between the water flowing fast in the main channel and the low-velocity water in the floodplains. Two different effects are observed. The first is the momentum transfer due to the shear layer at the interface between main channel and floodplains. This momentum transfer has been widely studied for steady

2 206 Hydraulic Engineering Software 3) (D Figure 1: Division of a compound channel in 3 subsections flow in prismatic channels (see e.g. Selling Knight & Shiono^). A second effect is the momentum transfer associated to mass exchanges through the interface. These exchanges may occur in steady-flow as a consequence of flow redistribution due to non-prismaticity, but also in unsteady flow, filling or emptying the floodplains. Depending on the predominating floodplain effect, two kinds of computational models have been developed. Thefirstone considers only a storage effect: the discharge only flows in the main channel and lateral discharge to the storage ponds is included in the continuity equation (see e.g. Fender^). The second model also includes floodplain conveyance : the discharge is estimated by the well known Divided Channel Method (DCM) as the sum of the discharges corresponding to each subsections (main channel and floodplains, see Figure 1). A correction factor can take into account the shear layer momentum transfer (see e.g. Stephenson & Kolovopoulos^, Abida & Townsend*, Lyness et al.^). Based on the authors' steady flow Exchange Discharge Model (EDM) (Bousmar & Zech^), a new model is presented where the lateral discharge between main channel and floodplains due to both nonprismaticity and filling or emptying is taken into account not only as a mass exchange but also as a momentum transfer. 2 Exchange Discharge Model for steady flow In this model, the effect of the momentum transfer between main channel andfloodplainsis taken into account as an additional loss & to be added to the friction slope ^estimated with the DCM, in order to get the total head loss Se: S,=S+S, (1)

3 Hydraulic Engineering Software 207 The value of the additional loss is given by the Saint-Venant equations written with a lateral inflow #,- and a lateral outflow #<%,, per unit length for each subsection (Bousmar and Zech ) (2) and,, A + ga ^ (3) where x and t are respectively the abscissa along the channel and the time, g is the gravity constant, z and U are the water level and the mean velocity in the section and %, is the lateral inflow velocity component in the direction of the main flow. The inflow and outflow of each channel subsection / are on one hand an oscillating turbulent exchange discharge c{ due to the shear layer and the resulting vortices at the interface between the floodplain and the mainchannel (Figure 2). On the other hand, a geometrical transfer discharge (f* is due to the redistribution of flow which occurs for steady flows in nonprismatic channel (for instance, widening of thefloodplains) : ds (4) Turbulent exchange Geometrical transfer Figure 2: Exchange discharges in a compound channel

4 208 Hydraulic Engineering Software Getting the particular additional losses in each subsection, it is possible to evaluate a global additional loss for the whole channel, leading to accurate steady-flow discharge and water-profile prediction. 3 Momentum transfer in unsteady flow In order to extend the Exchange Discharge Model to unsteady flow, two assumptions are necessary. The first is the classical assumption that the friction slope in Saint-Venant equation can be estimated by a uniform-flow equation like the Manning's one, in the same way as for steady-flow modelling. The additional loss is thus added to the friction term of the Saint-Venant equation. The second assumption is to take into account an unsteady flow geometrical transfer discharge (f" resulting from thefillingor emptying of the floodplains. This unsteady transfer discharge is to be added to the turbulent exchange discharge q* and to the steady-flow geometrical one <f for the estimation of the momentum transfer between main channel and floodplains. The value of the unsteady geometrical transfer discharge can be found from the conservation of volume written for a floodplain reach (subsection /) between two cross-sections (Figure 3) (5) where FJ is the water volume and #, the mean width of the floodplain, ds is the length of the reach, H is the water level in the channel and Q, is the floodplain discharge. Assuming that (f* and (f are constant during the time interval Af and that the discharge g, vary linearly, the integration of eq (5) leads after simplifications to

5 Hydraulic Engineering Software 209 Q,+ 8Q,/5scte Figure 3: Volume conservation for a floodplain reach dt ds (6) Given the definition of #** by eq (4), for the time f, we get finally the value of the unsteady geometrical transfer discharge dq, r-* + -, '' ' dt 2 55 f+af ds (7) showing that the water entering the floodplain originates either from the main channel, or from the upstream reach of the floodplain. The distribution between both supplying sources will depend on the relative flood wave celerity. For floodplains acting only as storage volume, the floodplain discharge g, is equal to zero and, according to eq (7), the water level increase on the floodplain results only from a filling by the main channel. If the floodplain conveyance is not negligible, the floodplain discharge will also lightly contribute to the storage feeding. For example, it counts for 5 to 10 % of the feeding in the test case presented in the next part.

