Chapter 1: Concepts of Motion

Size: px
Start display at page:

Download "Chapter 1: Concepts of Motion"

Transcription

1 1.1 Motion diagrams Multiple-exposure photographs with images taken at even time intervals Spacing of images indicative of speed and acceleration speeding up constant speed slowing down SMU PHYS1100.1, Fall 2008, Prof. Clarke 1

2 Assuming equal time intervals between frames, which car is going faster? 1.2 The particle model treat object as though all mass concentrated at a single point Simplifies motion diagram and problem; no longer distracted by unimportant details. SMU PHYS1100.1, Fall 2008, Prof. Clarke 2

3 Which motion diagram best represents a pebble falling through water? a golf ball dropped from a bridge? a man falling on a bungee chord? SMU PHYS1100.1, Fall 2008, Prof. Clarke 3

4 Which motion diagram best represents a pebble falling through water? a golf ball dropped from a bridge? a man falling on a bungee chord? SMU PHYS1100.1, Fall 2008, Prof. Clarke 4

5 1.3 Position and time - position can be represented by a coordinate grid - time can be labeled directly. An arrow drawn from the origin to the object is called a position vector - shown is a vector in its polar representation (length and angle) - Cartesian representation is (4,3) m SMU PHYS1100.1, Fall 2008, Prof. Clarke 5

6 Scalars and vectors: A scalar measures how much (magnitude, no direction)» examples: mass, distance, speed, cost A vector measures magnitude (how much) and direction (which way)» examples: displacement, velocity, acceleration, force The magnitude of a vector is its size or length, and is never negative. It is always positive or zero. Notation: v (with the arrow over it) indicates the full vector v (with no arrow) is the vector magnitude. SMU PHYS1100.1, Fall 2008, Prof. Clarke 6

7 A scalar is a pure number, with or without units: e.g., 3 kg, 14.2 m, 17 A vector is an ordered pair in 2-D, ordered triple in 3-D e.g., v = (3, 4) m (Cartesian); v = (5m, 53 o ) (polar) Direction must be given relative to a coordinate system. e.g., NW, 30 o clockwise from the +y-axis, etc. default is counterclockwise from the +x-axis Vectors may be drawn as an arrow with length proportional to the magnitude, and direction to indicate vector direction. SMU PHYS1100.1, Fall 2008, Prof. Clarke 7 y x

8 Scalars are added only if they have the same units e.g., 3m + 2m = 5m is OK; 2.1kg + 4 is nonsense vector addition vector subtraction SMU PHYS1100.1, Fall 2008, Prof. Clarke 8

9 Which figure shows A 1 + A 2 + A 3? A 1 and A 2 are half the length of A 3 SMU PHYS1100.1, Fall 2008, Prof. Clarke 9

10 Which figure shows A 1 + A 2 + A 3? A 1 and A 2 are half the length of A 3 SMU PHYS1100.1, Fall 2008, Prof. Clarke 10

11 Which figure shows 2A B? SMU PHYS1100.1, Fall 2008, Prof. Clarke 11

12 Which figure shows 2A B? B 2A B 2A SMU PHYS1100.1, Fall 2008, Prof. Clarke 12

13 What are the x- and y-components C x and C y of vector C? a) C x = 3 cm, C y = 1 cm b) C x = 4 cm, C y = 2 cm c) C x = 2 cm, C y = 1 cm d) C x = 3 cm, C y = 1 cm e) C x = 1 cm, C y = 1 cm SMU PHYS1100.1, Fall 2008, Prof. Clarke 13

14 What are the x- and y-components C x and C y of vector C? a) C x = 3 cm, C y = 1 cm b) C x = 4 cm, C y = 2 cm c) C x = 2 cm, C y = 1 cm d) C x = 3 cm, C y = 1 cm e) C x = 1 cm, C y = 1 cm The y-component points up, defined as positive direction. The y-side of the triangle is 2 cm long. The x-component points left, defined as the negative direction. The x-side of the triangle is 4 cm long. ended here, 4/9/08 SMU PHYS1100.1, Fall 2008, Prof. Clarke 14

