Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 1

Size: px
Start display at page:

Download "Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 1"

Transcription

1 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 1 This print-out should have 25 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Hewitt CP9 02 E points A ball rolls across the top of a billiard table and slowly comes to a stop. How would Aristotle interpret this observation? How would Galileo interpret it? 1. They both would say that it comes to rest because of some forces acting on it; likely friction between the ball and table surface and with the air. 2. They both would say that the ball comes to rest because the ball seeks its natural state of rest. 3. Galileo would say that the ball comes to rest because the ball seeks its natural state of rest. Aristotle would likely have said it comestorest becauseofsomeforcesactingon it; likely friction between the ball and table surface and with the air. 4. All are wrong. 5.Aristotlewouldsay thattheballcomesto rest because the ball seeks its natural state of rest. Galileowouldlikelyhavesaiditcomesto rest because of some forces acting on it; likely friction between the ball and table surface and with the air. correct In Aristotle s view, every object in the universe has a proper place; any object not in its proper place will strive to get there; so Aristotlewouldsaythattheballcomestorest because the ball seeks its natural state of rest. In Galileo s view, a moving object will keep moving in a straight line forever unless there isaninterference withit; sogalileowouldsay that the ball comes to rest because of some forces acting on it; likely friction between the ball and table surface and with the air. Hewitt CP9 02 E points What Aristotelian idea did Galileo discredit in his fabled Leaning Tower demonstration? 1. All are wrong. 2. He discredited Aristotle s idea that the rateat whichbodiesfallisnot relatedtotheir weight. 3. He discredited Aristotle s idea that the rate at which bodies fall is inversely proportional to their weight. 4. He discredited Aristotle s idea of gravitation. 5. He discredited Aristotle s idea that the rate at which bodies fall is directly proportional to their weight. correct Galileo is said to have dropped objects of various weights from the top of the Leaning Tower of Pisa and compared their falls. Contrary to Aristotle s assertion that the rate at which bodies fall is directly proportional to their weight, Galileo found that a stone twice as heavy as another did not fall twice as fast. Hewitt CP9 02 E points Aspaceprobeiscarriedbyarocketintoouter space where it continues to move on its own in a straight line. What keeps the probe moving? 1. None of these 2. The gravitation forces from different stars and planets 3. a propeller 4. Nothing; the probe will eventually stop. 5. Nothing specific; in the absence of forces it would continue moving in a straight line. correct

2 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 2 According to the law of inertia, every object remains at rest, or remains in motion with constant velocity in a straight line unless external forces act on it; so inertia keeps the probe moving in outer space. Hewitt CP9 02 E points Consider a ball at rest in the middle of a toy wagon. When the wagon is pulled forward, what is the motion of the ball? 1. From a point of view outside the wagon, theballstaysinplaceasthebackofthewagon moves toward it; because of friction, the ball may roll along the cart surface. correct 2. All are wrong. 3.Theballwillstaywhereitwas;thesurface would slide beneath the ball. 4. The ball will move faster than the wagon. 5. The ball will stay at rest on the wagon. Because of friction, the ball may roll along the cart surface. From a viewpoint outside the wagon, the ball stays in place as the back of the wagon moves forward toward the ball. Hewitt CP9 02 E points Can an object be in mechanical equilibrium when only a single force acts on it? Explain. 1. Yes; asingle force isnecessary tokeep the object in mechanical equilibrium. 2.Yes;theobjectwillactbackwithanequal and opposite force. 3. No; even one force is too much. There should be no forces acting on an object. 4. None of these 5. No; at least one other force is needed to cancel the action of the first force. correct The sum of the forces acting on an object in equilibrium has to equal zero. Since only a single force acts on the object, it cannot be in equilibrium. Hewitt CP9 02 E points A hockey puck slides across the ice at a constant speed. Which of the following is true? 1. It is in equilibrium. correct 2. None of these 3. The puck is at rest. 4. The puck can be considered neither at rest nor in equilibrium. 5. The puck is moving and thus not in equilibrium. If the puck moves in a straight line with unchanging speed, the forces of friction are negligible. Then the net force is zero, and the puck can be considered to be in equilibrium. Hewitt CP9 02 E points A staging that weighs W staging supports a painter weighing 490 N. The reading on the leftscaleis360nandthereadingontheright scale is 210 N. 360 N 210 N What is the weight of the staging? Correct answer: 80 N.

