# Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line, water surface, and channel bottom are all parallel: Sf = Sw = So S f = slope of energy grade line S w = slope of water surface S o = slope of channel bed 1

2 Definition Sketch for Uniform Flow Conditions that allow uniform flow to develop rarely satisfied in practice. However, concept of great significance in understanding and solving most problems in open-channel hydraulics. Uniform flow occurs in lomg, straight, prismatic channel where a terminal velocity can be achieved. => Balance between head loss due to turbulent flow and reduction in potential energy (Balance between gravity and boundary shear forces) 2

3 Momentum Equation for Uniform Flow I Gravity force (causing motion): F = Wsin θ=γalsin θ m Boundary shear force (resisting motion): F R =τ o LP Shear stress proportional to bottom velocity squared: τ = ku o 2 Momentum Equation for Uniform Flow II Steady state conditions: gravity force = shear forces F m = F R γalsin θ= 2 ku LP γ u = k A R = P 1/2 RS 3

4 The Chezy Equation The Chezy equation is given by: u = C RS γ C = k 1/2 C has the dimensions L/T 2 The Manning Equation The Manning equation is given by: 1 n 2/3 u = R S n has the dimensions T/L -1/3 Compare with the Chezy equation: C = 1/6 R n 4

5 General Equation for Uniform Flow Most semi-empirical equation for the average velocity of a uniform flow may be written: u = x y CR S Manning equation most commonly employed equation in open channel flow (x=2/3, y=1/2). Will be used for calculations in the present course. Flow Resistance Coefficients I Difficult to estimate an appropriate value on the resistance coefficient in the Manning or Chezy equations. Should depend on: Reynolds number boundary roughness shape of channel cross section Compare with the Darcy-Weisbach formula for pipe friction: h L = f 2 L u 4R 2g 5

6 Flow Resistance Coefficients II Slope of the energy line: 2 hl f u S = = L 4R 2g Compare with Manning and Chezy equation: n= R 1/6 f 8g C = 8g f Types of Turbulent Flow Two main types of turbulent flow: hydraulically smooth turbulent flow Roughness elements covered by viscous sublayer (resistance depends on Reynolds number Re) hydraulically rough flow Roughness elements penetrates through the viscous sublayer (resistance coefficient depends on roughness height k s ) Transitional region in between these flows (dependence on Re and k s ) 6

7 Example of Roughness Heights (k s ) Definition of Reynolds Number Definitions of Reynolds number: u4r Re = ν Re uk * s * = ν u τ ρ o * = = grs 7

8 Criteria for Turbulent Flow Types 0 Re 4 smooth * 4 Re 100 transition * 100 Re rough * Pipe Flow Friction Factors Hydraulically smooth flow: f = Re < 100, Re 1 f Re f = 2.0log Re > 100, Hydraulically rough flow: 1 12R = 2.0log f ks 8

9 Colebrook s formula applicable for the transition region: 1 k 2.5 = 2.0log s + f 12 R Re f Plots of f versus k s /4R and Re (analogous to a Moody diagram). Friction Factor Relative Roughness Re number Selecting a Manning s roughness Difficult to apply f from pipe flow. Manning s n is often determined based on emprical knowledge, including the main factors governing the flow resistance: surface roughness vegetation channel irregularity obstruction channel alignment sedimentation and scouring stage and discharge 9

10 Soil Conservation Service (SCS) Method for n Determine a basic n for a uniform, straight, and regular channel, then modify this value by adding correction factors. Each factor is considered and evaluated independently. Channel Characteristics Basic n In earth Cut in rock In fine gravel In coarse gravel Procedure: 1. Select basic n 2. Modify for vegetation 3. Modify for channel irregularity 4. Modify for obstruction 5. Modify for channel alignment 6. Estimate n from step 1 to 5 A total n is obtained as the sum of the different contributions. 10