15 Notes: Chapter 1: Concepts of Motion 1. Course web site: 2. This course was formerly known as PHYS1210, PHY210, PHY205, and PHY PHYS1100 is a calculus-based first-year course in physics, suitable for all physical sciences: physics, astrophysics, chemistry, and engineering. The algebra-based course, PHYS1000, meets at the same time and is suitable for the life sciences. Both count as a science elective. 4. MasteringPhysics Assignment 1 is available until 11:59 pm, Thursday, September 18, SMU PHYS1100.1, Fall 2008, Prof. Clarke 15

16 Displacement, r, is the difference of position vectors. r = r 1 r 0, where r 1 and r 0 are position vectors relative to origin. Even though choice of origin affects position vectors, it does not affect r. SMU PHYS1100.1, Fall 2008, Prof. Clarke 16

17 net displacement = r n = r 1 + r 2 + r 3 total distance = d = r 1 + r 2 + r r 1 = (2, 3) cm r 2 = (2,-2) cm r 3 = (1, 0) cm r n = (5, 1) cm magnitudes: 3 2 r 1 r 2 r 3 r 1 = = 3.61 cm r 2 = 2 2 +(-2) 2 = 2.83 cm r 3 = = 1.00 cm 1 r n r n = = 5.10 cm d = 7.43 cm = r n Distance is not the magnitude of displacement! SMU PHYS1100.1, Fall 2008, Prof. Clarke 17

18 1.4 average speed and average velocity average speed: a scalar defined as the total distance traveled divided by the time taken to travel that distance: s avg = d/ t. average velocity: a vector defined as the net displacement divided by the time taken to undergo that displacement: v avg = r/ t. Since distance is not the magnitude of the net displacement, average speed is not the magnitude of the average velocity. Let r = r 2 r 1, where r 1 is the initial position and r 2 is the position at a time t later. Then v avg = (r 2 r 1 )/ t, and r 2 = r 1 + v avg t SMU PHYS1100.1, Fall 2008, Prof. Clarke 18

19 A particle moves from position 1 to position 2 during the interval t. Which vector shows the particle s average velocity? SMU PHYS1100.1, Fall 2008, Prof. Clarke 19

20 A particle moves from position 1 to position 2 during the interval t. Which vector shows the particle s average velocity? SMU PHYS1100.1, Fall 2008, Prof. Clarke 20

21 On a motion diagram, since the time interval between dots is constant, arrows between dots can equally represent average velocity vectors as they did displacement vectors. Closer dots means slower speeds, further apart dots means faster speeds. SMU PHYS1100.1, Fall 2008, Prof. Clarke 21

22 1.5 Acceleration A motion diagram can indicate changes in the velocity magnitude (top right), direction (bottom right) or both (below). In all cases, the particle is accelerating. As a ball arches through the air, both the magnitude and direction of the velocity change SMU PHYS1100.1, Fall 2008, Prof. Clarke 22

23 average acceleration: a vector defined as the change in velocity of a particle divided by the time it takes for that change to occur: a avg = v/ t Let v = v 2 v 1, where v 1 is the initial velocity and v 2 is the velocity at a time t later. Then a avg = (v 2 v 1 )/ t, and v 2 = v 1 + a avg t On a motion diagram, the (average) acceleration is the difference between two adjacent (average) velocity vectors. It takes three points on a motion diagram to determine one acceleration. SMU PHYS1100.1, Fall 2008, Prof. Clarke 23

24 A particle undergoes acceleration a while moving from point 1 to point 2. Which of the choices shows the velocity vector v 2 as the object moves away from point 2? SMU PHYS1100.1, Fall 2008, Prof. Clarke 24

25 A particle undergoes acceleration a while moving from point 1 to point 2. Which of the choices shows the velocity vector v 2 as the object moves away from point 2? SMU PHYS1100.1, Fall 2008, Prof. Clarke 25

26 speeding up: when the component of a that lies along v points in the same direction as v. slowing down: when the component of a that lies along v points in the opposite direction as v. v v a a Both are accelerating. Physicists don t use the word decelerating. 1.7 Examples of complete motion diagrams A complete motion diagram has: 1. Enough equal-time-spaced dots to illustrate motion 2. The average velocity vectors 3. The average acceleration vectors. SMU PHYS1100.1, Fall 2008, Prof. Clarke 26

27 1. A shot put thrown into the air Turning point INITIAL point in the description of this motion: Object has just left thrower s hand, and has non-zero velocity at the initial point. FINAL point in the description of this motion: Object is just about to hit the ground, but hasn t hit yet (still has non-zero velocity). SMU PHYS1100.1, Fall 2008, Prof. Clarke 27