3 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) N 210 N In the left figure, Harry is supported by two strands of rope that share his weight, so each strand supports only 365 N, below the breaking point. Total upward force supplied by the ropes equals weight acting downward, giving a net force of zero and no acceleration. 490 N W staging From the equilibrium rule, Fi = F l +F r W staging W man = 0, so W staging = +F l +F r W man = (360 N)+(210 N) (490 N) = 80 N. Hewitt CP9 02 E (part 1 of 2) 10.0 points Harry the painter swings year after year from his bosun s chair. His weight is 730 N andtherope, unknowntohim,hasabreaking point of 415 N. 009 (part 2 of 2) 10.0 points One day Harry is painting near a flagpole, and, for a change, he ties the free end of the rope to the flagpole instead of to his chair as shown at the right. Why did Harry end up taking his vacation early? To answer this, find the tension in the rope. Correct answer: 730 N. In the right figure, Harry is now supported by one strand, requiring the tension to be 730 N. Since this is above the breaking point of the rope, it breaks. Hewitt CP9 02 E points When you pull horizontally on a crate with a force of 260 N, it slides across the floor in dynamic equilibrium. How much friction acts on the crate? Correct answer: 260 N. Friction on the cart has to be 260 N, opposite to your 260 N pull. Why doesn t the rope break when he is supported as shown at the left above? To answer this, find the tension in the rope. Correct answer: 365 N. Hewitt CP9 02 E points A child learns in school that the Earth is traveling faster than 100,000 kilometers per hour around the sun, and in a frightened tone asks why we aren t swept off. What statement about the motion of the Earth is, on average, true? 1. All are wrong. 2. We are traveling faster than the Earth.

4 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 4 3. We are traveling just as fast as the Earth. correct 4. We are traveling slower than the Earth. 5. The Earth rotates on its own axis. We aren t swept off because we are traveling just as fast as the Earth, just as in a fast moving vehicle we move along with the vehicle. Also, there is no atmosphere through which the Earth moves, which would do more than blow our hats off! Hewitt CP9 02 E points The chimney of a stationary toy train consists of a vertical spring gun that shoots steel balls a meter or so straight into the air so straight that the ball always falls back into the chimney. If the train is moving, under which condition will the ball fall back into the chimney? 1. The train suddenly increases its speed when the ball is in the air. 2. All are wrong. 3. The train moves at a constant speed on a circular track. 4. The train suddenly decreases its speed when the ball is in the air. 5. The train moves at constant speed along the straight track. correct If the toy train continues to move in a straight line with constant velocity, the steel ball will fall back into the chimney. Hewitt CP9 03 E points What is the impact speed when a car moving at 200 km/h bumps into the rear of another car traveling in the same direction at 87 km/h? Correct answer: 113 km/h. Let : v 1 = 87 km/h and v 2 = 200 km/h. The impact speed will be the relative speed v rel = v 2 v 1 = 113 km/h. Hewitt CP9 03 E points You are stopped for speeding. Which of the following is your traffic fine based on? 1. instantaneous speed correct 2. linear speed 3. circle speed 4. average speed 5. None of these Your fine for speeding is based on your instantaneous speed; the speed registered on a speedometer or a radar gun. Hewitt CP9 03 E points Light travels in a straight line at a constant speed of 300,000 m/s. What is the acceleration of light? 1. All are wrong ,000 m/s m/s m/s m/s 2 correct