11 Influence of Vegetation Influence of Cross-Section Size and Shape, and Irregulariy 11

12 Influence of Obstruction and Channel Alignment Example of Manning s n from Chow (1959) (illustrative pictures in the following) 12

13 Manning s Roughness n Manning s Roughness n

14 Manning s Roughness n Manning s Roughness n

### Review of pipe flow: Friction & Minor Losses

ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

### Open Channel Flow - General. Open Channel Flow

Open Channel Flow - General Hydromechanics VVR090 Open Channel Flow Open channel: a conduit for flow which has a free surface Free surface: interface between two fluids of different density Characteristics

### Chapter 8: Flow in Pipes

8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

### United States Army Corps of Engineers Engineering Manual EM

United States Army Corps of Engineers Engineering Manual EM 1110-2-1601 1 Chapter 2 Open Channel Hydraulic Theory 2 Open Channel Hydraulic Theory Physical Hydraulic Elements Hydraulic Design Aspects Flow

### Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

### PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

### Determining Coefficient of Discharge to Compare Coefficients of Resistance for Different Coarse Aggregate Beds

2015 IJSRSET Volume 1 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Determining Coefficient of Discharge to Compare Coefficients of Resistance for Different

### Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### Geomorphology 5. Stream Sediment Stream Sediment

Geomorphology 5. Stream Sediment 1 Name 47 Points LEARNING OUTCOMES 5. Stream Sediment By the end of this assignment you should be able to: Describe the relationship between particle size and critical

### When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

### 7. Basics of Turbulent Flow Figure 1.

1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

### Pipe Flow/Friction Factor Calculations using Excel Spreadsheets

Pipe Flow/Friction Factor Calculations using Excel Spreadsheets Harlan H. Bengtson, PE, PhD Emeritus Professor of Civil Engineering Southern Illinois University Edwardsville Table of Contents Introduction

### Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur

Module The Science of Surface and Ground Water Lesson Sediment Dynamics in Alluvial Rivers and Channels Instructional Objectives On completion of this lesson, the student shall be able to learn the following:.

### Chapter 7 FLOW THROUGH PIPES

Chapter 7 FLOW THROUGH PIPES 7-1 Friction Losses of Head in Pipes 7-2 Secondary Losses of Head in Pipes 7-3 Flow through Pipe Systems 48 7-1 Friction Losses of Head in Pipes: There are many types of losses

### Sourabh V. Apte. 308 Rogers Hall

Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody

### Pressure and Flow Characteristics

Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to

### vector H. If O is the point about which moments are desired, the angular moment about O is given:

The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

### EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and

### Darcy-Weisbach Roughness Coefficients for Gravel and Cobble Surfaces

University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biological Systems Engineering: Papers and Publications Biological Systems Engineering 2-1992 Darcy-Weisbach Roughness Coefficients

### 1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

### Bernoulli and Pipe Flow

Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems

### Chapter 10. HYDRAULICS OF OVERLAND FLOW

10.1 Chapter 10. HYDRAULICS OF OVERLAND FLOW J.E. Gilley and M.A. Weltz 10.1 Introduction Proper identification of hydraulic parameters is essential for the operation of other WEPP model components. Routing

### 150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

### Chapter 3 NATURAL CONVECTION

Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

### Darcy s Law. Darcy s Law

Darcy s Law Last time Groundwater flow is in response to gradients of mechanical energy Three types Potential Kinetic Kinetic energy is usually not important in groundwater Elastic (compressional) Fluid

### Darcy Weisbach, ELM & Relative Viscosity

Darcy Weisbach, ELM & Relative Viscosity Dr.ir. Sape A. Miedema Head of Studies MSc Offshore & Dredging Engineering & Marine Technology Associate Professor of Dredging Engineering Faculty of 3mE Faculty

### Improved Method for Converting Equivalent Sand-grain Roughness to Hazen-Williams Coefficient

Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 119 OI: 10.11159/htff16.119 Improved Method for Converting

### LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Open channel

### DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,

### PIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +

The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into

### 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

### Lesson 37 Transmission Of Air In Air Conditioning Ducts

Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).

### Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

### Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow

International Journal of Integrated Engineering, Vol. 5 No. 1 (2013) p. 58-63 Influence of Two-line Emergent Floodplain Vegetation on A Straight Compound Channel Flow Mazlin Jumain 1,*, Zulkiflee Ibrahim

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### EROSION FUNCTION APPARATUS

EROSION FUNCTION APPARATUS 51 EROSION FUNCTION APPARATUS Author: Faculty Sponsor: Department: Ryan Larsen Dr. Allen Jones, Dr. Francis Ting Civil and Environmental Engineering ABSTRACT The Erosion Function

### A STUDY ON DEBRIS FLOW OUTFLOW DISCHARGE AT A SERIES OF SABO DAMS

A STUDY ON DEBRIS FLOW OUTFLOW DISCHARGE AT A SERIES OF SABO DAMS Namgyun KIM *, Hajime NAKAGAWA **, Kenji KAWAIKE *** and Hao ZHANG **** Abstract Debris flows are very dangerous phenomena in mountainous

### FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

### Vegetation effects on river hydraulics. Johannes J. (Joe) DeVries David Ford Consulting Engineers, Inc. Sacramento, CA

Vegetation effects on river hydraulics Johannes J. (Joe) DeVries David Ford Consulting Engineers, Inc. Sacramento, CA jjdevries@ford-consulting.com SAC05 D2P31 RM 99.0L VIEW UPSTREAM AT UPSTREAM END DWR

### A simplified experimental method to evaluate equivalent roughness of vegetated river beds

iemss 8: International Congress on Environmental Modelling and Software Integrating Sciences and Information Technology for Environmental Assessment and Decision Making 4 th Biennial Meeting of iemss,

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### Module 15 : Grit Chamber. Lecture 19 : Grit Chamber

Module 15 : Grit Chamber Lecture 19 : Grit Chamber 15. GRIT CHAMBER Grit chamber is the second unit operation used in primary treatment of wastewater and it is intended to remove suspended inorganic particles

### Sizing of Gas Pipelines

Sizing of Gas Pipelines Mavis Nyarko MSc. Gas Engineering and Management, BSc. Civil Engineering Kumasi - Ghana mariiooh@yahoo.com Abstract-In this study, an effective approach for calculating the size

### Understand How Valves & Fittings Affect Head Loss

Understand How Valves & Fittings Affect Head Loss by Ray Hardee (Engineered Software, Inc.) This column discusses valves and fittings and evaluates how these devices affect the operation of piping systems.

### Pipe Flow. Lecture 17

Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

### Site Investigation and Landfill Construction I

Site Investigation and Landfill Construction I Gernot Döberl Vienna University of Technology Institute for Water Quality, Resources and Waste Management Contents Site Investigation Base Liners Base Drainage

### Tutorial 10. Boundary layer theory

Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

### Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

### Relationship between Hazen-William coefficient and Colebrook-White friction factor: Application in water network analysis

European Water 58: 513-520, 2017. 2017 E.W. Publications Relationship between Hazen-William coefficient and Colebrook-White friction factor: Application in water network analysis M. Niazkar 1, N. Talebbeydokhti

### Heat Transfer Convection

Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

### Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

### Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

### Flow and Transport. c(s, t)s ds,

Flow and Transport 1. The Transport Equation We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity ν through a long thin tube G with uniform cross section

### Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

### Evaluating methods for 3D CFD Models in sediment transport computations

American Journal of Civil Engineering 2015; 3(2-2): 33-37 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.17 ISSN: 2330-8729 (Print);

### Review for Exam Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa

57:020 Fluids Mechanics Fall2013 1 Review for Exam3 12. 11. 2013 Hyunse Yoon, Ph.D. Assistant Research Scientist IIHR-Hydroscience & Engineering University of Iowa 57:020 Fluids Mechanics Fall2013 2 Chapter

### Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

+ Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

### The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz

Solid State Phenomena Vol. 113 (2006) pp 603-608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics

### Hydraulic resistance to overland flow on surfaces with partially submerged vegetation

WATER RESOURCES RESEARCH, VOL. 48, W10540, doi:10.1029/2012wr012047, 2012 Hydraulic resistance to overland flow on surfaces with partially submerged vegetation Jongho Kim, 1 Valeriy Y. Ivanov, 1 and Nikolaos

### Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation

Introduction to BASEMENT Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation Numerical Hydraulics Autumn semester 2016 Prof. Dr. Markus Holzner Author: Pascal

### Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014

Flow Science Report 03-14 Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014 1. Introduction The three-dimensional sediment scour

### FRICTION LOSS ALONG A PIPE

FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates

### Stable Channel Analysis and Design

PDHonline Course H145 (4 PDH) Stable Channel Analysis and Design Instructor: Joseph V. Bellini, PE, PH, DWRE, CFM 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

### MAXIMUM AND AVERAGE VELOCITIES IN PIPE FLOWS - AN EXPERIMENTAL STUDY

MAXIMUM AND AVERAGE VELOCITIES IN PIPE FLOWS - AN EXPERIMENTAL STUDY Rudnei José Wittmann Alexis George de Borges Pan Alex Guimarães Azevedo, and Maurício Pazini Brandão Instituto de Aeronáutica e Espaço

### Use of a smoothed model for pipe friction loss

Use of a smoothed model for pipe friction loss Bradley J. Eck, M.ASCE Please cite this as: Eck, B. (2016). Use of a Smoothed Model for Pipe Friction Loss. J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001239,

### ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

### Analysis of Cost-Effective Rehabilitation: Principles and Tools for Reducing Uncertainty in Design

Analysis of Cost-Effective Rehabilitation: Principles and Tools for Reducing Uncertainty in Design Natasha Bankhead and Andrew Simon Cardno ENTRIX, Oxford, MS natasha.bankhead@cardno.com Often the Questions

### Lecture 30 Review of Fluid Flow and Heat Transfer

Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

### Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flows Lecture - 6 Design of Channels for Uniform Flow (Refer Slide

### Rock Sizing for Drainage Channels

Rock Sizing for Drainage Channels STORMWATER MANAGEMENT PRACTICES Photo 1 Rock-lined drainage channel Photo 2 Rock-lined catch drain (during construction phase) 1. Introduction Rock size is primarily dependent

### EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP

Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 255 EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP O. S. Rageh Irrigation & Hydraulics Dept., Faculty of

### Reference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical

1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,

### MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass),

Chapter 6 MOMENTUM PRINCIPLE Review: Last time, we derived the Reynolds Transport Theorem: where B is any extensive property (proportional to mass), and b is the corresponding intensive property (B / m

### Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

### Calculation of Stream Discharge Required to Move Bed Material

Calculation of Stream Discharge Required to Move Bed Material Objective: Students will map two sections of a stream and calculate the depth, velocity, and discharge of flows required to move the stream

### FORMULA SHEET. General formulas:

FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

### Advanced Hydraulics Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 3 Varied Flows Lecture - 7 Gradually Varied Flow Computations Part 1 (Refer Slide

### Hydraulic Modelling of wetland flow Data collection and problem solving

Hydraulic Modelling of wetland flow Data collection and problem solving Prof. dr. ir. ir. Ronny Verhoeven Hydraulics Laboratory Ghent University Belgium WETHYDRO WORKSHOP 13 14 June 2003 Hydraulic Modelling

### Two-dimensional analytical solution for compound channel flows with vegetated floodplains

Appl. Math. Mech. -Engl. Ed. 3(9), 2 3 (29) DOI:.7/s483-9-96-z c Shanghai University and Springer-Verlag 29 Applied Mathematics and Mechanics (English Edition) Two-dimensional analytical solution or compound

### Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

### A Calculator for Sediment Transport in Microchannels Based on the Rouse Number. L. Pekker Fuji Film Dimatix Inc., Lebanon NH USA.