28 2. A ride on the ferris wheel Length of velocity vectors are all the same ( constant speed ), BUT acceleration vectors are definitely not zero! Find them by subtracting adjacent velocity vectors: all acceleration vectors point to centre of circle! SMU PHYS1100.1, Fall 2008, Prof. Clarke 28

29 1.7 Problem representations A physics problem is represented in a variety of ways: 1. problems are written in a verbal representation; 2. the motion diagram is a physical representation; 3. a drawing is a pictorial representation; 4. there are also mathematical and graphical representations. Each representation has a purpose, and the trick to solving physics problems is to be able to move freely among them. SMU PHYS1100.1, Fall 2008, Prof. Clarke 29

30 Example: throwing a ball into the air. Verbal representation: Consider throwing a ball from your hand directly up into the air. a) What is the velocity of the ball at the turning point? Is the acceleration zero there? b) If the ground is lower than your hand, will the speed of the ball be greater or less than its initial speed just before it hits the ground? Physical representation: on the board Mathematical representation: another day SMU PHYS1100.1, Fall 2008, Prof. Clarke 30

31 1.8 Problem solving strategy 1. model: simplify the situation (e.g., the ball is a particle) 2. visualise: create a pictorial, physical, and/or graphical representation of the problem as needed and appropriate 3. solve: use a mathematical representation (e.g., equations) and solve 4. assess: does your final answer make sense (e.g., ballpark estimates, units, etc.) SMU PHYS1100.1, Fall 2008, Prof. Clarke 31

32 1.9 Significant figures and units Uncertainties are often conveyed simply by the number of significant figures kept in a number. In this class, we will use 3-4 significant figures.» length = 5.12 m OK (means ± about 0.01 m)» length = m not OK (means ± about m)» keep 5 or 6 significant figures in intermediate steps to avoid excessive round-off error.» note that 1.01 has 1/10 the accuracy of 9.94 (think about it!). So, if the first digit is between 1-3, keep 4 significant figures, if the first digit is between 4-9 keep just 3. SMU PHYS1100.1, Fall 2008, Prof. Clarke 32

33 STANDARD UNITS in physics (and in all sciences) are: SI (systeme internationale; metric; mks)» length: m (metres)» mass: kg (kilograms)» time: s (seconds) Need to know the basic metric prefixes: e.g.,» centi (as in cm ) = 10-2» kilo (as in kg ) = 10 3» see TABLES 1.1, 1.2, 1.3 Measurements (and therefore ALL physical quantities) NEED to have the UNITS specified!!!!» length = 5.12 not OK: (inches, feet, metres, miles?) SMU PHYS1100.1, Fall 2008, Prof. Clarke 33

Physics 20. Introduction & Review. Real tough physics equations. Real smart physics guy

Physics 20. Introduction & Review. Real tough physics equations. Real smart physics guy Physics 20 Introduction & Review Real tough physics equations Real smart physics guy Is Physics Hard? People find physics difficult because it requires a detail-oriented, organized thought process. Success,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Introduction Syllabus and teaching strategy Physics Introduction Mathematical review trigonometry vectors Motion in one dimension http://www.physics.wayne.edu/~apetrov/phy2130/

More information

Physics 30S Unit 1 Kinematics

Physics 30S Unit 1 Kinematics Physics 30S Unit 1 Kinematics Mrs. Kornelsen Teulon Collegiate Institute 1 P a g e Grade 11 Physics Math Basics Answer the following questions. Round all final answers to 2 decimal places. Algebra 1. Rearrange

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

Introduction to Physics Physics 114 Eyres

Introduction to Physics Physics 114 Eyres What is Physics? Introduction to Physics Collecting and analyzing experimental data Making explanations and experimentally testing them Creating different representations of physical processes Finding

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force.

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. From last time Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. I.e. either at rest, or straight line motion at constant speed This

More information

Not every object is going to travel at the same VELOCITY all the time.

