From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force.

Size: px
Start display at page:

Download "From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force."

Transcription

1 From last time Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. I.e. either at rest, or straight line motion at constant speed This means that a falling body is acted on by a force gravity. HW#1 assigned (see web page)

2 Position, speed, velocity, & acceleration Today we talk about details of the motion We introduce important concepts: position distance speed, velocity average instantaneous acceleration average instantaneous

3 A moving object changes its position with time. x 1 = pos. at time t 1 x 2 = pos. at time t 2 Quantifying motion: Distance and Time x 1, t 1 x 2, t 2 e.g. at 10:00 am, I am 3 meters along the path (x 1 =3 m, t 1 =10:00 am) at 10:00:05 am, I am 8 meters along the path (x 2 =8 m, t 1 =10:00:05 am) My position at all times completely describes my motion

4 Can use this information to find the speed If I move 5 meters in 5 seconds. Then # meters in each second = 5 divided by 5 = 1 meter per second. e.g. could walk 1 meter in the first second, and 1 meter in the next second, etc. BUT maybe I walked 0 meters in the first second and then 5 meters in 4 seconds.

5 The average speed is the same Average speed = distance traveled traveling time As an equation: Distance traveled = d Traveling time = t Average speed = s s = d t Could also write d = s t So knowing average speed lets us find distance traveled

6 Instantaneous speed Instantaneous speed is the average velocity over an infinitesimal (very short) time interval. This is what your speedometer reads. Instantaneous speed gives you a better understanding of the motion.

7 Think about this one: The instantaneous speed is A. Always less than the average speed B. Always greater than the average speed. C. Sometimes less than and sometimes greater than the average speed.

8 Units All of these quantities have units Distance: measured in meters, miles, feet Time: measured in seconds, hours, years Speed: meters per second, miles per hour In this course we will generally use the mks system of units Length meter (m) Mass kilogram (kg) Time second (s) Derived units Speed: meters per second (m/s), miles per hour (mph)

9 Speed and Velocity Walking 3 meters north in 2 seconds is different than walking 3 meters south in 2 seconds. Speed is the same, but end location is different. This arises so frequently we define a new word: Velocity means speed and direction

10 Average velocity: Average Velocity displacement divided by the time of travel has the same direction as displacement v = Δx Δt = x 2 x 1 t 2 t 1 Velocity has a direction e.g. can be positive or negative

11 Acceleration Acceleration is the rate at which velocity changes: Acceleration = change in velocity time to make the change

12 Understanding acceleration Constant velocity Zero acceleration Increasing velocity Constant acceleration in the same direction as v Decreasing velocity Constant acceleration opposite of v

13 Back to Galileo Use position, velocity, acceleration to quantify the motion of a falling object.

14 Distance vs time for falling ball From analyzing the video frame by frame we find the position vs time. Clearly position is not proportional to time Not constant velocity DISTANCE ( meters ) Falling Ball TIME ( seconds )

15 Average speed for falling ball Total time=0.73s Total distance=2.6m Avg speed = 0.73s/2.6m=3.6 m/s DISTANCE ( meters ) Falling Ball TIME ( seconds )

16 Distance vs time for falling ball speed = speed = speed = 2.6m 2.0m 0.73s 0.638s 1.2m 0.8m 0.488s 0.40s 0.4m 0.2m 0.275s 0.18s = 6.5m /s = 4.5m /s = 2.1m /s DISTANCE ( meters ) Falling Ball TIME ( seconds ) 0.22s 0.45s 0.69s

17 Speed vs time Instantaneous speed increases proportionally to time s=at VELOCITY ( m/s) TIME ( s )

18 Fit to t 2 law d = 1 2 at 2 a=9.83 m/s 2 DISTANCE ( meters ) m1 Chisq R Falling Ball y = 0.5*m1 * M0^2 Value Error NA NA TIME ( seconds )

19 Converting units A major league pitcher can throw the ball 100 miles per hour. What is the ball speed in m/s? (5 miles is approximately 8 km) m/s m/s ms correct 100 miles hour 8 km 5 miles 1000 m 1 km 1 hour 3600 s = m /s

20 Making estimates Order of magnitude estimate: A mile is of order 10 3 meters An hour is of order 10 3 seconds Then the answer should be of order 10 2 m/s