6 210 Hydraulic Engineering Software 4 Flood wave simulations This extended EDM model was incorporated in a one-dimensional unsteady flow computational model solving the Saint-Venant equations by an explicit predictor-corrector McCormack scheme (Garcia-Navarro & Saviron*). Also an implicit Preissmann 4-points scheme has been tested, allowing longer time steps. Nevertheless, in the McCormack scheme, the unsteady geometrical transfer discharge is easier to estimate : while a first value of <f* for the predictor step is given as a result of the previous time step, a second one is then evaluated using the predictor-step water levels before the corrector step. Numerical simulation were performed for comparison with the experimental data of Tominaga et al.*. The test flume is 11.5 m long, the 0.20 m width main channel isflankedby two 0.20 m width symmetrical floodplains, of which the bed is 59 mm higher than the main-channel bottom. A test section is located 7.5 m downstream from the entrance. The slope was fixed at & = A controlled flood wave is imposed upstream, with discharge varying from 3 to 20 1/s and a peak time Tp of either 60s or 120 s. The downstream end of the channel is a control section. As no roughness values were available, they were arbitrary estimated as n^ = nf= 0.010, corresponding to the perspex walls of the flume. These values seem to be confirmed by the correct prediction of a steady flow water level at the begin of the flooding. Figure 4 presents the water level evolution in the test section, for a hydrograph with peak time at 60s. Three simulations where performed : one with the classical DCM, one with the steady-flow EDM (including turbulent and steady geometrical exchange), and the last one with the unsteady-flow EDM (also including unsteady geometrical exchange). The rising stage is well estimated by the three models. For the falling stage, the unsteady EDM offers a better prediction than the other methods, while not perfect. Figure 5 presents velocity-water level loop curves for both main channel and floodplain. All the three methods present curves of similar aspect when compared to experimental data but fail to model it accurately. One explanation is to be found in Figure 6 which presents the velocity as a function of time : the EDM is only modelling mean velocities of each subsection and could still be improved by accurate modelling of velocity distribution.

7 Hydraulic Engineering Software f Measured values DCM EDM (steady) EDM (unsteady) Time (s) Figure 4: Water level evolution with time (Tp = 60s) 0.80 EDM (steady) EDM (unsteady) Water depth (m) Figure 5: Velocity-stage loop curve (Tp = 120s) Measured values EDM (unsteady) Time (s) Figure 6: Subsection velocities evolution with time (Tp = 120s)

8 212 Hydraulic Engineering Software y I Time (s) Figure 7: Friction slope and additional loss evolution with time (Tp = 60s) o.ooio - turbulent geom. steady -geom. unsteady Time (s) Figure 8: Exchange discharges evolution with time (Tp = 60s) The evolution according to the time of thefrictionslope S/and of the additional head loss & is presented on Figure 7. During the stagerise,the relative discharge increase is greater than the rise of the water level and of the corresponding conveyance. As a result, the friction slope is higher than the bottom slope & = of the channel. It is only later, during the recession, that the discharge decrease leads to lower friction. This may explain the loop shape of the velocity-stage curves of Figure 5. The friction peak at 170 s corresponds to the end of floodplain emptying : as the momentum transfer disappears, the water level decreases suddenly while the friction arises.

9 Hydraulic Engineering Software 213 The evolution of additional losses is easier to explain with Figure 8 that presents the discharge exchanged through the interface between main channel and floodplains. As the floodplains in the actual case are not so wide, the turbulent exchange discharge is significantly higher than the geometrical ones. It should be noted that its value higher than 1 1/s/m is not negligible compared to the peak value of the total channel discharge of 201/s. The steady-flow geometrical transfer discharge is negative during the flooding, indicating that the floodplain conveyance decreases downward. Indeed, since the channel discharge increases according to the time, the water profile is rather steep at the downstream end of the channel, leading to a downward decreasing water level in the floodplains. During the recession, the profile will be more parallel to the channel bottom and the steady-flow geometrical transfer will reduce to zero. The geometrical transfer discharge due to unsteadiness is positive toward the floodplains during the rising stage as the water level is increasing. For this particular example, it approximately counterbalances the steady-flow geometrical transfer, resulting in a sum near zero. For this reason, the additional loss from the unsteady EDM computation is lower than from the steady-flow model, giving lower water profiles due to lower total head losses (Figure 4). During the stage recession, the floodplains are emptying (with a maximum discharge just when flow is leaving floodplains, at 165 s), the geometrical transfer due to unsteadiness is negative and the associated momentum transfer slows down the main channel, corresponding to higher additional loss (Figure 7), with a peak when water is leaving the floodplains. 5 Conclusions The new model developed for one-dimensional unsteady flow in compound channels takes into account an additional head loss. This loss corresponds to a momentum transfer given by the mass exchange between main channel and floodplains when the floodplains water level is varying. This model seems to reproduce appropriately existing phenomena : during flooding, the momentum transfer increases the floodplains discharge and does not interfere with main channel. During recession, it enlarges the main-channel losses in such a way thatfloodplainsemptying may be delayed.

10 214 Hydraulic Engineering Software References [1] Abida, H. & Townsend, R.D., A model for routing unsteady flows in compound channels, Journal of Hydraulic Research, 1AHR, 32 (1), pp , "2] Bousmar, D. & Zech, Y., Water profile computation in compound channels, Hydrosoft98, Como, Italy, [3] Bousmar, D. & Zech, Y., A model of momentum transfer for practical flow computation in compound channels, submitted for publication in Journal ofhyd. Engrg., ASCE, [4] Garcia-Navarro, P. & Saviron, J.M. McCormack's method for the numerical simulation of one-dimensional discontinuous unsteady open channel flow, Journal of Hydraulic Research, IAHR, 30 (1), pp , 1992 [5] Knight, D.W. and Shiono, K., Turbulence measurements in a shear layer region of a compound channel, Journal of Hydraulic Research, IAHR, 28 (2), pp , 1990 [6] Lyness, J.F., Myers, W.R.C. & Wark, J.B., The useof different conveyance calculations for modelling flows in a compact compound channel, Journal ofthelnst of Water and Envir. Mgmt, 11 (5), pp , [7] Fender, G, Maintaining numerical stability of flood plain calculations by time increment splitting, Proc. ICE, Wat., Marit. and En. Journal, 96, pp , 1992 [8] Sellin, R.H.J, A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain, La Houille Blanche, 7, pp , [9] Stephenson, D. & Kolovopoulos, P., Effects of momentum transfer in compound channels, Journal of Hyd. Engrg, ASCE, 116 (12),pp , 1990 [10] Tominaga, A., Liu,I, Nagao, M. and Nezu, I., Hydraulic characteristics of unsteady flow in open channels with flood plains, Proc. 26th Congress of JAHR, Hydra 2000, London, 1, pp , 1995