5 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 5 Constant velocity means no acceleration, so the acceleration of light is zero. Hewitt CP9 03 E points Can an object reverse its direction of travel while maintaining a constant acceleration? 1. No; if the acceleration is constant, the direction of the speed remains unchanged. 2. All are wrong. 3. Yes; a ball thrown toward a wall bounces back from the wall. 4. Yes; a ball tossed upward reverses its direction of travel at its highest point. correct 5. No; the direction of the speed is always the same as the direction of the acceleration. Velocity and acceleration need not be in the same direction. When a ball is tossed upward it experiences a constant acceleration directed downward. Hewitt CP9 03 E points A dragster maintains a speedometer reading of 100 km/h as it passes around a curve that has a constant radius. 2. The dragster rounds the curve with a changing velocity that has a changing magnitude. 3. The dragster rounds the curve with a constant velocity that has a magnitude of 100 km/h. 4. All are wrong. 5. The dragster rounds the curve with a changing velocity that has a magnitude of 100 km/h. correct The direction of the velocity is changing as the car rounds the curve, but the driver maintains a constant speed or magnitude of the velocity of 100 km/h. Hewitt CP9 03 E points Suppose that three balls are rolled simultaneously from the topof a hill along the slopes as shown below Which one reaches the bottom first? 1. 1 and correct 3. 2 and and 2 6. They reach the bottom at the same time. Which statement is true? 1. The dragster rounds the curve with a changing speed that has a magnitude of 100 km/h The ball on the left gains speed quickly at the beginning, where the slope is steeper, so

6 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 6 itsaveragespeed isgreater even thoughithas less acceleration in the last part of its trip. Hewitt CP9 03 E points Which of the following is correct? 1. Air resistance is as effective in slowing a feather as a coin. 2. Air resistance is more effective in slowing a feather than a coin. correct 3. Air resistance is less effective in slowing a feather than a coin. 4. In free fall, air resistance is more effective in slowing a feather than a coin. 5. All are wrong. A feather has a very large surface area, so air resistance is more effective in slowing a feather than a coin. Hewitt CP9 03 E points If you drop an object, its acceleration toward the ground is 10 m/s 2. If you throw it down instead, what is its acceleration? 1. Smaller than 10 m/s 2 2. It depends on the force of throwing. 3. Greater than 10 m/s m/s 2 correct 5. All are wrong. If air resistance is not a factor, its acceleration is the same (10 m/s 2 ) regardless of its initial velocity. Thrown downward, its velocity will be greater at all positions, but not its acceleration. Hewitt CP9 03 P points What is the acceleration of a vehicle that changes its velocity from 200 km/h to a dead stop in 30 s? Correct answer: m/s 2. Let : v 0 = 200 km/h, v f = 0km/h, and t = 30 s. The acceleration is a = v t = v f v 0 t km/h = 30 s 1 min 60 s = m/s m 1km 1 h 60 min Hewitt CP9 03 P (part 1 of 2) 10.0 points A ball is thrown straight up with an initial speed of 60 m/s. How high does it go? Assume the acceleration of gravity is 10 m/s 2. Correct answer: 180 m. Let : v = 60 m/s and g = 10 m/s 2. Using one of the kinematic equations, v 2 = v gh Since the ball is stopped at the top of its path, v = 0, so we therefore have, h = v2 2g ( (60 m/s) 2 ) = 2( 10 m/s 2 ) = 180 m