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

Linear Motion: Velocity and Acceleration

Linear Motion: Velocity and Acceleration Linear Motion: Velocity and Acceleration Relative Motion Everything moves, even things at rest Relative regarded in relation to something else; depends on point of view, or frame of reference A book at

More information

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian HW Chapter 3 Q 14,15 P 2,7,812,18,24,25 Chapter 3 Motion in the Universe Dr. Armen Kocharian Predictability The universe is predictable and quantifiable Motion of planets and stars description of motion

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

1/27. So we get for your average speed: The average velocity uses the same time, since the time in both cases is just the time for the

1/27. So we get for your average speed: The average velocity uses the same time, since the time in both cases is just the time for the 1/27 Example: A Trip Home - Suppose you are visiting a friend. It is time to leave and you remember that you have to pick up a quart of milk on the way home. Your route is shown in the figure below. We

More information

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date:

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date: Class: Date: Exam 1--PHYS 101--F14--Chapters 1 & 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The following are not standards for time. However, which

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics Trigonometry I Pythagorean theorem: Trigonometry II 90 180 270 360 450 540 630 720 sin(x) and cos(x) are mathematical functions that describe oscillations. This will be important later, when we talk about

More information

Kinematics. Chapter 2. Position-Time Graph. Position

Kinematics. Chapter 2. Position-Time Graph. Position Kinematics Chapter 2 Motion in One Dimension Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Topic 1: 1D Motion PHYSICS 231

Topic 1: 1D Motion PHYSICS 231 Topic 1: 1D Motion PHYSICS 231 Current Assignments Reading Chapter 1.5 and 3 due Tuesday, Jan 18, beginning of class Homework Set 1 already open (covers this week) due Thursday, Jan 20, 11 pm Recommended

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

p105 Section 2.2: Basic Differentiation Rules and Rates of Change

p105 Section 2.2: Basic Differentiation Rules and Rates of Change 1 2 3 4 p105 Section 2.2: Basic Differentiation Rules and Rates of Change Find the derivative of a function using the Constant Rule Find the derivative of a function using the Power Rule Find the derivative

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 3: LINEAR MOTION This lecture will help you understand: Motion Is Relative Speed : Average and Instantaneous Velocity Acceleration Free Fall Motion Is Relative

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2014 Lecture01-2 1 Last time: Syllabus, mechanics survey Unit conversions Today: Using your clicker 1D displacement,

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

New HW : complete handout work on lab (due Tuesday) review new notes on website (pdf)

New HW : complete handout work on lab (due Tuesday) review new notes on website (pdf) Physics HW due Today a. Read in book: pages 43 51 b. define/explain in notes: particle model, position vector, vector quantity, scalar quantity, displacement, distance c. p.60: 2 3 4 5 d. Write this list

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

ONE-DIMENSIONAL KINEMATICS

ONE-DIMENSIONAL KINEMATICS ONE-DIMENSIONAL KINEMATICS Chapter 2 Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Physics 2A. Lecture 2A. "You must learn from the mistakes of others. You can't possibly live long enough to make them all yourself.

Physics 2A. Lecture 2A. You must learn from the mistakes of others. You can't possibly live long enough to make them all yourself. Physics 2A Lecture 2A "You must learn from the mistakes of others. You can't possibly live long enough to make them all yourself." --Sam Levenson 1 Motion Chapter 2 will focus on motion in one dimension.

More information

PHYSICS 1 REVIEW PACKET

PHYSICS 1 REVIEW PACKET PHYSICS 1 REVIEW PACKET Powers of Ten Scientific Notation and Prefixes Exponents on the Calculator Conversions A Little Trig Accuracy and Precision of Measurement Significant Figures Motion in One Dimension

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter One-Dimensional Kinematics Units of Chapter Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications of

More information

General Physics. Linear Motion. Life is in infinite motion; at the same time it is motionless. Debasish Mridha

General Physics. Linear Motion. Life is in infinite motion; at the same time it is motionless. Debasish Mridha General Physics Linear Motion Life is in infinite motion; at the same time it is motionless. Debasish Mridha High Throw How high can a human throw something? Mechanics The study of motion Kinematics Description