Stage Discharge Prediction in a Prismatic Compound Channel

Stage Discharge Prediction in a Prismatic Compound Channel International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 3 (2014), pp. 227-232 Research India Publications http://www.ripublication.com/ijcer.htm Stage Discharge Prediction

More information

EQUATIONS FOR DISCHARGE CALCULATION IN COMPOUND CHANNELS HAVING HOMOGENEOUS ROUGHNESS * S. M. HOSSEINI **

EQUATIONS FOR DISCHARGE CALCULATION IN COMPOUND CHANNELS HAVING HOMOGENEOUS ROUGHNESS * S. M. HOSSEINI ** Iranian Journal of Science & Technology, Transaction B, Vol. 28, No. B5 Printed in The Islamic Republic of Iran, 2004 Shiraz University EQUATIONS FOR DISCHARGE CALCULATION IN COMPOUND CHANNELS HAVING HOMOGENEOUS

More information

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK OPEN CHANNEL FLOW Numerical Methods and Computer Applications Roland Jeppson TECHNISCHE INFORMATlONSBiBUOTHEK UNIVERSITATSB'BUOTHEK HANNOVER Si. i. CRC Press Taylor &.Francis Group Boca Raton London New

More information

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2

IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 IMPLICIT NUMERICAL SCHEME FOR REGULATING UNSTEADY FLOW IN OPEN CHANNEL Mohamed. T. Shamaa 1, and Hmida M. Karkuri 2 1 Associated Professor, Irrigation and Hydraulic Department, College of Technical Engineering,

More information

FLOOD-FLOW CHARACTERISTICS OF EQUATORIAL NATURAL RIVERS IN SARAWAK, MALAYSIA (Date received: )

FLOOD-FLOW CHARACTERISTICS OF EQUATORIAL NATURAL RIVERS IN SARAWAK, MALAYSIA (Date received: ) FLOOD-FLOW CHARACTERISTICS OF EQUATORIAL NATURAL RIVERS IN SARAWAK, MALAYSIA (Date received: 24.4.2007) Sai Hin Lai 1, Nabil Bessaih 2, Puong Ling Law 2, Nor Azazi bin Zakaria 1, Aminuddin bin Ghani 1

More information

Discharge estimation in compound channels with fixed and mobile bed

Discharge estimation in compound channels with fixed and mobile bed Sādhanā Vol. 34, Part 6, December 2009, pp. 923 945. Indian Academy of Sciences Discharge estimation in compound channels with fixed and mobile bed GALIP SECKIN 1, MUSTAFA MAMAK 1, SERTER ATABAY 2 and

More information

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum

Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Archives of Hydro-Engineering and Environmental Mechanics Vol. 56 (29), No. 3 4, pp. 121 137 IBW PAN, ISSN 1231 3726 Flood Routing by the Non-Linear Muskingum Model: Conservation of Mass and Momentum Dariusz

More information

APPARENT SHEAR STRESS IN A COMPOUND CHANNEL

APPARENT SHEAR STRESS IN A COMPOUND CHANNEL APPARENT SHEAR STRESS IN A COMPOUND CHANNEL K. K. Khatua K. C. Patra R. Jha Asst. Professor Professor Professor Email: kkkhatua@yahoo.com/ kkkhatua@nitrkl.ac.in Department of Civil Engineering, N.I.T.Rourkela,

More information

This is a repository copy of Stage-Discharge Prediction for Converging Compound Channels with Narrow Floodplains.

This is a repository copy of Stage-Discharge Prediction for Converging Compound Channels with Narrow Floodplains. This is a repository copy of Stage-Discharge Prediction for Converging Compound Channels with Narrow Floodplains. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/126630/ Version:

More information

Discharge estimation for equatorial natural rivers with overbank flow

Discharge estimation for equatorial natural rivers with overbank flow Intl. J. River Basin Management Vol. 6, No. (28), pp. 3 2 28 IAHR, INBO & IAHS Discharge estimation for equatorial natural rivers with overbank flow LAI SAI HIN, Lecturer, River Engineering and Urban Drainage

More information

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models

Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models 11 th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 8 Correction methods for dropping of simulated water level utilising Preissmann and MOUSE slot models T. UKON 1, N. SHIGETA, M.

