PHYS 172: Modern Mechanics. Summer Lecture 2 Velocity and Momentum Read:

Size: px
Start display at page:

Download "PHYS 172: Modern Mechanics. Summer Lecture 2 Velocity and Momentum Read:"

Transcription

1 PHYS 172: Modern Mechanics Summer 2010 p sys F net t E W Q sys surr surr L sys net t Lecture 2 Velocity and Momentum Read:

2 Math Experience A) Currently taking Calculus B) Currently taking Calculus II C) Currently taking Calculus III or above D) No Calculus experience

3 Physics Experience A) Never taken a physics course B) Took an algebra-based physics course in high school C) Took a calculus-based physics course in high school D) Took an algebra-based course in college E) Took a calculus-based course in college

4 Reading Question 1 The system of units primarily used in this text is: A) feet, pounds, seconds B) kilometers, kilograms, seconds C) feet, grams, seconds D) meters, kilograms, seconds E) meters, slugs, seconds

5 Units, why bother?

6 Reading Question 2 The most general definition of momentum is: p mv A) D) p mv p mv B) E) None of the above C) p mv

7 Bonus Point Opportunity See Webassign (Must be completed by Sunday Night) The FCI assessment must be completed promptly for bonus points (both pre and post test).

8 Today: Velocity and Momentum Position Vectors Continued Vector Subtraction Relative Position Vectors Velocity Momentum

9 Identical vectors What two pieces of information do we need to create a vector? Magnitude Direction (length of the arrow) (which way the arrow points) A B A We use the symbol to denote the length (magnitude) of a vector. A

10 Scalar Multiplication When displacements and their displacement vectors have the same direction but are of different length it is very natural to think of one as being a (scalar) multiple of the other. A B 2A 2 times as far, in the same direction as A multiplication by a negative number reverses the direction of the vector. C 1.5A 1.5 times as far, in the opposite direction as A

11 Combining Displacements finish X C B C AB X start A Beginning at start, you may get to finish by Moving a displacement A, followed by moving displacement B OR by following displacement C Thus, we say C AB

12 Linear Combinations of Vectors The operations of vector addition and multiplication by scalars make it possible to express one displacement vector in terms of others. For example, this diagram indicates why we would say that C A2B. C A B Since vectors A and B have different directions they define a plane. Notice that any vector, like C, that lies in that plane can be expressed as the sum of scalar multiple of A and a scalar multiple of B. We say that C is a linear combination of A and B.

13 Linear Combinations: A 2D Example Express the vector C, shown, as a linear combination of vectors A and B, that is, find numbers a and b such that C aa bb. Solution: A C B C A B C 1.5A 0.5B components in A C basis of A, B B

14 Position Vectors Displacement vectors were introduced to describe a movement a displacement of a certain distance in a certain direction. We can use displacement vectors in a clever way: decide upon a fixed point O. Now any location can be represented by a vector that stretches from O to the point: this is called a position vector. P 2 1 r r 2 P 1 O

15 Cartesian Coordinate Systems As you know from school geometry, we can also describe the location of the point of interest by using a Cartesian coordinate system. To construct such a coordinate system we select a point, the origin of coordinates, and three mutually perpendicular axes, usually called the x, y and z axes. y Our usual coordinate system (z axis points out of page). This choice is not necessary. It is merely convenient. O x

16 Superposition & Coordinate Systems C 1A2B C A B components in basis of A, B y P 1 r xiˆ y ˆj r 1 yj ˆ 1 components in basis of î, ĵ x 1 and y 1 are also the Cartesian coordinates of point P 1. O xi 1ˆ x Close relationship between representing locations with Cartesian coordinates and with position vectors

17 CLICKER QUESTION #1 Which of these arrows represents the vector 4, 2, 0? A) B) C) D) E) a b c d e ĵ î 4, 2,0 4iˆ 2 ˆj 0kˆ

18 CLICKER QUESTION #2 A B Which of the following vectors equals? A B A B C D E None of the above

19 B A Vector Subtraction A B AB? B A A What is A B? A B A B A B B In this way we can use our tip-to-tail vector addition to perform vector subtraction.

