Would you risk your life driving drunk? Intro

Size: px
Start display at page:

Download "Would you risk your life driving drunk? Intro"

Transcription

1 Martha Casquete

2

3 Would you risk your life driving drunk? Intro

4 Assignments: For next class: Finish reading Ch. 2, read Chapter 3 (Vectors) HW3 Set due next Wednesday, 9/11 HW3 will be in weebly. Question/Observation Mondays Research Q/O Wednesday with HW (due date Wednesday)

5 Motion Speed and Velocity Acceleration Acceleration in Uniform Circular Motion Projectile Motion What today s lesson has to do with drunk drivers?

6 Units: Length, Mass, and Time Order of magnitude calculations Dimensional Analysis Conversion of Units Significant digits (on your own)

7 Motion is everywhere walking, driving, flying, etc. This chapter focuses on definition/discussion of: speed, velocity, and acceleration. There are two basic kinds of motion: Straight line Circular Section 2.1

8 Position the location of an object A reference point must be given in order to define the position of an object Motion an object is undergoing a continuous change in position Description of Motion the time rate of change of position A combination of length and time describes motion Section 2.1

9 Any motion involves three concepts Displacement/distance Velocity/speed Acceleration

10 Displacement is a change of position in time. It is a vector quantity. It has both magnitude and direction: + or - sign It has units of [length]: meters. x 1 (t 1 ) = m x 2 (t 2 ) = m Δx = -2.0 m m = -4.5 m x 1 (t 1 ) = m x 2 (t 2 ) = m Δx = +1.0 m m = +4.0 m

11 Sometimes displacement is confused with distance. It is important that you understand the difference between distance and displacement. Distance the actual path length traveled If I start walking when x 1 = - 3.0m and then I return to the same place, then x 2 = - 3.0m. a) What is my displacement? b) What is my distance? a) What is my displacement? x 1 = m x 2 = m Δx = -3.0 m (- 3.0 m) = 0 m b) What is my distance? x 1 = 3.0 m x 2 = 3.0 m x 1 + x 2 = 3.0 m m = 6.0m

12 Every day, I travel a distance of 108 miles from Brownsville/Rancho Viejo to Edinburg and back. Every day, at 8:20pm I noticed that I have displaced myself zero miles. Where am I? What is the distance between one side of the wall and the other in the classroom? If I pace it, what will be my displacement? Displacement is not Distance.

13 In Physical Science speed and velocity have different (distinct) meanings. Speed a scalar quantity, only magnitude (numerical value and unit measurement)/scalar A car going 80 km/h Velocity vector, both magnitude & direction A car going 80 km/h north Section 2.2

14 Vector quantities may be represented by arrows. The length of the arrow is proportional to magnitude. 40 km/h 80 km/h -40 km/h -80 km/h Section 2.2

15 Note that vectors may be both positive and negative. Section 2.2

16 distance traveled Average Speed = time to travel distance v = d/t or v = Dd/Dt ( where D means change in ) Over the entire time interval, speed is an average Instantaneous Speed the speed of an object at an instant of time (Dt is very small) Glance at a speedometer Section 2.2

17 Section 2.2

18 Velocity is similar to speed except a direction is involved. Average velocity = displacement total travel time Instantaneous velocity similar to instantaneous speed except it has direction Section 2.2

19 What is the speed of a car if it has traveled 100m in 4.0 s. GIVEN: d = 1000 m & t = 4.0 s EQUATION: v = d/t SOLVE: d/t = 100 m/4.0 s = 25 m/s = average speed Velocity would be described as 25 m/s in the direction of motion (east?) Section 2.2

20 How far would the car above travel in 10s? EQUATION: v = d/t REARRANGE EQUATION: vt = d SOLVE: (20 m/s) (10 s) = 200 m Section 2.2

21 (it is on your book do the math) Section 2.2

22 GIVEN: t = 365 days (must convert to hours) Earth s radius (r) = 9.30 x 10 7 miles (p. 19) CONVERSION: t = 365 days x (24h/day) = 8760 h MUST FIGURE DISTANCE (d): d =? Recall that a circle s circumference = 2pr d=2pr (and we know p and r!!) Therefore d = 2pr = 2 (3.14) (9.30 x 10 7 mi) Section 2.2

23 SOLVE EQUATION: v = d/t d/t = 2 (3.14) (9.30 x 10 7 mi) = x 10 7 mi/h 8760 h ADJUST DECIMAL POINT: v = avg. velocity = 6.67 x 10 4 mi/h = 66,700 mi/h Section 2.2