More information

MEANDERING EFFECT FOR EVALUATION OF ROUGHNESS COEFFICIENTS IN OPEN CHANNEL FLOW

MEANDERING EFFECT FOR EVALUATION OF ROUGHNESS COEFFICIENTS IN OPEN CHANNEL FLOW Conference on Advances in Fluid Mechanics, 5th -7th September 00, Algarve-Portugal MEANDERING EFFECT FOR EVALUATION OF ROUGHNESS COEFFICIENTS IN OPEN CHANNEL FLOW K. K. Khatua, K.C.Patra and P.Nayak Department

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

Simulation of flow discharge on Danube River

Simulation of flow discharge on Danube River Annals of the University of Craiova, Mathematics and Computer Science Series Volume 41(1), 2014, Pages 129 137 ISSN: 1223-6934 Simulation of flow discharge on Danube River PETRE BĂZĂVAN ABSTRACT. River

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria,

Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria, Application of the Muskingum-Cunge method for dam break flood routing F. Macchione Dipartimento di Difesa del Suolo, Universita delta Calabria, Abstract This paper deals with the application of the Muskingum-Cunge

More information

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS

IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS 1106 September 11~16, 2005, Seoul, Korea IMPORTANCE OF NUMERICAL EFFICIENCY FOR REAL TIME CONTROL OF TRANSIENT GRAVITY FLOWS IN SEWERS ARTURO S. LEON 1, MOHAMED S. GHIDAOUI 2, ARTHUR R. SCHMIDT 3 and MARCELO

More information

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS

EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS INDIAN INSTITUTE OF TECHNOLOGY ROORKEE EFFECT OF SPATIAL AND TEMPORAL DISCRETIZATIONS ON THE SIMULATIONS USING CONSTANT-PARAMETER AND VARIABLE-PARAMETER MUSKINGUM METHODS Muthiah Perumal and C. Madhusudana

More information

Numerical Hydraulics

Numerical Hydraulics ETH Zurich, Fall 2017 Numerical Hydraulics Assignment 2 Numerical solution of shallow water wave propagation (www.surfertoday.com) 1 Introduction 1.1 Equations Understanding the propagation of shallow

More information

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT

A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Twelfth International Water Technology Conference, IWTC2 2008, Alexandria, Egypt 299 A NONLINEAR OPTIMIZATION MODEL FOR ESTIMATING MANNING S ROUGHNESS COEFFICIENT Maysoon Kh. Askar and K. K. Al-Jumaily

More information

Composite roughness for rough compound channels

Composite roughness for rough compound channels Composite roughness for rough compound channels S. Pradhan Research Scholar (Ph. D), Department of Civil Engineering, National Institute of Technology, Rourkela, Orissa, India K.K.Khatua Associate Professor,

More information

Uniform flow formulas for irregular sections in straight channels

Uniform flow formulas for irregular sections in straight channels 1 Uniform flow formulas for irregular sections in straight channels 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ELEONORA SPADA, PhD student, Dipartimento di Ingegneria Civile, Ambientale,Aerospaziale,

More information

Prediction of bed form height in straight and meandering compound channels

Prediction of bed form height in straight and meandering compound channels Water Resources Management III 311 Prediction of bed form height in straight and meandering compound channels R. D. Karamisheva, J. F. Lyness, W. R. C. Myers, J. O Sullivan & J. B. C. Cassells School of

More information

Visualization of Shear Layers in Compound Channel Flows

Visualization of Shear Layers in Compound Channel Flows Visualization of Shear Layers in Compound Channel Flows Saad Mulahasan*, Professor Thorsten Stoesser and Fernando Alvarez Hydro-environmental Research Centre, School of Engineering, Cardiff University,

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

1. Introduction. Keywords Compound channel, Momentum transfer, Relative roughness, Relative depth, Relative width

1. Introduction. Keywords Compound channel, Momentum transfer, Relative roughness, Relative depth, Relative width International Journal of Hydraulic Engineering, (): -8 DOI:.9/j.ijhe.. Investigating the Effect of and Relative Roughness on Momentum Transfer in Symmetric Rectangular Compound Channels with Varius Relative

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

FLOWS DUE TO A STRUCTURE FAILURE ON THE CANAL DU CENTRE

FLOWS DUE TO A STRUCTURE FAILURE ON THE CANAL DU CENTRE THEME D: GIS and CFD Applications 543 FLOWS DUE TO A STRUCTURE FAILURE ON THE CANAL DU CENTRE le Grelle N. 1, Bertrand G. 2, Soares Frazão S. 1,3, Hiver J.M. 2 and Zech Y. 1 1 Civil and Environmental Engineering

More information

An experimental study of longitudinal velocity distribution at cross-over and bend section of a compound meandering channel

An experimental study of longitudinal velocity distribution at cross-over and bend section of a compound meandering channel American Journal of Civil Engineering 2013; 1(3): 124-128 Published online November 20, 2013 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.20130103.16 An experimental study of longitudinal

More information

Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow

Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow International Journal of Integrated Engineering, Vol. 5 No. 1 (2013) p. 58-63 Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow Mazlin Jumain 1,*, Zulkiflee Ibrahim

More information

Hydraulic characteristics of meandering mobile bed compound channels

Hydraulic characteristics of meandering mobile bed compound channels Hydraulic characteristics of meandering mobile bed compound channels J. F. Lyness, MSc, PhD, MICE, W.R.C.Myers,BA, BSc, PhD, MICE and J. J. O'Sullivan, BA, BAI, MSc Proc. Instn Civ. Engrs Wat., Marit.