Not every object is going to travel at the same VELOCITY all the time. ACCELERATION Not every object is going to travel at the same VELOCITY all the time. ACCELERATION is the rate of change in velocity. Mathematically A = velocity time Remember means change in There are 3

More information

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1

AP PHYSICS B SUMMER ASSIGNMENT: Calculators allowed! 1 P PHYSICS SUMME SSIGNMENT: Calculators allowed! 1 The Metric System Everything in physics is measured in the metric system. The only time that you will see English units is when you convert them to metric

More information

Physics Mechanics. Lecture 1 Physics and the Laws of Nature

Physics Mechanics. Lecture 1 Physics and the Laws of Nature Physics 170 - Mechanics Lecture 1 Physics and the Laws of Nature 1 Physics: the study of the fundamental laws of nature These laws can be expressed as mathematical equations. (e.g. F = ma, E=mc 2 ) Most

More information

Vectors v Scalars. Physics 1 st Six Weeks

Vectors v Scalars. Physics 1 st Six Weeks Vectors v Scalars Physics 1 st Six Weeks An Appetizer to Start... Vectors vs. Scalars In Physics all quantities are in two categories: scalars & vectors. Scalar quantities are described by magnitude (i.e.

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Chapter Assignment # s 65, 67, & RT-2 Chapter Goal: To introduce the fundamental concepts of motion and to review related basic mathematical principles.

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

PHYSICS 1 REVIEW PACKET

PHYSICS 1 REVIEW PACKET PHYSICS 1 REVIEW PACKET Powers of Ten Scientific Notation and Prefixes Exponents on the Calculator Conversions A Little Trig Accuracy and Precision of Measurement Significant Figures Motion in One Dimension

More information

AP Physics Math Review Packet

AP Physics Math Review Packet AP Physics Math Review Packet The science of physics was developed to help explain the physics environment around us. Many of the subjects covered in this class will help you understand the physical world

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

General Physics (PHY 170) Physics and the Laws of Nature

General Physics (PHY 170) Physics and the Laws of Nature General Physics (PHY 170) Chap 1 Physics and the Laws of Nature Physics: the study of the fundamental laws of nature. These laws can be expressed as mathematical equations. (e.g. F = m a, E=m c 2 ) Most

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

The Essentials to the Mathematical world

The Essentials to the Mathematical world The Essentials to the Mathematical world There is nothing that is unachievable, any person can start the journey to you are starting, never give into hopelessness and always push on because nothing is

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

AP Physics 1 Summer Assignment 2016

AP Physics 1 Summer Assignment 2016 AP Physics 1 Summer Assignment 2016 You need to do this assignment on your own paper AND YOU MUST SHOW ALL OF YOUR WORK TO RECEIVE CREDIT. You can put the answers on this assignment sheet or you can put

More information

One dimensional Motion test 8/24

One dimensional Motion test 8/24 8/16/017 One dimensional Motion test 8/4 The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

Chapter 2. Motion in One Dimension. Professor Wa el Salah

Chapter 2. Motion in One Dimension. Professor Wa el Salah Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now, will consider motion in one dimension Along a straight

More information

2053 College Physics. Chapter 1 Introduction

2053 College Physics. Chapter 1 Introduction 2053 College Physics Chapter 1 Introduction 1 Fundamental Quantities and Their Dimension Length [L] Mass [M] Time [T] other physical quantities can be constructed from these three 2 Systems of Measurement

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

PHY131H1F Introduction to Physics I Class 2

PHY131H1F Introduction to Physics I Class 2 PHY131H1F Introduction to Physics I Class 2 Today: Chapter 1. Motion Diagrams Particle Model Vector Addition, Subtraction Position, velocity, and acceleration Position vs. time graphs Garden-Variety Clicker

More information

PHYSICS 149: Lecture 2

PHYSICS 149: Lecture 2 PHYSICS 149: Lecture 2 Chapter 1 1.1 Why study physics? 1.2 Talking physics 1.3 The Use of Mathematics 1.4 Scientific Notation and Significant Figures 15Units 1.5 1.6 Dimensional Analysis 1.7 Problem-Solving

More information

PHYS2205. General Physics Classical Mechanics (including waves) Prof. Piilonen.

PHYS2205. General Physics Classical Mechanics (including waves) Prof. Piilonen. PHYS2205 General Physics Classical Mechanics (including waves) http://www.masteringphysics.com 1. Register with your personal access code Prof. Piilonen http://www.masteringphysics.com http://learn.vt.edu

More information

Unit 1: Introduction Measurement and Scientific Notation. Measurements in physics are carried out in SI units, aka the.