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Physics 2514 Lecture 2

Physics 2514 Lecture 2 Physics 2514 Lecture 2 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/17 Clicker To be or not to be, that is the question, but what is the answer? Please test your

More information

BTU 1113 Physics. Chapter 2: Kinematics. by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology

BTU 1113 Physics. Chapter 2: Kinematics. by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology For updated version, please click on http://ocw.ump.edu.my BTU 1113 Physics Chapter 2: by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology nadzirah@ump.edu.my Chapter Description Aims Distinguish

More information

Chapter 3 Linear Motion

Chapter 3 Linear Motion Lecture 3 Chapter 3 Linear Motion (Motion in a straight line, such as falling straight downward) Some material courtesy Prof. A. Garcia, SJSU Help sessions Announcements M 1600-1700 in TH116 (A. Kelly)

More information

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Linear Motion Review Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Distance vs. Displacement Distance is the

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Newton s Laws of Motion with Dr. Tony Crider

Newton s Laws of Motion with Dr. Tony Crider Newton s Laws of Motion with Dr. Tony Crider Student Learning Objectives Student Learning Objectives First Law: An object in motion stays in motion, an object at rest stays at rest unless acted upon by

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Using Units in Science

Using Units in Science Using Units in Science 5 cm x 2 cm=?10 cm 2 2 cm 2 1 How much is 150 miles divided by 3 hours? 150 miles/hr 50 miles 50 hrs 50 hrs/mile E 50 miles/hr 3 pears per orange 2 You buy 10 gallons of gas and

More information

Chapter 1: Concepts of Motion

Chapter 1: Concepts of Motion 1.1 Motion diagrams Multiple-exposure photographs with images taken at even time intervals Spacing of images indicative of speed and acceleration speeding up constant speed slowing down SMU PHYS1100.1,

More information

Physical Science Chapter 11. Motion

Physical Science Chapter 11. Motion Physical Science Chapter 11 Motion Motion Definition An object is in motion when its distance from another object is changing. Relative Motion Relative motion is movement in relation to a REFERENCE POINT.

More information

Would you risk your life driving drunk? Intro

Would you risk your life driving drunk? Intro Martha Casquete Would you risk your life driving drunk? Intro Assignments: For next class: Finish reading Ch. 2, read Chapter 3 (Vectors) HW3 Set due next Wednesday, 9/11 HW3 will be in weebly. Question/Observation

More information

Welcome Back to Physics 211!

Welcome Back to Physics 211! Welcome Back to Physics 211! (General Physics I) Thurs. Aug 30 th, 2012 Physics 211 -Fall 2012 Lecture01-2 1 Last time: Syllabus, mechanics survey Particle model Today: Using your clicker 1D displacement,

More information

Kinematics in One Dimension

Kinematics in One Dimension Honors Physics Kinematics in One Dimension Life is in infinite motion; at the same time it is motionless. Debasish Mridha Mechanics The study of motion Kinematics Description of how things move Dynamics

More information

Forces and Motion Study Guide

Forces and Motion Study Guide Forces and Motion Study Guide Name 8 th Grade PSI 1. A snail travels 10 m in 3000 seconds. What is the snail s average speed? a. 60000 m/s b. 0.02 m/s c. 600 m/s d. 0.003 m/s 2. A blimp travels at 3 m/s

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Chapter 2: 1-D Kinematics. Brent Royuk Phys-111 Concordia University

Chapter 2: 1-D Kinematics. Brent Royuk Phys-111 Concordia University Chapter 2: 1-D Kinematics Brent Royuk Phys-111 Concordia University Displacement Levels of Formalism The Cartesian axis One dimension: the number line Mathematical definition of displacement: Δx = x f

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Brent Royuk Phys-111 Concordia University Displacement Levels of Formalism The Cartesian axis One dimension: the number line Mathematical definition of displacement: Δx = x f x

More information

Clickers Registration Roll Call

Clickers Registration Roll Call Clickers Registration Roll Call If you do not see your name then either: 1) You successfully registered your clicker during the roll call on tuesday OR 2) You added the course and your name was not yet

More information

1. Complete the following table: Term Definition Unit Examples Speed Velocity Scalar Vector Displacement Distance

1. Complete the following table: Term Definition Unit Examples Speed Velocity Scalar Vector Displacement Distance Motion Review Name: Answer ALL questions on separate paper. Draw diagrams to help you visualize each scenario. Show all steps, as we have in class, to solve math questions. 1. Complete the following table:

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

Today. Clickers Registration Roll Call. Announcements: Loose ends from lecture 2 Law of Inertia (Newton s 1st Law) What is Force?