20 Summary of 3 Vectors We ve Seen So Far 1. Displacement vectors r Represents the movement of an object from one point to another (one object at two different times) 2. Position vectors r Represents the position of an object (is defined as a vector stretching from an origin to the point of interest) 3. Relative position vectors (aka separation vectors) r 12 The vector which points from location 1 toward location 2 (two objects at the same time)

21 Velocity r r r f i Start r i y O x r f Finish

22 CLICKER QUESTION #3 A proton is at location < 0, 3, 2 > m. An electron is at location < 1, 0, 6 > m. What is the relative position vector from the proton to the electron? A) < 1, 3, 8 > m B) < 1, 3, 4 > m C) < 1, 3, 4 > m D) < 1, 3, 8 > m E) < 1, 0, 6 > m r r 1, 0, 6 m 0, 3, 2 m electron proton 10, 0 3, 6 ( 2) m 1, 3, 4 m Remember: 1, 3, 4 m is shorthand for 1 miˆ 3 m ˆj 4mk ˆ

23 Velocity r r r f i r i r f y O x Definition: average velocity v avg r rf ri t t t f i

24 Velocity 1. Speed (the magnitude of velocity, scalar) y 100 m in 10 s O x Average velocity: v avg r 100 ˆi m 10 ˆi m/s t 10 s Average speed: v avg r 100 m 10 m/s t 10 s

25 r i y 9 8m r r f Example v avg r rf ri t t t f i x 7m

26 CLICKER QUESTION #4 A bee flies in a straight line at constant speed. At 15 s after 9 AM, the bee's position is < 2, 4, 0> m. At 15.5 s after 9 AM, the bee's position is < 3, 3.5, 0> m. What is the average velocity of the bee? A) < 6, 7, 0 > m/s B) <.193,.225, 0 > m/s C) m/s D) < 0.500, , 0 > m/s E) < 2.000, , 0 > m/s v avg rf ri 3,3.5,0 m 2,4,0 m 1,.5,0 m m 2, 1,0 t 0.5s 0.5s s m 2 ˆ m 1 ˆ m i j 0 kˆ s s s

27 Object shown at equal time intervals Δt from B to E, from B to D, from B to C, v v v ave ave ave reb 3t r 2t rcb t DB As Δt 0, point C gets closer to B. When Δt 0, v ave v instantaneous

28 Instantaneous Velocity v avg v lim t 0 r t dr dt This is mathematicians being lazy

29 Given the initial position of an object + its average velocity over some time interval, we can calculate where it ends up. From the definition of average velocity we obtain the position update formula: v avg Position Update Formula r t f f r t i i rf ri vavg t f ti x x v t t f i avg, x f i y y v t t f i avg, y f i z z v t t f i avg, z f i x, y, z x, y, z v, v, v t t f f f i i i ave, x ave, y ave, z f i

30 Questions? Would you rather have to deflect a tennis ball moving at 5 meters per second (m/s) or a tennis ball moving at 100 m/s? Would you prefer to try to stop a tennis ball moving at 5 m/s or a bus moving at 5 m/s?

31 Momentum As it turns out, when it comes to interactions a more relevant quantity is momentum (we ll discuss this more next lecture). MOMENTUM for a particle of mass m and velocity v: p mv where gamma is defined as 1 1 v c 2 c m s

32 p Momentum at Small Speeds mv mv v c mv 1 when v c

33 Expressing velocity in terms of momentum we have f i avg f i r r v t t Position Update For Small Speeds at low speeds 1 t) (for small 1 2 t m p r t mc p m p r r i i f

34 Average rate of change of momentum The stronger the interaction, the faster is the change in the momentum Average rate of change of momentum: Instantaneous rate of change of momentum: p pf p t t t f dp dt i lim i t 0 p t Units: kg m 2 s

35 Today: Velocity and Momentum Position Vectors Continued Vector Subtraction Relative Position Vectors Velocity Momentum Next Time: The Momentum Principle Forces and Impulse The Momentum Principle

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors. Introduction. Prof Dr Ahmet ATAÇ Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both n u m e r i c a l a n d d i r e c t i o n a l properties Mathematical operations of vectors in this chapter A d d i t i o