7 Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) (part 2 of 2) 10.0 points How long is it in the air? Correct answer: 12 s. Using the fact that the ball starts and ends at h = 0, the kinematic equation for y gives us t 2 = 656 km 1000 m = s, 738 m/s km so the total time is s. v = total distance total time = m/s. = 2(656 km) s 1000 m km y = 1 2 gt2 +v 0 t 0 = 1 2 gt2 +v 0 t ( = t 1 ) 2 gt+v 0 The only way that this can be zero is if one of the two factors is zero. Since t = 0 corresponds to the ball initially leaving the ground, we therefore have 0 = 1 2 gt+v 0. Therefore, t = 2v 0 g 2(60 m/s) = 10 m/s 2 = 12 s Hewitt CP9 03 P points A reconnaissance plane flies 656 km away from its base at 492 m/s, then flies back to its base at 738 m/s. What is its average speed? Hewitt CP9 03 P points If there were no air resistance, with what speed would drops hit the Earth if they fell from a cloud 3122 m above the Earth s surface? The acceleration of gravity is 10 m/s 2. Correct answer: m/s. Drops would be in free fall and accelerate at 10 m/s 2. We need to find the time of fall: d = 1 2 gt2 t = 2d g = = s. The gain in speed is 2(3122 m) 10 m/s 2 gt = (10 m/s 2 )( s) = m/s. Correct answer: m/s. Let : s = 656 km, v 1 = 492 m/s, and v 2 = 738 m/s. t 1 = 656 km 1000 m 492 m/s km = s and

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others.

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others. Quest Chapter 04 # Problem Hint 1 A ball rolls across the top of a billiard table and slowly comes to a stop. How would Aristotle interpret this observation? How would Galileo interpret it? 1. Galileo

More information

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

Conceptual Physical Science

Conceptual Physical Science Hewitt/Suchocki/Hewitt Conceptual Physical Science Fourth Edition Chapter 1: PATTERNS OF MOTION AND EQUILIBRIUM This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass

More information

9/5/17. Aristotle on Motion. Galileo's Concept of Inertia. Galileo's Concept of Inertia

9/5/17. Aristotle on Motion. Galileo's Concept of Inertia. Galileo's Concept of Inertia Aristotle on Motion Aristotle classified motion into two kinds: Natural motion motion that is straight up or straight down Violent motion imposed motion resulting from an external push or pull Galileo's

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Aristotle s Ideas of Motion. Conceptual Physics 11 th Edition. Galileo s Concept of Inertia. Aristotle s Ideas of Motion. Galileo s Concept of Inertia

Aristotle s Ideas of Motion. Conceptual Physics 11 th Edition. Galileo s Concept of Inertia. Aristotle s Ideas of Motion. Galileo s Concept of Inertia Aristotle s Ideas of Motion Conceptual Physics 11 th Edition Chapter 2: NEWTON S FIRST LAW OF MOTION INERTIA Natural motion (continued) Straight up or straight down for all things on Earth. Beyond Earth,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Phys 111 Exam 1 September 22, 2015

Phys 111 Exam 1 September 22, 2015 Phys 111 Exam 1 September 22, 2015 1. The time T required for one complete oscillation of a mass m on a spring of force constant k is T = 2π m k. Find the dimension of k to be dimensionally correct for

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k Name: Class: Date: Exam 2--PHYS 101-F08 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. You put your book on the seat next to you. When the bus stops,

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

Chapter 2: Newton's First Law of Motion Inertia

Chapter 2: Newton's First Law of Motion Inertia Lecture Outline Chapter 2: Newton's First Law of Motion Inertia This lecture will help you understand: Aristotle's Ideas of Motion Galileo's Concept of Inertia Newton's First Law of Motion Net Force and

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion Multiple-Choice Questions 1) Whereas Aristotle relied on logic in explaining nature, Galileo relied on A) observation. B) patterns.

