Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances

Size: px
Start display at page:

Download "Chapter 2 Motion Speed Speed. Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances"

Transcription

1 Chapter 2 Motion 2-1. Speed 2-2. Vectors 2-3. Acceleration 2-4. Distance, Time, and Acceleration 2-5. Free Fall System 2-6. Air Resistance 2-7. First Law of Motion 2-8. Mass 2-9. Second Law of Motion Mass and Weight Third Law of Motion Circular Motion Newton's Law of Gravity Artificial Satellites 2-1. Speed Definitions: Speed The rate at which something moves a given distance. Faster speeds = greater distances General formula for speed: Speed = distance / time Abbreviations commonly used: d = distance t = time v = speed v = d/t 2-1. Speed Velocity d 100miles miles v = = = 40 = 40mph t 2.5hours hour Distance miles ( ) 6hours miles d = v t = 30 = 180 hour Time d 100miles miles t = = = 2.5 = 2. 5hours v 40miles / hour miles / hour 1

2 2-1. Speed Average speed is the total distance traveled by an object divided by the time taken to travel that distance. Instantaneous speed is an object's speed at a given instant of time Vectors Magnitude of a quantity tells how large the quantity is. Scalar quantities have magnitude only. Vector quantities have both magnitude and direction Vectors Velocity is a vector quantity that includes both speed and direction. 2

3 2-3. Acceleration Acceleration of an object is the rate of change of its velocity and is a vector quantity. For straight-line motion, average acceleration is the rate of change of speed: change in speed Accelerati on = time interval vf vi a = t 2-3. Acceleration 3 Types of Acceleartion Speeding Up Slowing Down Turning 2-4. Distance, Time and Acceleration V avg = (V 1 + V 2 ) 2 (20 mph + 60 mph ) = 40mph 2 d = v avg t d = ½at 2 30 mph 2 hr = 60 miles ½ 10 m/s/s 5 2 = 125 m 3

4 2-5. Free Fall The acceleration of gravity (g) for objects in free fall at the earth's surface is 9.8 m/s 2. Galileo found that all things fall at the same rate Free Fall The rate of falling increases by 9.8 m/s every second. Height = ½ gt 2 For example: ½ (9.8 )1 2 = 4.9 m ½(9.8)2 2 = 19.6 m ½ (9.8)3 2 = 44.1 m ½ (9.8)4 2 = 78.4 m 2-5. Free Fall A ball thrown horizontally will fall at the same rate as a ball dropped directly. 4

5 2-5. Free Fall A ball thrown into the air will slow down, stop, and then begin to fall with the acceleration due to gravity. When it passes the thrower, it will be traveling at the same rate at which it was thrown Free Fall An object thrown upward at an angle to the ground follows a curved path called a parabola Air Resistance In air A stone falls faster than a feather Air resistance affects stone less In a vacuum A stone and a feather will fall at the same speed. 5

6 2-6. Air Resistance Free Fall A person in free fall reaches a terminal velocity of around 54 m/s With a parachute, terminal velocity is only 6.3 m/s Allows a safe landing 2-6. Air Resistance Ideal angle for a projectile In a vacuum, maximum distance is at an angle of 45 o With air resistance (real world), angle is less Baseball will go furthest hit at an angle of around 40 o 2-7. First Law of Motion The first law of motion states: If no net force acts on it, an object at rest remains at rest and an object in motion remains in motion at a constant velocity. 6

7 Foucault Pendulum Inertia keeps a pendulum swinging in the same direction regardless of the motion of the earth. This can be used to measure the motion of the earth. As the Foucault Pendulum swings it appears to be rotating, but it is the earth that is rotating under it. To the right is the Foucault Pendulum at the Pantheon in Paris, France. Foucault Pendulum Other Web sites that illustrate the Foucault Pendulum. pendulum.html page7.htm KkM 2-8. Mass Inertia is the apparent resistance an object offers to any change in its state of rest or motion. 7

8 2-9. Second Law of Motion Newton's second law of motion states: The net force on an object equals the product of the mass and the acceleration of the object. The direction of the force is the same as that of the acceleration. F = Ma 2-9. Second Law of Motion A force is any influence that can cause an object to be accelerated. The pound (lb) is the unit of force in the British system of measurement: 1 lb = 4.45 N (1 N = lb) 2 1newton = 1 N = 1(kg)(m/s ) Mass and Weight Weight Definition: The force with which an object is attracted by the earth s gravitational pull Example: A person weighing 160 lbs is being pulled towards the earth with a force of 160 lbs (712 N). Near the earth s surface, weight and mass are essentially the same Weight = (mass)(acceleration of w = mg gravity) 8