A Calculator for Sediment Transport in Microchannels Based on the Rouse Number L. Pekker Fuji Film Dimatix Inc., Lebanon NH 03766 USA Abstract The Rouse number is commonly used to estimate the mode of

### A combined application of the integral wall model and the rough wall rescaling-recycling method

AIAA 25-299 A combined application of the integral wall model and the rough wall rescaling-recycling method X.I.A. Yang J. Sadique R. Mittal C. Meneveau Johns Hopkins University, Baltimore, MD, 228, USA

### Post-trenching with a Trailing Suction Hopper Dredger

Post-trenching with a Trailing Suction Hopper Dredger Master thesis Hydraulic Engineering Kevin Van de Leur - 1170279 This thesis may not be released before 13-12-2012 Post-trenching with a Trailing Suction

### Review for Exam Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa

Review for Exam3 12. 9. 2015 Hyunse Yoon, Ph.D. Adjunct Assistant Professor Department of Mechanical Engineering, University of Iowa Assistant Research Scientist IIHR-Hydroscience & Engineering, University

### Sediment Transport in Open Channels

35 Sediment Transport in Open Channels D. A. Lyn Purdue University 35.1 Introduction 35.2 The Characteristics of Sediment Density, Size, and Shape Size Distribution Fall (or Settling) Velocity Angle of

### PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

### Ppt Stg Qcfs sq mi

Maria @ PR 5.81 sq mi Ppt Stg Qcfs 4.4 sq mi Fetter, 21 Freeze & Cherry, 1978 Criss 23 5 4 Missouri Peak Flows slope.57:1 Log Q cfs 3 2 1 Mean Flows slope 1:1-1 -1 1 2 3 4 Log A mi 2 updated after Criss

### LOGO Self-Cleansing of Storm Drain through Incipient Motion Design Concept and Flushing Gate

LOGO Self-Cleansing of Storm Drain through Incipient Motion Design Concept and Flushing Gate River Engineering & Urban Drainage Research Centre (REDAC) Sedimentation Problem Sediment deposits in drainage

### CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

### A-JACKS CONCRETE ARMOR UNITS Channel Lining and Pier Scour Design Manual

A-JACKS CONCRETE ARMOR UNITS Channel Lining and Pier Scour Design Manual Prepared for Armortec, Inc. Bowling Green, Kentucky P.O. Box 270460 Fort Collins, Colorado 80527 (970) 223-5556, FAX (970) 223-5578

### Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

### 15. GRIT CHAMBER 15.1 Horizontal Velocity in Flow Though Grit Chamber

15. GRIT CHAMBER Grit chamber is the second unit operation used in primary treatment of wastewater and it is intended to remove suspended inorganic particles such as sandy and gritty matter from the wastewater.

### External Flows. Dye streak. turbulent. laminar transition

Eternal Flos An internal flo is surrounded by solid boundaries that can restrict the development of its boundary layer, for eample, a pipe flo. An eternal flo, on the other hand, are flos over bodies immersed

### Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting

Mass Wasting Movement of earth materials downslope, driven by Gravitational Forces. Landslides - general term for rock or soil movement. In U.S., on average, mass wasting causes 1 to 2 billion dollars

### Environmental Value. Low Moderate High

Boulder Clusters by Craig Fischenich and Rebecca Seal February Complexity Environmental Value Cost Low Moderate High Low Moderate High Low Moderate High OVERVIEW Boulder clusters are groups of large rocks

### Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River

Development and application of demonstration MIKE 21C morphological model for a bend in Mekong River September 2015 0 Table of Contents 1. Introduction... 2 2. Data collection... 3 2.1 Additional data...

### Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants

J. Fluid Mech. (27), vol. 577, pp. 457 466. c 27 Cambridge University Press doi:1.117/s221127583 Printed in the United Kingdom 457 Interpretation of the mechanism associated with turbulent drag reduction