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 3: LINEAR MOTION This lecture will help you understand: Motion Is Relative Speed : Average and Instantaneous Velocity Acceleration Free Fall Motion Is Relative

More information

Conceptual Physics, 12e (Hewitt) Chapter 2 Newton's First Law of Motion: Inertia. 2.1 Multiple-Choice Questions

Conceptual Physics, 12e (Hewitt) Chapter 2 Newton's First Law of Motion: Inertia. 2.1 Multiple-Choice Questions Conceptual Physics, 12e (Hewitt) Chapter 2 Newton's First Law of Motion: Inertia 2.1 Multiple-Choice Questions 1) The earliest and most influential Greek philosopher was Aristotle, who among many contributions

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Force Concept Inventory

Force Concept Inventory Force Concept Inventory 1. Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant of time. The time

More information

Physics 10. Lecture 3A

Physics 10. Lecture 3A Physics 10 Lecture 3A "Your education is ultimately the flavor left over after the facts, formulas, and diagrams have been forgotten." --Paul G. Hewitt Support Forces If the Earth is pulling down on a

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.) Newton s Laws 1) Inertia - objects in motion stay in motion 2) F=ma 3) Equal and opposite reactions Newton's 1 st Law What is the natural state of motion of an object? An object at rest remains at rest,

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Physics Test Review: Mechanics Session: Name:

Physics Test Review: Mechanics Session: Name: Directions: For each statement or question, write in the answer box, the number of the word or expression that, of those given, best completes the statement or answers the question. 1. The diagram below

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM)

Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) Letter Comprehensive Exam Session III Classical Mechanics Physics Department- Proctor: Dr. Jack Straton (Sun. Jan 11 th, 2015) (3 hours long 1:00 to 4:00 PM) If you cannot solve the whole problem, write

More information

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013 Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

More information

Physics Final Practice Exam Part 1

Physics Final Practice Exam Part 1 Physics Final Practice Exam Part 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics?

More information

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master:

INSTRUCTIONS FOR USE. This file can only be used to produce a handout master: INSTRUCTIONS FOR USE This file can only be used to produce a handout master: Use print from the File menu to make a printout of the test. You may not modify the contents of this file. IMPORTANT NOTICE:

More information

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives 19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who

More information

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS

FATHER AGNEL SCHOOL, VAISHALI CLASS IX QUESTION BANK PHYSICS Topic : MOTION 1. Define acceleration and state its SI unit. For motion along a straight line, when do we consider the acceleration to be (i) positive (ii) negative? Give an example of a body in uniform

More information

3 Newton s First Law of Motion Inertia. Forces cause changes in motion.

3 Newton s First Law of Motion Inertia. Forces cause changes in motion. Forces cause changes in motion. A ball at rest in the middle of a flat field is in equilibrium. No net force acts on it. If you saw it begin to move across the ground, you d look for forces that don t

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A. Something more than its weight B. Equal to its weight C. Something less than its weight but more than zero

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

Exam 2--PHYS 101--F17

Exam 2--PHYS 101--F17 Name: Exam 2--PHYS 0--F7 Multiple Choice Identify the choice that best completes the statement or answers the question.. A ball is thrown in the air at an angle of 30 to the ground, with an initial speed

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Physics 103, Practice Midterm Exam 2

Physics 103, Practice Midterm Exam 2 Physics 103, Practice Midterm Exam 2 1) A rock of mass m is whirled in a horizontal circle on a string of length L. The period of its motion is T seconds. If the length of the string is increased to 4L

More information

Study Guide For Midterm - 25 weeks Physics Exam. d. the force exerted by a towing cable on the car. c. the upward force the road exerts on the car.

Study Guide For Midterm - 25 weeks Physics Exam. d. the force exerted by a towing cable on the car. c. the upward force the road exerts on the car. Name: Class: Date: ID: A Study Guide For Midterm - 25 weeks Physics Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the

More information

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam Version B, February 26, Name (Please print) Physics 116A, Section 2, Second Exam Version B, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the

More information

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print)

Physics 116A, Section 2, Second Exam A, February 26, Name (Please print) Physics 116A, Section 2, Second Exam A, February 26, 2008 Name (Please print) Mulitiple choice questions are worth 3 points each. Mark your answers in the space provided at the right, and on the OPSCAN