More information

Vectors. Introduction

Vectors. Introduction Chapter 3 Vectors Vectors Vector quantities Physical quantities that have both numerical and directional properties Mathematical operations of vectors in this chapter Addition Subtraction Introduction

More information

Math Review Night: Work and the Dot Product

Math Review Night: Work and the Dot Product Math Review Night: Work and the Dot Product Dot Product A scalar quantity Magnitude: A B = A B cosθ The dot product can be positive, zero, or negative Two types of projections: the dot product is the parallel

More information

Physics 40 Chapter 3: Vectors

Physics 40 Chapter 3: Vectors Physics 40 Chapter 3: Vectors Cartesian Coordinate System Also called rectangular coordinate system x-and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference

More information

Chapter 3 Vectors Prof. Raymond Lee, revised

Chapter 3 Vectors Prof. Raymond Lee, revised Chapter 3 Vectors Prof. Raymond Lee, revised 9-2-2010 1 Coordinate systems Used to describe a point s position in space Coordinate system consists of fixed reference point called origin specific axes with

More information

Kinetic Energy and Work

Kinetic Energy and Work Kinetic Energy and Work 8.01 W06D1 Today s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8 Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside

More information

Chapter 3. Vectors. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors

Chapter 3. Vectors. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors Chapter 3 Vectors 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors 3.4 Components of a Vector and Unit Vectors 1 Vectors Vector quantities Physical quantities that

More information

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for

CHAPTER 4 VECTORS. Before we go any further, we must talk about vectors. They are such a useful tool for CHAPTER 4 VECTORS Before we go any further, we must talk about vectors. They are such a useful tool for the things to come. The concept of a vector is deeply rooted in the understanding of physical mechanics

More information

Chapter 1. Units, Physical Quantities, and Vectors

Chapter 1. Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1.3 Standards and Units The metric system is also known as the S I system of units. (S I! Syst me International). A. Length The unit of length in the metric

More information

Vector Algebra August 2013

Vector Algebra August 2013 Vector Algebra 12.1 12.2 28 August 2013 What is a Vector? A vector (denoted or v) is a mathematical object possessing both: direction and magnitude also called length (denoted ). Vectors are often represented

More information

HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE

HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE HSC PHYSICS ONLINE THE LANGUAGE OF PHYSICS: FRAMES OF REFERENCE In studying the motion of objects you need to use scientific terms carefully as the meaning of words used in Physics often have a different

More information

Module 3: Cartesian Coordinates and Vectors

Module 3: Cartesian Coordinates and Vectors Module 3: Cartesian Coordinates and Vectors Philosophy is written in this grand book, the universe which stands continually open to our gaze. But the book cannot be understood unless one first learns to

More information

Spring Force and Power

Spring Force and Power Lecture 14 Chapter 9 Physics I Spring Force and Power Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will learn how to solve problems using two new concepts:

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics Spring 2017 Douglas Fields

Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics Spring 2017 Douglas Fields Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics 160-02 Spring 2017 Douglas Fields Multiplication of Vectors OK, adding and subtracting vectors seemed fairly straightforward, but how would

More information

Review of Engineering Dynamics

Review of Engineering Dynamics Review of Engineering Dynamics Part 1: Kinematics of Particles and Rigid Bodies by James Doane, PhD, PE Contents 1.0 Course Overview... 4.0 Basic Introductory Concepts... 4.1 Introduction... 4.1.1 Vectors

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

BSP1153 Mechanics & Thermodynamics. Vector

BSP1153 Mechanics & Thermodynamics. Vector BSP1153 Mechanics & Thermodynamics by Dr. Farah Hanani bt Zulkifli Faculty of Industrial Sciences & Technology farahhanani@ump.edu.my Chapter Description Expected Outcomes o To understand the concept of

More information

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force.