Unit 1: Introduction Measurement and Scientific Notation. Measurements in physics are carried out in SI units, aka the. Measurement and Scientific Notation Measurements in physics are carried out in SI units, aka the. Measurement Unit Symbol Length Mass Time Speed Acceleration Force Energy Prefixes Prefix Symbol Factor

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

PHYS.1410 Physics I Exam 1 Spring 2016 (version A)

PHYS.1410 Physics I Exam 1 Spring 2016 (version A) PHYS.1410 Physics I Exam 1 Spring 016 (version A) Recitation Section Number Name (PRINT) / LAST FIRST Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name

More information

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below.

UCM-Circular Motion. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram The diagram shows the top view of a 65-kilogram student at point A on an amusement park ride. The ride spins the student in a horizontal

More information

How do physicists study problems?

How do physicists study problems? What is Physics? The branch of science that studies the physical world (from atoms to the universe); The study of the nature of matter and energy and how they are related; The ability to understand or

More information

Oakland Technical High School. AP PHYSICS SUMMER ASSIGNMENT Due Monday, August 22 nd

Oakland Technical High School. AP PHYSICS SUMMER ASSIGNMENT Due Monday, August 22 nd Oakland Technical High School P PHYSICS SUMME SSIGNMENT Due Monday, ugust nd I. This packet is a review to brush up on valuable skills, and perhaps a means to assess whether you are correctly placed in

More information

Physics 11 (Fall 2012) Chapter 1: Representing Motion

Physics 11 (Fall 2012) Chapter 1: Representing Motion Physics 11 (Fall 2012) Chapter 1: Representing Motion Anyone who has never made a mistake has never tried anything new. Albert Einstein Experience is the name that everyone gives to his mistakes. Oscar

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

Physical Science Chapter 11. Motion

Physical Science Chapter 11. Motion Physical Science Chapter 11 Motion Motion Definition An object is in motion when its distance from another object is changing. Relative Motion Relative motion is movement in relation to a REFERENCE POINT.

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion Physics for Scientists and Engineers Chapter 1 Concepts of Motion Spring, 2008 Ho Jung Paik Physics Fundamental science concerned with the basic principles of the Universe foundation of other physical

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Chapter 3. Motion in One Dimension

Chapter 3. Motion in One Dimension Chapter 3 Motion in One Dimension Outline 3.1 Position, Velocity and Speed 3.2 Instantaneous Velocity and Speed 3.3 Acceleration 3.4 Motion Diagrams 3.5 One-Dimensional Motion with Constant Acceleration

More information

Sir Isaac Newton ( )

Sir Isaac Newton ( ) Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion His ideas are still correct and very much in use today! What is Motion? Motion is a

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ]

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ] Chapter 8 : Motion KEY CONCEPTS [ *rating as per the significance of concept ] 1 Motion **** 2 Graphical Representation of Motion *** & Graphs 3 Equation of motion **** 4 Uniform Circular Motion ** 1 Motion

More information

ADVANCED PLACEMENT PHYSICS 1

ADVANCED PLACEMENT PHYSICS 1 ADVANCED PLACEMENT PHYSICS 1 MS. LAWLESS ALAWLESS@SOMERVILLESCHOOLS.ORG Purpose of Assignments: This assignment is broken into 8 Skills. Skills 1-6, and 8 are review of science and math literacy. Skill

More information

PHYSICS - CLUTCH CH 01: UNITS & VECTORS.

PHYSICS - CLUTCH CH 01: UNITS & VECTORS. !! www.clutchprep.com Physics is the study of natural phenomena, including LOTS of measurements and equations. Physics = math + rules. UNITS IN PHYSICS We measure in nature. Measurements must have. - For

More information

Review of Fundamental Mathematics, Measurement & Graphing Techniques

Review of Fundamental Mathematics, Measurement & Graphing Techniques Honors Physics Review of Fundamental Mathematics, Measurement & Graphing Techniques Introduction: One of the coolest concepts concerning science is that all of it is tied together by a few fundamental

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Develop problem solving skil s

Develop problem solving skil s General Physics 1 Class Goals Develop problem solving skills Learn the basic concepts of mechanics and learn how to apply these concepts to solve problems. Build on your understanding of how the world