More information

New computation method for flood flows and bed variations in a low-lying river with complex river systems

New computation method for flood flows and bed variations in a low-lying river with complex river systems River Flow 2014 Schleiss et al. (Eds) 2014 Taylor & Francis Group, London, ISBN 978-1-138-02674-2 New computation method for flood flows and bed variations in a low-lying river with complex river systems

More information

STAGE DISCHARGE PREDICTION FOR MEANDERING CHANNELS

STAGE DISCHARGE PREDICTION FOR MEANDERING CHANNELS K.K. Khatua, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 1 (2013) 80 92 STAGE DISCHARGE PREDICTION FOR MEANDERING CHANNELS K. K. KHATUA, K.C. PATRA, P. NAYAK & N. SAHOO Department of Civil

More information

Two-Dimensional Simulation of Subcritical Flow at a Combining Junction: Luxury or Necessity?

Two-Dimensional Simulation of Subcritical Flow at a Combining Junction: Luxury or Necessity? Two-Dimensional Simulation of Subcritical Flow at a Combining Junction: Luxury or Necessity? Rabih Ghostine 1 ; Robert Mose ; José Vazquez 3 ; Abdellah Ghenaim 4 ; and Caroline Grégoire 5 Abstract: Classically,

More information

Keywords: flow characteristics, compound straight channel, bed morphology, floodplain

Keywords: flow characteristics, compound straight channel, bed morphology, floodplain Flow Characteristics on Floodplain Vegetation in Compound Straight Channels Nur Amirah Nabilah Mohd Zamri 1, a, Zulhilmi Ismail 1,b,Zulkiflee Ibrahim 1,c 1 Faculty of Civil Engineering, Universiti Teknologi

More information

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Numerical Hydraulics Autumn semester 2016 Prof. Dr. Markus Holzner Author: Pascal

More information

Physical and numerical modeling of overbank flow with a groyne on the floodplain

Physical and numerical modeling of overbank flow with a groyne on the floodplain Physical and numerical modeling of overbank flow with a groyne on the floodplain (1) Y. Peltier, (1) S. Proust, (2) A. Bourdat, (1) F. Thollet, (3) N. Rivière, (1) A. Paquier (1) Hydrology-Hydraulics Research

More information

On variational data assimilation for 1D and 2D fluvial hydraulics

On variational data assimilation for 1D and 2D fluvial hydraulics On variational data assimilation for D and D fluvial hydraulics I. Gejadze, M. Honnorat, FX Le Dimet, and J. Monnier LJK - MOISE project-team, Grenoble, France. Contact: Jerome.Monnier@imag.fr Civil Engineering

More information

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Flood routing Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya Q (m 3 /sec)

More information

Computation of vertically averaged velocities in irregular sections of straight channels

Computation of vertically averaged velocities in irregular sections of straight channels doi:10.5194/hess-19-3857-2015 Author(s) 2015. CC Attribution 3.0 License. Computation of vertically averaged velocities in irregular sections of straight channels E. Spada 1, T. Tucciarelli 1, M. Sinagra

More information

Experimental Study of Discharge Characteristics in a Compound Meandering River

Experimental Study of Discharge Characteristics in a Compound Meandering River American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-07, pp-136-140 www.ajer.org Research Paper Open Access Experimental Study of Discharge Characteristics

More information

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY

NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY NUMERICAL MODEL FOR MOVABLE BED AS A TOOL FOR THE SIMULATION OF THE RIVER EROSION A CASE STUDY Solichin 1 Abstract: A serious erosion problem takes place in Cipamingkis River in west Java, Indonesia. As

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS OF FLOOD FLOW IN A COMPOUND MEANDERING CHANNEL

COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS OF FLOOD FLOW IN A COMPOUND MEANDERING CHANNEL COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS OF FLOOD FLOW IN A COMPOUND MEANDERING CHANNEL Alex George Mutasingwa, Graduate student, Hiroshima University Shoji Fukuoka, Professor, Department

More information

Analysis of Depth Averaged Velocity in Meandering Compound Channels

Analysis of Depth Averaged Velocity in Meandering Compound Channels Analysis of Depth Averaged Velocity in Meandering Compound Channels Prof. K.C.Patra, Ellora Padhi, Laxmipriya Mohanty & Manaswinee Patnaik. Department of Water Resources Engineering, National Institute

More information

Computation of gradually varied flow in compound open channel networks

Computation of gradually varied flow in compound open channel networks Sādhanā Vol. 39, Part 6, December 014, pp. 153 1545. c Indian Academy of Sciences Computation of gradually varied flow in compound open channel networks 1. Introduction H PRASHANTH REDDY 1,, M HANIF CHAUDHRY

More information

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN

CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN Criteria for the choice of flood routing methods in natural... CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN NATURAL CHANNELS WITH OVERBANK FLOWS Roger Moussa 1 Abstract: The classification of river

More information

NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS

NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS TASK QUARTERLY 15 No 3 4, 271 282 NUMERICAL SIMULATION OF OPEN CHANNEL FLOW BETWEEN BRIDGE PIERS MICHAŁ SZYDŁOWSKI Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza

More information

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY

FLOOD ROUTING FOR A SPECIFIC ORIENTATION OF PLANNED DEVELOPMENTS FOR AL-SHAMIYA RIVER IN IRAQ AS CASE STUDY Journal of Civil Engineering and Technology (JCIET) Volume 4, Issue 2, July-December 2017, pp. 1 12, Article ID: JCIET_04_02_001 Available online at http: //www.iaeme.com/jciet/issues.asp?jtype=jciet&vtype=4&itype=2

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X A new Crank-Nicholson algorithm for solving the diffusive wave flood routing equation along a complex channel network R. Moussa," C. BouquilW* " Institut National de la Recherche Agronomique, 34060 Montpellier,

More information

Linear Analysis of Coupled Equations for Sediment Transport

Linear Analysis of Coupled Equations for Sediment Transport Theme B of the XXVII IAHR Congress, San Francisco, 1-15 August, 1997, 156-161. Linear Analysis of Coupled Equations for Sediment Transport YANTAO CUI and GARY PARKER St. Anthony Falls Laboratory, University

More information

Conveyance Estimation System (CES) Launch

Conveyance Estimation System (CES) Launch (CES) Launch Conveyance Principles Caroline McGahey 10 June 2004 Why is there a new approach? Existing 1D software still based on historic hand-calculation methods - not based in rigorous physics - as

More information

Transactions on Ecology and the Environment vol 8, 1994 WIT Press, ISSN

Transactions on Ecology and the Environment vol 8, 1994 WIT Press,   ISSN Dam breachfloods- downstream inundation analyses M. Hartnett,' T. Hayes,* B. Mangan,* o Department of Civil, Structural & Environmental Engineering, Trinity College, Dublin 2, Ireland, UK * ESB International,

More information

Energy and momentum coefficients for wide compound channels

Energy and momentum coefficients for wide compound channels River Basin Management VII 87 Energy and momentum coefficients for wide compound channels P. K. Mohanty, S. S. Dash, K. K. Khatua & K. C. Patra Department of Civil Engineering, N.I.T. Rourkela, India Abstract

More information

Simulation of Transcritical Flow in Hydraulic structures

Simulation of Transcritical Flow in Hydraulic structures Simulation of Transcritical Flow in Hydraulic structures Cornelius E Agu 1 Geir Elseth Bernt Lie 3 1,3 Faculty of Technology, Telemark University College, Norway, {corneliuseagu,berntlie}@hitno Statoil

More information

Detailed Investigation of Velocity Distributions in Compound Channels for both Main Channel and Flood Plain

Detailed Investigation of Velocity Distributions in Compound Channels for both Main Channel and Flood Plain Detailed Investigation of Velocity Distributions in Compound Channels for both Main Channel and Flood Plain Jarmina Nake 1, Dr. Mimi Das Saikia 2 M.Tech Student, Dept. of Civil engineering, ADTU, Guwahati,

More information

Solving open channel flow problems with a simple lateral distribution model

Solving open channel flow problems with a simple lateral distribution model River Flow - Dittrich, Koll, Aberle & Geisenhainer (eds) - Bundesanstalt für Wasserbau ISBN 978-3-9393--7 Solving open channel flow problems with a simple lateral distribution model D W Knight, X Tang

More information

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION

MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION July. 2. Vol. 7. No. 2 MODELING FLUID FLOW IN OPEN CHANNEL WITH HORSESHOE CROSS SECTION 1 J. JOMBA, 2 D.M.THEURI, 2 E. MWENDA, 2 C. CHOMBA ABSTRACT Flow in a closed conduit is regarded as open channel

More information

presented by Umut Türker Open Channel Flow

presented by Umut Türker Open Channel Flow presented by Umut Türker Open Channel Flow What is open channel flow? Open channel flow is a flow which has a free surface and flows due to the gravitational effect What is open channel flow? Open channel

More information

Hydraulic Modelling of wetland flow Data collection and problem solving

Hydraulic Modelling of wetland flow Data collection and problem solving Hydraulic Modelling of wetland flow Data collection and problem solving Prof. dr. ir. ir. Ronny Verhoeven Hydraulics Laboratory Ghent University Belgium WETHYDRO WORKSHOP 13 14 June 2003 Hydraulic Modelling

More information

CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER WITH LOW FLOW

CHAPTER 2- BACKGROUND. INVESTIGATIONS OF COMPOSITE ROUGHNESS COEFFICIENT IN A RIVER WITH LOW FLOW 2. Background 2.1 Introduction The estimation of resistant coefficient and hence discharge capacity in a channel or river is one of the fundamental problems facing river engineers. When applying Manning

More information

9. Flood Routing. chapter Two

9. Flood Routing. chapter Two 9. Flood Routing Flow routing is a mathematical procedure for predicting the changing magnitude, speed, and shape of a flood wave as a function of time at one or more points along a watercourse (waterway

More information

Numerical Limitations of Hydraulic Models

Numerical Limitations of Hydraulic Models 34 th IAHR World Congress - Balance and Uncertainty 26 June - 1 July 2011, Brisbane, Australia 33 rd Hydrology & Water Resources Symposium 10 th Hydraulics Conference Numerical Limitations of Hydraulic

More information

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib

Engineering Hydrology (ECIV 4323) CHAPTER FOUR. Stream flow measurement. Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Engineering Hydrology (ECIV 4323) CHAPTER FOUR Stream flow measurement Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib -١ 4.1 Introduction - Surface water hydrology deals with the movement of water