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. From last time Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. I.e. either at rest, or straight line motion at constant speed This

More information

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205

Statics. Today Introductions Review Course Outline and Class Schedule Course Expectations Chapter 1 ENGR 1205 ENGR 1205 Statics ENGR 1205 Kaitlin Ford kford@mtroyal.ca B175 Today Introductions Review Course Outline and Class Schedule Course Expectations Start Chapter 1 1 the goal of this course is to develop your ability

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Units, Estimations, Graphs, Trigonometry: Units - Standards of Length, Mass, and Time Dimensional Analysis Uncertainty and significant digits Order of magnitude estimations Coordinate Systems

More information

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry

VECTORS. Vectors OPTIONAL - I Vectors and three dimensional Geometry Vectors OPTIONAL - I 32 VECTORS In day to day life situations, we deal with physical quantities such as distance, speed, temperature, volume etc. These quantities are sufficient to describe change of position,

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

PES 1110 Fall 2013, Spendier Lecture 5/Page 1

PES 1110 Fall 2013, Spendier Lecture 5/Page 1 PES 1110 Fall 2013, Spendier Lecture 5/Page 1 Toda: - Announcements: Quiz moved to net Monda, Sept 9th due to website glitch! - Finish chapter 3: Vectors - Chapter 4: Motion in 2D and 3D (sections 4.1-4.4)

More information

Module 24: Angular Momentum of a Point Particle

Module 24: Angular Momentum of a Point Particle 24.1 Introduction Module 24: Angular Momentum of a Point Particle When we consider a system of objects, we have shown that the external force, acting at the center of mass of the system, is equal to the

More information

Physics 1A. Lecture 1B

Physics 1A. Lecture 1B Physics 1A Lecture 1B Angles: a Tricky Unit θ Angles are formally defined as a ratio of lengths; e.g. θ = Arclength/Radius [θ] = L/L = 1 This makes the angle unitless! The fundamental unit of angle is

More information

Module 12: Work and the Scalar Product

Module 12: Work and the Scalar Product Module 1: Work and the Scalar Product 1.1 Scalar Product (Dot Product) We shall introduce a vector operation, called the dot product or scalar product that takes any two vectors and generates a scalar

More information

PHY 2053 announcements: January 7, 2010

PHY 2053 announcements: January 7, 2010 PHY 2053 announcements: January 7, 2010 Textbook: College Physics I by Serway/Vuille soft cover with white background Optional course packet/solutions (blue book): available at Target copy on Univ. Ave.

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Work and Energy (Work Done by a Constant Force)

Work and Energy (Work Done by a Constant Force) Lecture 11 Chapter 7 Physics I 10.16.2013 Work and Energy (Work Done by a Constant Force) Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Chapter 10 Momentum, System of Particles, and Conservation of Momentum

Chapter 10 Momentum, System of Particles, and Conservation of Momentum Chapter 10 Momentum, System of Particles, and Conservation of Momentum 10.1 Introduction... 1 10. Momentum (Quantity of Motion) and Impulse... 1 10..1 Average Force, Momentum, and Impulse... 10.. Non-Constant

More information

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors.

Ground Rules. PC1221 Fundamentals of Physics I. Coordinate Systems. Cartesian Coordinate System. Lectures 5 and 6 Vectors. PC1221 Fundamentals of Phsics I Lectures 5 and 6 Vectors Dr Ta Seng Chuan 1 Ground ules Switch off our handphone and pager Switch off our laptop computer and keep it No talking while lecture is going on

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

Physics 8 Monday, September 12, 2011

Physics 8 Monday, September 12, 2011 Physics 8 Monday, September 12, 2011 If you didn t pick up second half of textbook (starting with Chapter 8) on Friday, you can pick it up now. The bookstore is expecting more clickers to arrive soon (tomorrow?

More information

Supplemental Instruction

Supplemental Instruction For students enrolled in an introductory physics lab, PHYS 2108 and PHYS 2109 lab classes begin this week (Jan. 14-18). You must attend the first week class or send an email to lab@phys.lsu.edu PRIOR TO

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 04.09.2014 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

PHYS 103 (GENERAL PHYSICS) CHAPTER 3: VECTORS LECTURE NO. 4 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED

PHYS 103 (GENERAL PHYSICS) CHAPTER 3: VECTORS LECTURE NO. 4 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED First Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 3: VECTORS LECTURE NO. 4 THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED Lecture

More information

AP Physics 1 Summer Assignment 2016

AP Physics 1 Summer Assignment 2016 AP Physics 1 Summer Assignment 2016 You need to do this assignment on your own paper AND YOU MUST SHOW ALL OF YOUR WORK TO RECEIVE CREDIT. You can put the answers on this assignment sheet or you can put

More information

Physics 170 Lecture 9. We all have our moments...