More information

Experiment 3 Forces are Vectors

Experiment 3 Forces are Vectors Name Partner(s): Experiment 3 Forces are Vectors Objectives Preparation Pre-Lab Understand that some quantities in physics are vectors, others are scalars. Be able to perform vector addition graphically

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

Lesson 11: Motion of a Falling Object

Lesson 11: Motion of a Falling Object Lesson 11: Motion of a Falling Object 11.1 Observe and find a pattern using your choice of one of the following: 1. The video at this web site: http://paer.rutgers.edu/pt3/experiment.php?topicid=2&exptid=38

More information

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

OpenStax-CNX module: m Vectors. OpenStax College. Abstract OpenStax-CNX module: m49412 1 Vectors OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section you will: Abstract View vectors

More information

Physics I Exam 1 Fall 2015 (version A)

Physics I Exam 1 Fall 2015 (version A) 95.141 Physics I Exam 1 Fall 2015 (version A) Recitation Section Number Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Fill out the above section of this page and print your last name on

More information

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course.

Make sure that you are able to operate with vectors rapidly and accurately. Practice now will pay off in the rest of the course. Ch3 Page 1 Chapter 3: Vectors and Motion in Two Dimensions Tuesday, September 17, 2013 10:00 PM Vectors are useful for describing physical quantities that have both magnitude and direction, such as position,

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: Tutorials Thursday and Friday in G2B60, G2B75, & G2B77 Students on wait list should attend lectures and tutorials. CAPA assignments are in bins in G2B hallway. No

More information

Be prepared to take a test covering the whole assignment in September. MATH REVIEW

Be prepared to take a test covering the whole assignment in September. MATH REVIEW P- Physics Name: Summer 013 ssignment Date Period I. The attached pages contain a brief review, hints, and example problems. It is hoped that combined with your previous math knowledge this assignment

More information

Displacement and Velocity

Displacement and Velocity 2.2 Displacement and Velocity In the last section, you saw how diagrams allow you to describe motion qualitatively. It is not at all difficult to determine whether an object or person is at rest, speeding

More information

4.1 - Acceleration. What is acceleration?

4.1 - Acceleration. What is acceleration? 4.1 - Acceleration How do we describe speeding up or slowing down? What is the difference between slowing down gradually and hitting a brick wall? Both these questions have answers that involve acceleration.

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

161 Sp18 T1 grades (out of 40, max 100)

161 Sp18 T1 grades (out of 40, max 100) Grades for test Graded out of 40 (scores over 00% not possible) o Three perfect scores based on this grading scale!!! o Avg = 57 o Stdev = 3 Scores below 40% are in trouble. Scores 40-60% are on the bubble

More information

PART A: MULTIPLE CHOICE QUESTIONS

PART A: MULTIPLE CHOICE QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS QUESTION 1. Which of the following defines a scalar quantity? (a) (b) (c) (d) Magnitude only Magnitude and direction Direction None of the above QUESTION 2. Which of the

More information

Motion Along a Straight Line

Motion Along a Straight Line PHYS 101 Previous Exam Problems CHAPTER Motion Along a Straight Line Position & displacement Average & instantaneous velocity Average & instantaneous acceleration Constant acceleration Free fall Graphical

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Converting Base Units The Step Stair Method is a simple trick to converting these units. Kilo (k) Hecta (h) Deka (D) Larger unit as you go up the steps! Divide

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

SatFeb23_Class_project_A

SatFeb23_Class_project_A Class: Date: SatFeb23_Class_project_A Multiple Choice Identify the choice in the blank beside the number that best completes the statement or answers the question 1 Which of the following is an area of

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class.

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class. Name P Physics Summer ssignment Fall 013-014 Welcome to P Physics. I am very excited that you have signed up to take the P Physics class. You may ask I sure would why a summer packet? There is so much

More information

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ?

VECTORS REVIEW. ii. How large is the angle between lines A and B? b. What is angle C? 45 o. 30 o. c. What is angle θ? d. How large is θ? VECTOS EVIEW Solve the following geometric problems. a. Line touches the circle at a single point. Line etends through the center of the circle. i. What is line in reference to the circle? ii. How large

More information

Methods and Tools of Physics

Methods and Tools of Physics Methods and Tools of Physics Order of Magnitude Estimation: Essential idea: Scientists aim towards designing experiments that can give a true value from their measurements, but due to the limited precision

More information

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date:

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date: Class: Date: Exam 1--PHYS 101--F14--Chapters 1 & 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The following are not standards for time. However, which

More information

These variables have specific names and I will be using these names. You need to do this as well.