Today. Clickers Registration Roll Call. Announcements: Loose ends from lecture 2 Law of Inertia (Newton s 1st Law) What is Force? Clickers Registration Roll Call Today If you do not see your name then either: 1) You successfully registered your clicker during the roll call on tuesday OR 2) You added the course and your name was not

More information

Motion. What is Physics? Part 1: Constant Speed. Lab Physics. September Ms. Levine 1

Motion. What is Physics? Part 1: Constant Speed. Lab Physics. September Ms. Levine 1 Motion Part 1: Constant Speed What is Physics? Physics is the study of the physical world (energy and matter) and how they are related. Ms. Levine 1 Create your own motion map What is the purpose of these

More information

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration Chapter 2 What You Will Learn In This Chapter Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration 2.1 Introduction to kinematics Kinematics is the study

More information

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion Physics for Scientists and Engineers Chapter 1 Concepts of Motion Spring, 2008 Ho Jung Paik Physics Fundamental science concerned with the basic principles of the Universe foundation of other physical

More information

Lesson 1.2 Position Time Graphs

Lesson 1.2 Position Time Graphs Lesson 1.2 Position Time Graphs Be able to explain the motion represented in a position time graph Be able to calculate the avg. vel, x, and t for portions of a position time graph. Be able to draw a position

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics 10. Lecture 3A

Physics 10. Lecture 3A Physics 10 Lecture 3A "Your education is ultimately the flavor left over after the facts, formulas, and diagrams have been forgotten." --Paul G. Hewitt Support Forces If the Earth is pulling down on a

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

Historical Perspective

Historical Perspective 29:6. Lecture 2 Mechanics: Why do things move? Historical Perspective Aristotle 35 BC Was the final word on any scientific question Influenced scientific thought until the end of the 17 th century Believed

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

As you already know by now, when you're finding derivatives, you're finding the slope.

As you already know by now, when you're finding derivatives, you're finding the slope. As you already know by now, when you're finding derivatives, you're finding the slope. Slope is a "rate of change" There are many other "rates of change" out there in the Real World. For example, a doctor

More information

Distance vs. Displacement, Speed vs Velocity, Velocity vs Acceleration

Distance vs. Displacement, Speed vs Velocity, Velocity vs Acceleration Distance vs. Displacement, Speed vs Velocity, and Velocity vs Acceleration Everything in the universe is in motion. How do we know? Motion David is in Motion Megan is in Motion Everything in the universe

More information

Free Fall. Last new topic that will be on the Midterm

Free Fall. Last new topic that will be on the Midterm Homework Questions? Free Fall Last new topic that will be on the Midterm Do now: Calculate acceleration due to gravity on earth Announcements 3.03 is due Friday Free Fall Introduction: Doc Shuster (AP

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics-B Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the

More information

One Dimensional Motion. Motion in x or y only

One Dimensional Motion. Motion in x or y only One Dimensional Motion Motion in x or y only Scalar vs. Vector Scalar Defined as quantity with magnitude (size) only Example: 3 m, 62 seconds, 4.2 miles EASY Math!!! Vector Defined as quantity with magnitude

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Types of Motion Translational An example is a car traveling on a highway. Rotational An example is the Earth s spin on its axis. Vibrational An example is the back-and-forth

More information

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

More information

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved.

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved. Linear Motion 1 Aristotle 384 B.C. - 322 B.C. Galileo 1564-1642 Scalars and Vectors The motion of objects can be described by words such as distance, displacement, speed, velocity, and acceleration. Scalars

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Kinetic Energy and Work

Kinetic Energy and Work Kinetic Energy and Work 8.01 W06D1 Today s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8 Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside

More information

Logarithmic Differentiation (Sec. 3.6)

Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation (Sec. 3.6) Logarithmic Differentiation Use logarithmic differentiation if you are taking the derivative of a function whose formula has a lot of MULTIPLICATION, DIVISION, and/or

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

Chapter 2 Review Answer Key

Chapter 2 Review Answer Key Chapter Review Answer Key Select the correct term to complete the sentences. Section.. force. Newton s first law. inertia. net force. newton Section. 6. acceleration 7. Newton s second law Section. 8.