Physics 170 Lecture 9. We all have our moments... Phys 170 Lecture 9 1 Physics 170 Lecture 9 Chapter 4 - Force System Resultants We all have our moments... Moment of a Force in 2D M = ±RF sinθ = ±RF = ±Fd = R x F y R y F x Use which ever is easiest, they

More information

Announcements 9 Sep 2014

Announcements 9 Sep 2014 Announcements 9 Sep 2014 1. Prayer 2. Course homepage via: physics.byu.edu Class web pages Physics 105 (Colton J) Colton - Lecture 3 - pg 1 Which of the problems from last night's HW assignment would you

More information

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems

Physics for Scientists and Engineers. Chapter 3 Vectors and Coordinate Systems Phsics for Scientists and Engineers Chapter 3 Vectors and Coordinate Sstems Spring, 2008 Ho Jung Paik Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists of a

More information

Energy graphs and work

Energy graphs and work Energy graphs and work Saturday physics at 2pm tomorrow on music. LA info session on Monday at 5pm in UMC235 Clicker scores have been updated. If you have a 0, contact me and include your clicker ID number.

More information

Chapter 3 Vectors 3-1

Chapter 3 Vectors 3-1 Chapter 3 Vectors Chapter 3 Vectors... 2 3.1 Vector Analysis... 2 3.1.1 Introduction to Vectors... 2 3.1.2 Properties of Vectors... 2 3.2 Cartesian Coordinate System... 6 3.2.1 Cartesian Coordinates...

More information

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class.

Name. Welcome to AP Physics. I am very excited that you have signed up to take the AP Physics class. Name P Physics Summer ssignment Fall 013-014 Welcome to P Physics. I am very excited that you have signed up to take the P Physics class. You may ask I sure would why a summer packet? There is so much

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Physics 101. Vectors. Lecture 2. h0r33fy. EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN

Physics 101. Vectors. Lecture 2. h0r33fy.   EMU Physics Department. Assist. Prof. Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors ssist. Prof. Dr. li ÖVGÜN EMU Phsics Department h0r33f www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem qfrom Cartesian to Polar coordinate

More information

The Essentials to the Mathematical world

The Essentials to the Mathematical world The Essentials to the Mathematical world There is nothing that is unachievable, any person can start the journey to you are starting, never give into hopelessness and always push on because nothing is

More information

Math Review 1: Vectors

Math Review 1: Vectors Math Review 1: Vectors Coordinate System Coordinate system: used to describe the position of a point in space and consists of 1. An origin as the reference point 2. A set of coordinate axes with scales

More information

Phy 211: General Physics I. Chapter 3: Vectors Lecture Notes

Phy 211: General Physics I. Chapter 3: Vectors Lecture Notes Phy 211: General Physics I Chapter 3: Vectors Lecture Notes Vectors & Scalars Most physical quantities can categorized as one of 2 types (tensors notwithstanding): 1. Scalar Quantities: described by a

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lecture 1a: Satellite Orbits Meteorological Satellite Orbits LEO view GEO view Two main orbits of Met Satellites: 1) Geostationary Orbit (GEO) 1) Low Earth Orbit (LEO) or polar orbits Orbits of meteorological

More information

4.4 Energy in multiple dimensions, dot product

4.4 Energy in multiple dimensions, dot product 4 CONSERVATION LAWS 4.4 Energy in multiple dimensions, dot product Name: 4.4 Energy in multiple dimensions, dot product 4.4.1 Background By this point, you have worked a fair amount with vectors in this

More information

Chapter 1: Concepts of Motion

Chapter 1: Concepts of Motion 1.1 Motion diagrams Multiple-exposure photographs with images taken at even time intervals Spacing of images indicative of speed and acceleration speeding up constant speed slowing down SMU PHYS1100.1,

More information

Welcome to PHYS 172H

Welcome to PHYS 172H Welcome to PHYS 172H Course web page: go to www.physics.purdue.edu and select Phys 172H Textbook: Matter & Interactions Volume 1 Modern Mechanics by Ruth Chabay and Bruce Sherwood (Wiley); 3d edition.