24 Radius of the Earth = R E = 4000 mi Time = 24 h Circumference of Earth = 2pr = 2 (3.14) (4000mi) Circumference of Earth = 25,120 mi v = d/t = (25,120 mi)/24h = 1047 mi/h Section 2.2

25 Changes in velocity occur in three ways: Increase in magnitude (speed up) Decrease in magnitude (slow down) Change direction of velocity vector (turn) When any of these changes occur, the object is accelerating. Faster the change Greater the acceleration Acceleration the time rate of change of velocity Section 2.3

26 A measure of the change in velocity during a given time period Avg. acceleration = Dv a = = t v f v o t change in velocity time for change to occur (v f = final & v o = original) Units of acceleration = (m/s)/s = m/s 2 In this course we will limit ourselves to situations with constant acceleration. Section 2.3

27 As the velocity increases, the distance traveled by the falling object increases each second. Section 2.3

28 v f v Remember that a = o t Rearrange this equation: at = v f v o v f = v o + at velocity) (solved for final This equation is very useful in computing final velocity Section 2.3

29 If a car with an acceleration of 3.57 m/s 2 continues to accelerate at the same rate for three more seconds, what will be the magnitude of its velocity in m/s at the end of this time (v f )? a = 3.57 m/s 2 (found in preceding example) t = 10 s v o = 0 (started from rest) Use equation: v f = v o + at v f = 0 + (3.57 m/s 2 ) (10 s) = 35.7 m/s Section 2.3

30 Acceleration (+) Deceleration (-) Section 2.3

31 Special case associated with falling objects Vector towards the center of the earth Denoted by g g = 9.80 m/s 2 Section 2.3

32 If frictional effects (air resistance) are neglected, every freely falling object on earth accelerates at the same rate, regardless of mass. Galileo is credited with this idea/experiment. Astronaut David Scott demonstrated the principle on the moon, simultaneously dropping a feather and a hammer. Each fell at the same acceleration, due to no atmosphere & no air resistance Copyright Houghton Mifflin Company. All rights reserved. Section 2.3

33 Galileo is also credited with using the Leaning Tower of Pisa as an experiment site. Section 2.3

34 d = ½ gt 2 This equation will compute the distance (d) an object drops due to gravity (neglecting air resistance) in a given time (t) Section 2.3

35 A ball is dropped from the top of an 80 m building. Does it reach the ground in 4.0s? GIVEN: g = 9.80 m/s 2, t = 4.0 s SOLVE: d = ½ gt 2 = ½ (9.80 m/s 2 ) (4.0 s) 2 = ½ (9.80 m/s 2 ) (16.00 s 2 ) =?? m d = 78 m Section 2.3

36 What is the speed of the ball in the previous example 4 s after it is dropped? Use equation: v f = v o + at v o = 0 GIVEN: g = a = 9.80 m/s 2, t = 4 s SOLVE: v f = at = (9.80 m/s 2 )(4 s) Speed of ball after 4 seconds = 39.2 m/s Section 2.3

37 Distance is proportional to t 2 (d = ½ gt 2 ) Velocity is proportional to t (v f = at ) Section 2.3

38 Acceleration due to gravity occurs in BOTH directions. Going up (-) Coming down (+) The ball returns to its starting point with the same speed it had initially. v o = v f Section 2.3

39 Although an object in uniform circular motion has a constant speed, it is constantly changing directions and therefore its velocity is constantly changing. Since there is a change in direction there is an acceleration. What is the direction of this acceleration? It is at right angles to the velocity, and generally points toward the center of the circle. Section 2.4

40 Supplied by friction of the tires of a car The car remains in a circular path as long as there is enough centripetal acceleration. Section 2.4

41 a c = v 2 r This equation holds true for an object moving in a circle with radius (r) and constant speed (v). From the equation we see that centripetal acceleration increases as the square of the speed. We also can see that as the radius decreases, the centripetal acceleration increases. Section 2.4

42 Determine the magnitude of the centripetal acceleration of a car going 12 m/s on a circular cloverleaf with a radius of 50 m. Section 2.4

43 Determine the magnitude of the centripetal acceleration of a car going 12 m/s on a circular cloverleaf with a radius of 50 m. GIVEN: v = 12 m/s, r = 50 m SOLVE: v a c = 2 (12 m/s) = 2 = 2.9 m/s r 50m 2 Section 2.4

44 Compute the centripetal acceleration in m/s 2 of the Earth in its nearly circular orbit about the Sun. GIVEN: r = 1.5 x m, v = 3.0 x 10 4 m/s SOLVE: v a c = 2 (3.0 x 10 = 4 m/s) 2 = r 1.5 x m a c = 6 x 10-3 m/s x 10 8 m 2 /s x m Section 2.4