These variables have specific names and I will be using these names. You need to do this as well. Greek Letters In Physics, we use variables to denote a variety of unknowns and concepts. Many of these variables are letters of the Greek alphabet. If you are not familiar with these letters, you should

More information

Physics 1A. Lecture 1B

Physics 1A. Lecture 1B Physics 1A Lecture 1B Angles: a Tricky Unit θ Angles are formally defined as a ratio of lengths; e.g. θ = Arclength/Radius [θ] = L/L = 1 This makes the angle unitless! The fundamental unit of angle is

More information

Motion. Slope. Slope. Distance and Displacement

Motion. Slope. Slope. Distance and Displacement Steepness or slope base (run), height (rise) slope = rise/run slope down (\) : - (rise/run) slope up (/) : + (rise/run) sudden change of slope curved hill - the slope is always changing procedure to find

More information

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Physics Review Do: Page 413 417 #1 51 1. Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Use the following information to answer Question 2. The following distance

More information

Vectors. Coordinates & Vectors. Chapter 2 One-Dimensional Kinematics. Chapter 2 One-Dimensional Kinematics

Vectors. Coordinates & Vectors. Chapter 2 One-Dimensional Kinematics. Chapter 2 One-Dimensional Kinematics Chapter 2 One-Dimensional Kinematics Chapter 2 One-Dimensional Kinematics James Walker, Physics, 2 nd Ed. Prentice Hall One dimensional kinematics refers to motion along a straight line. Even though we

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

; Vertex: ( b. 576 feet above the ground?

; Vertex: ( b. 576 feet above the ground? Lesson 8: Applications of Quadratics Quadratic Formula: x = b± b 2 4ac 2a ; Vertex: ( b, f ( b )) 2a 2a Standard: F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 11 Topic Practice Paper: Solving Quadratics (Graphically) Quadratic equations (graphical methods) 1 Grade 6 Objective: Find approximate solutions to quadratic equations using

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

PHYS 172: Modern Mechanics. Summer Lecture 2 Velocity and Momentum Read:

PHYS 172: Modern Mechanics. Summer Lecture 2 Velocity and Momentum Read: PHYS 172: Modern Mechanics Summer 2010 p sys F net t E W Q sys surr surr L sys net t Lecture 2 Velocity and Momentum Read: 1.6-1.9 Math Experience A) Currently taking Calculus B) Currently taking Calculus

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment N a m e : _ AP Physics 1 Summer Assignment Concepts and Connections of Math in Physics: Review This assignment is designed to refresh the student with an understanding of conceptual math problems that

More information

Mechanics. Course Overview

Mechanics. Course Overview Mechanics Course Overview Course Overview Mechanics Kinema3cs 8 lessons Introduc3on to Physics (2 lessons) Administra3ve Procedure Introduc3on to Physics SI Units Metric prefixes Vectors (1 lesson) Vector

More information

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Scientific Notation. Part A: Express each of the following in standard form x x x

Scientific Notation. Part A: Express each of the following in standard form x x x Name: Course: Scientific Notation Part A: Express each of the following in standard form. 1. 5.2 x 10 3 5. 3.6 x 10 1 2. 9.65 x 10 4 6. 6.452 x 10 2 3. 8.5 x 10 2 7. 8.77 x 10 1 4. 2.71 x 10 4 8. 6.4 x

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

State two other scalar quantities in physics that have the same unit as each other [1]

State two other scalar quantities in physics that have the same unit as each other [1] 1 (a) Energy and work done are scalar quantities and have the same unit as each other. State two other scalar quantities in physics that have the same unit as each other....... [1] (b) Two forces A and

More information

Chapter 1. Units, Physical Quantities, and Vectors

Chapter 1. Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1.3 Standards and Units The metric system is also known as the S I system of units. (S I! Syst me International). A. Length The unit of length in the metric

More information

Physics I Exam 1 Fall 2014 (version A)

Physics I Exam 1 Fall 2014 (version A) 95.141 Physics I Exam 1 Fall 014 (version A) Section Number Section instructor Last/First Name (print) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information