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity v is defined to be the product

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-1 02-1 1 Last time: Displacement, velocity, graphs Today: Using graphs to solve problems Constant acceleration, free fall 02-1 2 1-2.6-8: Acceleration from graph of

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: Tutorials Thursday and Friday in G2B60, G2B75, & G2B77 Students on wait list should attend lectures and tutorials. CAPA assignments are in bins in G2B hallway. No

More information

SOLUTIONS TO CONCEPTS CHAPTER 2

SOLUTIONS TO CONCEPTS CHAPTER 2 SOLUTIONS TO CONCPTS CHAPTR 1. As shown in the figure, The angle between A and B = 11 = 9 A = and B = 4m Resultant R = A B ABcos = 5 m Let be the angle between R and A 4 sin9 = tan 1 = tan 1 (4/) = 5 4cos9

More information

Outline of Lecture Notes d. Section 1: Straight Line Motion: Notice that velocity is the slope of a graph of displacement as a function of time.

Outline of Lecture Notes d. Section 1: Straight Line Motion: Notice that velocity is the slope of a graph of displacement as a function of time. PHY 131 Outline of Lecture Notes d (Taking notes yourself focuses your attention on what I'm saying. So, I've printed some things, like all the sample problems I will go over. But the really important

More information

Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Figure 6.1: Some vectors.

Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Figure 6.1: Some vectors. Chapter 6 Vectors 6.1 Introduction Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Many quantities in engineering applications can be described by vectors, e.g. force,

More information

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN

Physics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN Phsics 101 Lecture 2 Vectors Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Coordinate Sstems qcartesian coordinate sstem qpolar coordinate sstem Januar 21, 2015 qfrom Cartesian to Polar coordinate

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

UCONN ECE/AP Physics Summer Assignment

UCONN ECE/AP Physics Summer Assignment UCONN ECE/AP Physics Summer Assignment Name Fall 06 Spring 07 We have read the policies and expectations for UCONN ECE Physics in the attached syllabus. We understand and accept these policies. Student

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Chapter Assignment # s 65, 67, & RT-2 Chapter Goal: To introduce the fundamental concepts of motion and to review related basic mathematical principles.

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics Chapter 4 One Dimensional Kinematics 41 Introduction 4 Position, Time Interval, Displacement 3 41 Position 3 4 Time Interval 3 43 Displacement 3 43 Velocity 4 431 Average

More information

Introduction to vectors

Introduction to vectors Lecture 4 Introduction to vectors Course website: http://facult.uml.edu/andri_danlov/teaching/phsicsi Lecture Capture: http://echo360.uml.edu/danlov2013/phsics1fall.html 95.141, Fall 2013, Lecture 3 Outline

More information

AP Physics 1 Summer Assignment 2017

AP Physics 1 Summer Assignment 2017 P Physics 1 Summer ssignment 2017 The attached pages contain a brief review, hints, and example problems. It is hoped that based on your previous math knowledge and some review, this assignment will be

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Chapter 7. Work and Kinetic Energy

Chapter 7. Work and Kinetic Energy Chapter 7 Work and Kinetic Energy P. Lam 7_16_2018 Learning Goals for Chapter 7 To understand the concept of kinetic energy (energy of motion) To understand the meaning of work done by a force. To apply

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

SCIENTIFIC MEASUREMENTS

SCIENTIFIC MEASUREMENTS SCIENTIFIC MEASUREMENTS Textbook References: Textbook 4 th, Appendix A-1 & C-1 Textbook 5 th, Appendix B Lesson Objectives: By Studying this chapter, you will learn 1. What the fundamental quantities of

More information

Definitions In physics we have two types of measurable quantities: vectors and scalars.