More information

Analysis of Flow Resistance for Different Bed Materials with Varying Discharge Experimentally in Open Channels

Analysis of Flow Resistance for Different Bed Materials with Varying Discharge Experimentally in Open Channels Analysis of Flow Resistance for Different Bed Materials with Varying Discharge Experimentally in Open Channels Lakshmi Mitra 1, Dr.Mimi Das Saikia 2 M.Tech. Student, Department of Civil Engineering, Assam

More information

CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows

CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows School of Civil Engineering at the University of Queensland CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows Attendance to tutorials is very strongly

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Open Channel Flow Part 2. Ch 10 Young, notes, handouts Open Channel Flow Part 2 Ch 10 Young, notes, handouts Uniform Channel Flow Many situations have a good approximation d(v,y,q)/dx=0 Uniform flow Look at extended Bernoulli equation Friction slope exactly

More information

This is a repository copy of An analytical model for lateral depth-averaged velocity distributions along a meander in curved compound channels.

This is a repository copy of An analytical model for lateral depth-averaged velocity distributions along a meander in curved compound channels. This is a repository copy of An analytical model for lateral depth-averaged velocity distributions along a meander in curved compound channels. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80340/

More information

Growing and decaying processes and resistance of sand waves in the vicinity of the Tone River mouth

Growing and decaying processes and resistance of sand waves in the vicinity of the Tone River mouth Advances in River Sediment Research Fukuoka et al. (eds) 2013 Taylor & Francis Group, London, ISBN 978-1-138-00062-9 Growing and decaying processes and resistance of sand waves in the vicinity of the Tone

More information

Turbulent structures in the flow through compound meandering channels

Turbulent structures in the flow through compound meandering channels River Flow 2010 - Dittrich, Koll, Aberle & Geisenhainer (eds) - 2010 Bundesanstalt für Wasserbau ISBN 978-3-939230-00-7 Turbulent structures in the flow through compound meandering channels I. Moncho-Esteve

More information

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS

MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS MACRODISPERSION AND DISPERSIVE TRANSPORT BY UNSTEADY RIVER FLOW UNDER UNCERTAIN CONDITIONS M.L. Kavvas and L.Liang UCD J.Amorocho Hydraulics Laboratory University of California, Davis, CA 95616, USA Uncertainties

More information

Uniform Channel Flow Basic Concepts Hydromechanics VVR090

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations

More information

Some Benchmark Simulations for Flash Flood Modelling

Some Benchmark Simulations for Flash Flood Modelling Some Benchmark Simulations for Flash Flood Modelling Ekkehard Holzbecher, Ahmed Hadidi German Univ. of Technology in Oman (GUtech) E-mail: ekkehard.holzbecher@gutech.edu.om Flash Floods Rapid flooding

More information

QUASI-CONSERVATIVE FORMULATION OF THE ONE DIMENSIONAL SAINT VENANT-EXNER MODEL

QUASI-CONSERVATIVE FORMULATION OF THE ONE DIMENSIONAL SAINT VENANT-EXNER MODEL QUASI-CONSERVATIVE FORMULATION OF THE ONE DIMENSIONAL SAINT VENANT-EXNER MODEL Annunziato Siviglia 1, Giampiero Nobile 2 and Marco Colombini 3 ABSTRACT Coupling the Saint-Venant equations with the Exner

More information

The Influence of Piers on the Risk of Flooding Upstream from a Bridge

The Influence of Piers on the Risk of Flooding Upstream from a Bridge Archives of Hydro-Engineering and Environmental Mechanics Vol. 52 (2005), No. 4, pp. 287 301 IBW PAN, ISSN 1231 3726 The Influence of Piers on the Risk of Flooding Upstream from a Bridge Marek Sowiński

More information

Numerical modelling of river flow data collection and problem solving

Numerical modelling of river flow data collection and problem solving Numerical modelling of river flow data collection and problem solving R. Verhoeven 1, R. Banasiak 1,T. Okruszko 2, D. Swiatek 2, J. Chormanski 2 & P. Nowakowsky 2 1 Hydraulics Laboratory, Ghent University,

More information

LOCAL SCOUR INDUCED BY 3D FLOW AROUND ATTRACTING AND DEFLECTING GROINS

LOCAL SCOUR INDUCED BY 3D FLOW AROUND ATTRACTING AND DEFLECTING GROINS LOCAL SCOUR INDUCED BY 3D FLOW AROUND ATTRACTING AND DEFLECTING GROINS TAISUKE ISHIGAKI Disaster Prevention Research Institute, Kyoto University Fushimi, Kyoto 612-8235, Japan YASUYUKI BABA Disaster Prevention

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1

The most important equation to describe the water balance of a reservoir is the water balance: Equation 3.1 3 FLOOD PROPAGATION 3.1 Reservoir routing The most important equation to describe the water balance of a reservoir is the water balance: ds = I Q + A P E dt ( ) In finite differences form this equation

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flow Lecture - 1 Introduction to Uniform Flow Good morning everyone,

More information

A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM

A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM Annual Journal of Hydraulic Engineering, JSCE, Vol.57, 2013, February A STUDY ON DEBRIS FLOW DEPOSITION BY THE ARRANGEMENT OF SABO DAM Namgyun Kim 1, Hajime NAKAGAWA 2, Kenji KAWAIKE 3, and Hao ZHANG 4