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Much of the physics we ll learn this semester will deal with the motion of objects We start with the simple case of one-dimensional motion Or, motion in x: As always, we begin by

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

Motion of an Object and Newton s Law

Motion of an Object and Newton s Law PHY1033C Fall 2017 Lecture W2 Motion of an Object and Newton s Law 1. Motion of an Object Anything in motion will change its position in time. Here, I am simplifying the meaning of motion because a spinning

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back to Physics 215! (General Physics I) Thurs. Jan 18 th, 2018 Lecture01-2 1 Last time: Syllabus Units and dimensional analysis Today: Displacement, velocity, acceleration graphs Next time: More

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

From Last Time. position: coordinates of a body velocity: rate of change of position. change in position change in time

From Last Time. position: coordinates of a body velocity: rate of change of position. change in position change in time From Last Time position: coordinates of a body velocity: rate of change of position average : instantaneous: average velocity over a very small time interval acceleration: rate of change of velocity average:

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6 Linear Motion Dane, Ben, Julian, and Lilliana P. 6 Concepts: Kinematics vs. Dynamics Reference Frames Distance vs. Displacement Scalars vs. Vectors Speed vs. Velocity Acceleration Objects in motion Freefall

More information

Galileo Uniform acceleration from rest. From last time. Falling object: constant acceleration. Tough questions. Inertia.

Galileo Uniform acceleration from rest. From last time. Falling object: constant acceleration. Tough questions. Inertia. From last time Position, velocity, and acceleration velocity = time rate of change of position acceleration = time rate of change of velocity Particularly useful concepts when velocity is constant (undisturbed

More information

SatFeb23_Class_project_A

SatFeb23_Class_project_A Class: Date: SatFeb23_Class_project_A Multiple Choice Identify the choice in the blank beside the number that best completes the statement or answers the question 1 Which of the following is an area of

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Units, Estimations, Graphs, Trigonometry: Units - Standards of Length, Mass, and Time Dimensional Analysis Uncertainty and significant digits Order of magnitude estimations Coordinate Systems

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Announcements. l Register your iclicker on LON-CAPA. l First exam: Feb 6 in Life Sciences A133

Announcements. l Register your iclicker on LON-CAPA. l First exam: Feb 6 in Life Sciences A133 Announcements l LON-CAPA #1 and Mastering Physics 1+2 due next Tuesday help room hours (Strosacker Help Room, 1248 BPS): M: 5-8 PM W: 5-8 PM F: 2-6 PM l Guest lecturer next Tuesday l Register for Mastering

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Web Resources for Physics 1 Physics Classroom http://www.khanacademy.org/science/physics http://ocw.mit.edu/courses/physics/ Quantities in Motion Any motion involves three

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Specifically, the description of motion. Examples: The Earth orbits around

More information

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion.

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Lecture 2 Definitions Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Dynamics: The study of the forces that cause motion. Chapter Outline Consider

More information

Kinematics II Mathematical Analysis of Motion

Kinematics II Mathematical Analysis of Motion AP Physics Kinematics II Mathematical Analysis of Motion Introduction: Everything in the universe is in a state of motion. It might seem impossible to find a simple way to describe and understand the motion

More information

So, whether or not something is moving depends on your frame of reference.

So, whether or not something is moving depends on your frame of reference. When an object changes position relative to a reference point. (Frame of reference) Not from where she s sitting, but from space, the earth rotates and the wall with it. So, whether or not something is

More information

Module 4: One-Dimensional Kinematics

Module 4: One-Dimensional Kinematics 4.1 Introduction Module 4: One-Dimensional Kinematics Kinematics is the mathematical description of motion. The term is derived from the Greek word kinema, meaning movement. In order to quantify motion,

More information

As you come in. Pick up graded homework from front Turn in homework in the box

As you come in. Pick up graded homework from front Turn in homework in the box As you come in Pick up graded homework from front Turn in homework in the box LECTURE 3 CONTINUING CHAPTER 2 Professor Cassandra Paul How I graded homework I was thorough and lenient! A s (4.0) were given

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information