Definitions In physics we have two types of measurable quantities: vectors and scalars. 1 Definitions In physics we have two types of measurable quantities: vectors and scalars. Scalars: have magnitude (magnitude means size) only Examples of scalar quantities include time, mass, volume, area,

More information

Lecture 3- Vectors Chapter 3

Lecture 3- Vectors Chapter 3 1 / 36 Lecture 3- Vectors Chapter 3 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 21 th, 2018 2 / 36 Course Reminders The course

More information

Chatper 7 - Kinetic Energy and Work

Chatper 7 - Kinetic Energy and Work Chatper 7 - and Energy and Examples The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. - Albert Einstein David J. Starling

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

Lecture 3- Vectors Chapter 3

Lecture 3- Vectors Chapter 3 1 / 36 Lecture 3- Vectors Chapter 3 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 21 th, 2018 2 / 36 Course Reminders The course

More information

Section 4: Newton s Laws and Momentum

Section 4: Newton s Laws and Momentum Section 4: Newton s Laws and Momentum The following maps the videos in this section to the Texas Essential Knowledge and Skills for Physics TAC 112.39(c). 4.01 Newton s First Law Physics (4)(D) 4.02 Newton

More information

Angular momentum Vector product.

Angular momentum Vector product. Lecture 19 Chapter 11 Physics I 11.20.2013 Angular momentum Vector product. Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Time dilation Gamma factor

Time dilation Gamma factor Time dilation Gamma actor Quick derivation o the Relativistic Sqrt(1-v 2 /c 2 ) ormula or time, in two inertial systems The arrows are a light beam seen in two dierent systems. Everybody observes the light

More information

Chapter 9 Uniform Circular Motion

Chapter 9 Uniform Circular Motion 9.1 Introduction Chapter 9 Uniform Circular Motion Special cases often dominate our study of physics, and circular motion is certainly no exception. We see circular motion in many instances in the world;

More information

10.2 Introduction to Vectors

10.2 Introduction to Vectors Arkansas Tech University MATH 2934: Calculus III Dr. Marcel B Finan 10.2 Introduction to Vectors In the previous calculus classes we have seen that the study of motion involved the introduction of a variety

More information

PHYSICS 1 REVIEW PACKET

PHYSICS 1 REVIEW PACKET PHYSICS 1 REVIEW PACKET Powers of Ten Scientific Notation and Prefixes Exponents on the Calculator Conversions A Little Trig Accuracy and Precision of Measurement Significant Figures Motion in One Dimension

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors Why Vectors? Say you wanted to tell your friend that you re running late and will be there in five minutes. That s precisely enough information for your friend to know when you

More information

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date:

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date: Class: Date: Exam 1--PHYS 101--F14--Chapters 1 & 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The following are not standards for time. However, which

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Phys 172 Modern Mechanics Summer 2010

Phys 172 Modern Mechanics Summer 2010 Phys 172 Modern Mechanics Summer 2010 r r Δ p = F Δt sys net Δ E = W + Q sys sys net surr r r Δ L = τ Δt Lecture 14 Energy Quantization Read:Ch 8 Reading Quiz 1 An electron volt (ev) is a measure of: A)

More information

Prof. Rupak Mahapatra. Physics 218, Chapter 7 & 8 1

Prof. Rupak Mahapatra. Physics 218, Chapter 7 & 8 1 Chapter 7, 8 & 9 Work and Eergy Prof. Rupak Mahapatra Physics 218, Chapter 7 & 8 1 Checklist for Today EOC Exercises from Chap 7 due on Monday Reading of Ch 8 due on Monday Physics 218, Chapter 7 & 8 2

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 2-2.1: An object moves with constant acceleration, starting from

More information

2- Scalars and Vectors

2- Scalars and Vectors 2- Scalars and Vectors Scalars : have magnitude only : Length, time, mass, speed and volume is example of scalar. v Vectors : have magnitude and direction. v The magnitude of is written v v Position, displacement,

More information

Worksheet 1.1: Introduction to Vectors

Worksheet 1.1: Introduction to Vectors Boise State Math 275 (Ultman) Worksheet 1.1: Introduction to Vectors From the Toolbox (what you need from previous classes) Know how the Cartesian coordinates a point in the plane (R 2 ) determine its

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

Chapter 19 Angular Momentum

Chapter 19 Angular Momentum Chapter 19 Angular Momentum Chapter 19 Angular Momentum... 2 19.1 Introduction... 2 19.2 Angular Momentum about a Point for a Particle... 3 19.2.1 Angular Momentum for a Point Particle... 3 19.2.2 Right-Hand-Rule

More information