45 An object thrown horizontally will fall at the same rate as an object that is dropped. Multiflash photograph of two balls Section 2.5

46 2-46 Section

47 An object thrown horizontally combines both straight-line and vertical motion each of which act independently. Neglecting air resistance, a horizontally projected object travels in a horizontal direction with a constant velocity while falling vertically due to gravity Section 2.5

48 Combined Horz/Vert. Components = Vertical Component + Horizontal Component Section 2.5

49 2-49 Section 2.5

50 2-50 Copyright Houghton Mifflin Company. All rights reserved. Section 2.5

51 2-51 Section 2.5

52 Angle of release Spin on the ball Size/shape of ball/projectile Speed of wind Direction of wind Weather conditions (humidity, rain, snow, etc) Field altitude (how much air is present) Initial horizontal velocity (in order to make it out of the park before gravity brings it down, it must leave the bat at a high velocity) 2-52 Section 2.5

53 v = d/t (average speed) d = ½at 2 (distance traveled, starting from rest) d = ½gt 2 (distance traveled, dropped object) g = 9.80 m/s 2 = 32 ft/s 2 (acceleration, gravity) Dv t v f v o t a = = (constant acceleration) v f = v o + at (final velocity with constant a) a c = v 2 /r (centripetal acceleration) 2-53 Review

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Would you risk your live driving drunk? Intro

Would you risk your live driving drunk? Intro Martha Casquete Would you risk your lie driing drunk? Intro Motion Position and displacement Aerage elocity and aerage speed Instantaneous elocity and speed Acceleration Constant acceleration: A special

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s rotation

More information

Chapter 4 Linear Motion

Chapter 4 Linear Motion Chapter 4 Linear Motion You can describe the motion of an object by its position, speed, direction, and acceleration. I. Motion Is Relative A. Everything moves. Even things that appear to be at rest move.

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 3: LINEAR MOTION This lecture will help you understand: Motion Is Relative Speed : Average and Instantaneous Velocity Acceleration Free Fall Motion Is Relative

More information

Using Units in Science

Using Units in Science Using Units in Science 5 cm x 2 cm=?10 cm 2 2 cm 2 1 How much is 150 miles divided by 3 hours? 150 miles/hr 50 miles 50 hrs 50 hrs/mile E 50 miles/hr 3 pears per orange 2 You buy 10 gallons of gas and

More information

Chapter 2 1D KINEMATICS

Chapter 2 1D KINEMATICS Chapter 2 1D KINEMATICS The motion of an American kestrel through the air can be described by the bird s displacement, speed, velocity, and acceleration. When it flies in a straight line without any change

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Section 2-2: Constant velocity means moving at a steady speed in the same direction

Section 2-2: Constant velocity means moving at a steady speed in the same direction Section 2-2: Constant velocity means moving at a steady speed in the same direction 1. A particle moves from x 1 = 30 cm to x 2 = 40 cm. The displacement of this particle is A. 30 cm B. 40 cm C. 70 cm

More information

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ]

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ] Chapter 8 : Motion KEY CONCEPTS [ *rating as per the significance of concept ] 1 Motion **** 2 Graphical Representation of Motion *** & Graphs 3 Equation of motion **** 4 Uniform Circular Motion ** 1 Motion

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Types of Motion Translational An example is a car traveling on a highway. Rotational An example is the Earth s spin on its axis. Vibrational An example is the back-and-forth

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Motion in 1 Dimension

Motion in 1 Dimension Motion in 1 Dimension Physics is all about describing motion. For now we are going to discuss motion in 1 dimension, which means either along the x axis or the y axis. To describe an object s motion, we

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall Physics 231 Topic 3: Vectors and two dimensional motion Alex Brown September 14-18 2015 MSU Physics 231 Fall 2014 1 What s up? (Monday Sept 14) 1) Homework set 01 due Tuesday Sept 15 th 10 pm 2) Learning

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Chapter 3. Motion in One Dimension

Chapter 3. Motion in One Dimension Chapter 3 Motion in One Dimension Outline 3.1 Position, Velocity and Speed 3.2 Instantaneous Velocity and Speed 3.3 Acceleration 3.4 Motion Diagrams 3.5 One-Dimensional Motion with Constant Acceleration

More information

One Dimensional Motion. Motion in x or y only

One Dimensional Motion. Motion in x or y only One Dimensional Motion Motion in x or y only Scalar vs. Vector Scalar Defined as quantity with magnitude (size) only Example: 3 m, 62 seconds, 4.2 miles EASY Math!!! Vector Defined as quantity with magnitude

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Concepts in Physics. Wednesday, September 23

Concepts in Physics. Wednesday, September 23 1206 - Concepts in Physics Wednesday, September 23 NOTES Additional Tutorial available: THURSDAY 16:30 to 18:00 F536 this is for all first year physics students, so bring specific questions you have Tutorial

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances

Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances Chapter 2 Motion 2-1. Speed 2-2. Vectors 2-3. Acceleration 2-4. Distance, Time, and Acceleration 2-5. Free Fall System 2-6. Air Resistance 2-7. First Law of Motion 2-8. Mass 2-9. Second Law of Motion 2-10.