More information

Chapter 4: Newton's Second Law of Motion

Chapter 4: Newton's Second Law of Motion Lecture Outline Chapter 4: Newton's Second Law of Motion This lecture will help you understand: Force Causes Acceleration Friction Mass and Weight Newton's Second Law of Motion Free Fall Nonfree Fall Force

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION This lecture will help you understand: Newton s First Law of Motion Newton s Second Law of Motion Forces and Interactions Newton s Third

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

3 Newton s First Law of Motion Inertia. Forces cause changes in motion.

3 Newton s First Law of Motion Inertia. Forces cause changes in motion. Forces cause changes in motion. A ball at rest in the middle of a flat field is in equilibrium. No net force acts on it. If you saw it begin to move across the ground, you d look for forces that don t

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds.

5. Use the graph below to determine the displacement of the object at the end of the first seven seconds. Name: Hour: 1. The slope of the tangent on a position-time graph equals the: Sem 1 Exam Review Advanced Physics 2015-2016 2. The area under the curve on a velocity-time graph equals the: 3. The graph below

More information

Newton s First Law of Motion

Newton s First Law of Motion Newton s First Law of Motion Learning Target Target 1: Use Newton s Laws of Motion to describe and predict motion Explain, draw and interpret force vector diagrams Predict direction and magnitude of motion

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

Physics 20 Practice Problems for Exam 1 Fall 2014

Physics 20 Practice Problems for Exam 1 Fall 2014 Physics 20 Practice Problems for Exam 1 Fall 2014 Multiple Choice Short Questions (1 pt ea.) Circle the best answer. 1. An apple falls from a tree and hits the ground 5 meters below. It hits the ground

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

Choose the correct answer:

Choose the correct answer: Choose the correct answer: 1. An object moves at a constant speed of 6 m/s. This means that the object (a) Decreases its speed by 6 m/s every second (b) Doesn t move (c) Has a positive acceleration (d)

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems. Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Forces. A force is a push or a pull on an object

Forces. A force is a push or a pull on an object Forces Forces A force is a push or a pull on an object Arrows are used to represent forces. The direction of the arrow represent the direction the force that exist or being applied. Forces A net force

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014

Name: Class: 903 Active Physics Winter Break Regents Prep December 2014 In this section use the following equations for velocity and displacement to solve: 1. In a drill during basketball practice, a player runs the length of the 30.meter court and back. The player does this

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ]

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ] Chapter 8 : Motion KEY CONCEPTS [ *rating as per the significance of concept ] 1 Motion **** 2 Graphical Representation of Motion *** & Graphs 3 Equation of motion **** 4 Uniform Circular Motion ** 1 Motion

More information

Inertia and. Newton s First Law

Inertia and. Newton s First Law 5.1 Inertia and Newton s First Law SECTION Apply Newton s laws of motion to explain inertia. Evaluate appropriate processes for problem solving and decision making. KEY TERMS OUTCOMES classical/newtonian

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

6.1 Force Causes Acceleration. Unbalanced forces acting on an object cause the object to accelerate. Recall the definition of acceleration:

6.1 Force Causes Acceleration. Unbalanced forces acting on an object cause the object to accelerate. Recall the definition of acceleration: Recall the definition of acceleration: An object accelerates when a net force acts on it. The cause of acceleration is force. 6.1 Force Causes Acceleration Unbalanced forces acting on an object cause the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Review PHYS114 Chapters 4-7

Review PHYS114 Chapters 4-7 Review PHYS114 Chapters 4-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it. Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

Assignment 6 solutions

Assignment 6 solutions Assignment 6 solutions 1) You are traveling on a hilly road. At a particular spot, when your car is perfectly horizontal, the road follows a circular arc of some unknown radius. Your speedometer reads

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act?

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act? Quest Chapter 05 1 How would your mass change if you took a trip to the space station? 1. decreases; you weigh less. 2. increases; you weigh more. 3. no change in mass 2 (part 1 of 3) You are driving a

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information