More information

Transverse Distribution of Shear Stress in Compound Meandering Channel

Transverse Distribution of Shear Stress in Compound Meandering Channel e-issn: 2278-1684, p-issn: 232-334X. Transverse Distribution of Shear Stress in Compound Meandering Channel A.sahu 1, L.Mohanty 2, K.K.Khatua³ 1,2 ( Department of Civil Engineering, VSSUT burla, India)

More information

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS

GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS GODUNOV-TYPE SOLUTIONS FOR TWO-PHASE WATER HAMMER FLOWS ARTURO S. LEON Dept. of Civil and Envir. Engng., Univ. of Illinois at Urbana-Champaign, 2519 Hydrosystems Lab., MC-250. 205 North Mathews Av., Urbana,

More information

Extreme Mixing Events in Rivers

Extreme Mixing Events in Rivers PUBLS. INST. GEOPHYS. POL. ACAD. SC., E-10 (406), 2008 Extreme Mixing Events in Rivers Russell MANSON 1 and Steve WALLIS 2 1 The Richard Stockton College of New Jersey, School of Natural Sciences and Mathematics,

More information

Open Channel Flow - General. Hydromechanics VVR090

Open Channel Flow - General. Hydromechanics VVR090 Open Channel Flow - General Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Jan 2014, Feb 2015 SYNOPSIS 1. Introduction and Applications 2. The History of Open Channel Flow 3. Flow Classification

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

Open Channel Flow - General. Open Channel Flow

Open Channel Flow - General. Open Channel Flow Open Channel Flow - General Hydromechanics VVR090 Open Channel Flow Open channel: a conduit for flow which has a free surface Free surface: interface between two fluids of different density Characteristics

More information

Rating Curves: Part 1 Correction for Surface Slope

Rating Curves: Part 1 Correction for Surface Slope The Institution of Engineers, Australia Conference on Hydraulics in Civil Engineering Hobart 8 30 November 001, pp 309-317 Rating Curves: Part 1 Correction for Surface Slope J. D. Fenton Dip.C.E., B.E.,

More information

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS

Advanced /Surface Hydrology Dr. Jagadish Torlapati Fall 2017 MODULE 2 - ROUTING METHODS Routing MODULE - ROUTING METHODS Routing is the process of find the distribution of flow rate and depth in space and time along a river or storm sewer. Routing is also called Flow routing or flood routing.

More information

Accounting for increased flow resistance due to lateral momentum loss in restoration designs using 2-stage channels

Accounting for increased flow resistance due to lateral momentum loss in restoration designs using 2-stage channels Skamania 2005 Accounting for increased flow resistance due to lateral momentum loss in restoration designs using 2-stage channels Outline Aim and Objectives Definition Use of 2-stage channels in stream

More information

Thelongwaveequations

Thelongwaveequations Alternative Hydraulics Paper 1, January 2010 Thelongwaveequations Institute of Hydraulic and Water Resources Engineering Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/

More information

Quasi-three dimensional computations for flows and bed variations in curved channel with gently sloped outer bank

Quasi-three dimensional computations for flows and bed variations in curved channel with gently sloped outer bank River Sedimentation Wieprecht et al. (Eds) 2017 Taylor & Francis Group, London, ISBN 978-1-138-02945-3 Quasi-three dimensional computations for flows and bed variations in curved channel with gently sloped

More information

Accuracy of Muskingum-Cunge flood routing

Accuracy of Muskingum-Cunge flood routing Alternative Hydraulics Paper 3, 02.03.2011 Accuracy of Musingum-Cunge flood routing Institute of Hydraulic and Water Resources Engineering Vienna University of Technology Karlsplatz 13/222, 1040 Vienna,

More information

Overbank flow depth prediction in alluvial compound channels

Overbank flow depth prediction in alluvial compound channels Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Overbank flow depth prediction in alluvial

More information

Numerical Simulation of Rapidly Varied Water Flow in the Wild River Type Water Slide

Numerical Simulation of Rapidly Varied Water Flow in the Wild River Type Water Slide Archives of Hydro-Engineering and Environmental Mechanics Vol. 50 (2003), No. 1, pp. 3 23 Numerical Simulation of Rapidly Varied Water Flow in the Wild River Type Water Slide Kazimierz Burzyński, Michał

More information

This file was downloaded from Telemark Open Research Archive TEORA -

This file was downloaded from Telemark Open Research Archive TEORA - This file was downloaded from Telemark Open Research Archive TEORA - http://teora.hit.no/dspace/ Title: Numerical solution of the Saint Venant equation for Non-Newtonian fluid. Authors: Agu, C. E., & Lie,

More information

Flow Pattern in Compound Channel with Floodplain Double Groyne

Flow Pattern in Compound Channel with Floodplain Double Groyne Flow Pattern in Compound Channel with Floodplain Double Groyne Ahmed, H. S., Ahmed, A. A., & Mostafa, M. M. (2015). Flow Pattern in Compound Channel with Floodplain Double Groyne. Dam Engineering, XXVI(3).

More information

GEOL 652. Poudre River Fieldtrip

GEOL 652. Poudre River Fieldtrip GEOL 652. Poudre River Fieldtrip One of the more difficult variables to measure and/or estimate when studying flow in natural channels is that of roughness. Roughness, usually approximated with Manning

More information