More information

Physics 10. Lecture 3A

Physics 10. Lecture 3A Physics 10 Lecture 3A "Your education is ultimately the flavor left over after the facts, formulas, and diagrams have been forgotten." --Paul G. Hewitt Support Forces If the Earth is pulling down on a

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion

a reference frame that accelerates in a straight line a reference frame that moves along a circular path Straight Line Accelerated Motion 1.12.1 Introduction Go back to lesson 9 and provide bullet #3 In today s lesson we will consider two examples of non-inertial reference frames: a reference frame that accelerates in a straight line a reference

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chapter 2 Kinematics in One Dimension The Cheetah: A cat that is built for speed. Its strength and agility allow it to sustain a top speed of over 100 km/h. Such speeds can only be maintained for about

More information

Chapter 2. Motion in One Dimension. Professor Wa el Salah

Chapter 2. Motion in One Dimension. Professor Wa el Salah Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now, will consider motion in one dimension Along a straight

More information

Chapter 2: 2-Dimensional Motion

Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion Chapter 2: 2-Dimensional Motion 2.1 Position 2.2 Distance and Displacement 2.3 Average Speed and Average Velocity 2.4 Instant Speed and Instant

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Review 1D motion. Other 1D equations (in table 2-1) are restatements of these

Review 1D motion. Other 1D equations (in table 2-1) are restatements of these Review 1D motion Constant acceleration Position (x) and velocity (v) as a function of time Note when clock starts (t= ), the position and velocity are x and v v = v + at 1 x = x + vt + at Other 1D equations

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences M E C H A N I C S I D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T N O V E M B E R 0 1 3 Definition Mechanics

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Conceptual Physical Science

Conceptual Physical Science Hewitt/Suchocki/Hewitt Conceptual Physical Science Fourth Edition Chapter 1: PATTERNS OF MOTION AND EQUILIBRIUM This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass

More information

PHYSICS 111 SPRING EXAM 1: February 6, 2017; 8:15pm - 9:45pm

PHYSICS 111 SPRING EXAM 1: February 6, 2017; 8:15pm - 9:45pm PHYSICS 111 SPRING 2018 EXAM 1: February 6, 2017; 8:15pm - 9:45pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 20 multiple-choice questions plus 1 extra credit question,

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force.

From last time. Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. From last time Light and heavy objects fall identically. Objects maintain their state of motion unless acted on by an external force. I.e. either at rest, or straight line motion at constant speed This

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

ONE-DIMENSIONAL KINEMATICS

ONE-DIMENSIONAL KINEMATICS ONE-DIMENSIONAL KINEMATICS Chapter 2 Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Web Resources for Physics 1 Physics Classroom http://www.khanacademy.org/science/physics http://ocw.mit.edu/courses/physics/ Quantities in Motion Any motion involves three

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

3 UCM & Gravity Student Physics Regents Date

3 UCM & Gravity Student Physics Regents Date Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 1

Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 1 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys1405-2012-fall-tjc-jts) 1 This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page find

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Acceleration in Uniform Circular Motion

Acceleration in Uniform Circular Motion Acceleration in Uniform Circular Motion The object in uniform circular motion has a constant speed, but its velocity is constantly changing directions, generating a centripetal acceleration: a c v r 2

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Horizontal Motion 1 An object is said to be at rest, if the position of the object does not change with time with respect to its surroundings An object is said to be in motion, if its position changes

More information

Describing Motion Verbally with Distance and Displacement

Describing Motion Verbally with Distance and Displacement Describing Motion Verbally with Distance and Displacement Read from Lesson 1 of the 1-D Kinematics chapter at The Physics Classroom: http://www.physicsclassroom.com/class/1dkin/u1l1a.cfm http://www.physicsclassroom.com/class/1dkin/u1l1b.cfm

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

Chapter 7: Circular Motion

Chapter 7: Circular Motion Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Gravity. Announcement. Topics in Chapter 5. Topics for Today. PHYS 1403 Introduction to Astronomy. Motion. Chapter 5. Exam 1

Gravity. Announcement. Topics in Chapter 5. Topics for Today. PHYS 1403 Introduction to Astronomy. Motion. Chapter 5. Exam 1 PHYS 1403 Introduction to Astronomy Gravity Chapter 5 Announcement Exam 1 February 21 st 2018 2:25pm 3:40 pm during class time Chapter 1,2,3,4 and 5 40 Multiple Questions. One short answer essay type question.

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

Chapter 2: 1-D Kinematics. Brent Royuk Phys-111 Concordia University

Chapter 2: 1-D Kinematics. Brent Royuk Phys-111 Concordia University Chapter 2: 1-D Kinematics Brent Royuk Phys-111 Concordia University Displacement Levels of Formalism The Cartesian axis One dimension: the number line Mathematical definition of displacement: Δx = x f

More information

(b) A particle with v > 0 and a < 0 is moving forward with decreasing speed. Example: a car slowing down before exiting an Eastbound freeway.

(b) A particle with v > 0 and a < 0 is moving forward with decreasing speed. Example: a car slowing down before exiting an Eastbound freeway. PHY 302 K. Solutions for Problem set # 2. Non-textbook problem #1: (a) A particle with v > 0 and a > 0 is moving forward (i.e., in the positive direction) with increasing speed. Example: a car entering

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Brent Royuk Phys-111 Concordia University Displacement Levels of Formalism The Cartesian axis One dimension: the number line Mathematical definition of displacement: Δx = x f x

More information

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

More information

Chapter 2 Test Item File

Chapter 2 Test Item File Chapter 2 Test Item File Chapter 2: Describing Motion: Kinetics in One Dimension 1. What must be your average speed in order to travel 350 km in 5.15 h? a) 66.0 km/h b) 67.0 km/h c) 68.0 km/h d) 69.0 km/h

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics and dynamics

More information

Basic Physics 29:008 Spring 2005 Exam I

Basic Physics 29:008 Spring 2005 Exam I Exam I solutions Name: Date: 1. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A) the acceleration

More information

Linear Motion: Velocity and Acceleration

Linear Motion: Velocity and Acceleration Linear Motion: Velocity and Acceleration Relative Motion Everything moves, even things at rest Relative regarded in relation to something else; depends on point of view, or frame of reference A book at

More information

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions

College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension. 2.1 Conceptual Questions College Physics: A Strategic Approach, 3e (Knight) Chapter 2 Motion in One Dimension 2.1 Conceptual Questions 1) Consider a deer that runs from point A to point B. The distance the deer runs can be greater

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion Unit 3: Kinematics Uniform Rectilinear Motion (velocity is constant) Uniform Accelerated Rectilinear Motion The Motion of Projectiles Jan 31 8:19 PM Chapter 9: Uniform Rectilinear Motion Position: point

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Unit 1 Physics and Chemistry Kinematics

Unit 1 Physics and Chemistry Kinematics 4 th ESO. UNIT 1: KINEMATICS Kinematics is a branch of Physics which describes the motion of bodies without regard to its causes. A reference frame is a set of coordinate axis in terms of which the position

More information

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to

1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to 1. The age of the universe is about 14 billion years. Assuming two significant figures, in powers of ten in seconds this corresponds to A) 9.2 10 12 s B) 8.3 10 14 s C) 1.6 10 16 s D) 4.4 10 17 s E) 2.7

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Spring 2015, Math 111 Lab 4: Kinematics of Linear Motion

Spring 2015, Math 111 Lab 4: Kinematics of Linear Motion Spring 2015, Math 111 Lab 4: William and Mary February 24, 2015 Spring 2015, Math 111 Lab 4: Learning Objectives Today, we will be looking at applications of derivatives in the field of kinematics. Learning

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Introduction: Study of the motion of objects Physics studies: Properties of matter and energy: solid state physics, thermal physics/ thermodynamics, atomic physics,

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

Physics 1100: 1D Kinematics Solutions

Physics 1100: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Physics 1100: 1D Kinematics Solutions 1. Neatly sketch the following dot motion diagrams: (a) A particle moving right

More information

Example problem: Free Fall

Example problem: Free Fall Example problem: Free Fall A ball is thrown from the top of a building with an initial velocity of 20.0 m/s straight upward, at an initial height of 50.0 m above the ground. The ball just misses the edge

More information

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010 PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

More information

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID

Phys 111 Exam 1 September 19, You cannot use CELL PHONES, ipad, IPOD... Good Luck!!! Name Section University ID Phys 111 Exam 1 September 19, 2017 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information