9 2-11. Third Law of Motion The third law of motion states: When one object exerts a force on a second object, the second object exerts an equal force in the opposite direction on the first object Third Law of Motion Examples of the 3 rd Law Circular Motion Centripetal force is the inward force exerted on an object to keep it moving in a curved path. Centrifugal force is the outward force exerted on the object that makes it want to fly off into space. 9

10 2-12. Circular Motion Circular Motion 833 N is needed to make this turn. If he goes too fast, which wheels are likely to come off the ground first? Newton's Law of Gravity Gravitational force Gm m = F = R G = 6.67 x N m/kg 2 10

11 2-13. Newton's Law of Gravity How can we determine the mass of the earth using an apple? This illustrates the way scientists can use indirect methods to perform seemingly impossible tasks Newton's Law of Gravity How can we determine the mass of the earth using an apple? This illustrates the way scientists can use indirect methods to perform seemingly impossible tasks Gravitational force on apple GmM = mg R = F = gr (9.8 m / s )( m) 24 M = = = 6 10 kg G N m / kg Artificial Satellites The world's first artificial satellite was Sputnik I, launched in 1957 by the Soviet Union. GPS-Global Positioning Satellite 11

12 2-15. Artificial Satellites The escape speed is the speed required by an object to leave the gravitational influence of an astronomical body; for earth this speed is about 40,000 km/h Artificial Satellites The escape speed is the speed required by an object to leave the gravitational influence of an astronomical body; for earth this speed is about 40,000 km/h. Lecture Quiz 2 1. What are Newton s three laws of motion? 2. What is the acceleration due to gravity? 3. What is the difference between mass and weight? 4. What is the difference between centripetal and centrifugal forces? 5. What is the equation for Newton s law of gravity? 12

13 Lecture Quiz 2 1. What are Newton s three laws of motion? 1) Things have tendency to stay in constant motion. (Inertia) 2) F=ma 3) For every action, equal opposite reaction. 2. What is the acceleration due to gravity? 9.8 m/s 2 or 32 ft/s 2 3. What is the difference between mass and weight? Weight is due to the force of gravity and mass is the amount of matter and is the same everywhere regardless of the force of gravity. Lecture Quiz 2 4. What is the difference between centripetal and centrifugal forces? Centripital-inward force Centrifugal-outward force 5. What is the equation for Newton s law of gravity? G m 1 m 2 F= R 2 13

14 Lecture Quiz 2 1. How far can you go with a velocity of 20 miles/hour for 4 hours? 2. How far would you fall in 4 seconds? 3. What are the three types of acceleration? 4. What causes the Foucault Pendulum to swing in different directions? 5. What is Newton s second law of motion? Lecture Quiz 2 How far can you go with a velocity of 20 miles/hour for 4 hours? 20mi/hr x 4hr = 80 miles How far would you fall in 4 seconds? ½ (9.8)42 = 78.4 m What are the three types of acceleration? speed up, slow down, turn What causes the Foucault Pendulum to swing in different directions? rotation of earth What is Newton s second law of motion? F=ma Lecture Quiz 2 4. What is the difference between centripetal and centrifugal forces? Centripetal force is an attractive force between the center and the revolving body. Centrifugal force is the repulsive force between the center and the revolving body or the inertia to travel in a straight line. 5. What is the equation for Newton s law of gravity? Gravitational force = F = Gm m R

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Basic Physics 29:008 Spring 2005 Exam I

Basic Physics 29:008 Spring 2005 Exam I Exam I solutions Name: Date: 1. Two cars are moving around a circular track at the same constant speed. If car 1 is at the inner edge of the track and car 2 is at the outer edge, then A) the acceleration

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

More examples: Summary of previous lecture

More examples: Summary of previous lecture More examples: 3 N Individual Forces Net Force 5 N 37 o 4 N Summary of previous lecture 1 st Law A net non zero force is required to change the velocity of an object. nd Law What happens when there is

More information

Physics Midterm Review Sheet

Physics Midterm Review Sheet Practice Problems Physics Midterm Review Sheet 2012 2013 Aswers 1 Speed is: a a measure of how fast something is moving b the distance covered per unit time c always measured in units of distance divided

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Chapter 3 Laws of Motion

Chapter 3 Laws of Motion Conceptual Physics/ PEP Name: Date: Chapter 3 Laws of Motion Section Review 3.1 1. State Newton s first law in your own words. An object at rest will stay at rest until an outside force acts on it to move.

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Practice Test Chapter 2 Forces and Motion

Practice Test Chapter 2 Forces and Motion Practice Test Chapter 2 Forces and Motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What happens when a moving bumper car hits a bumper car at rest?

More information

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

More information

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a. Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Gravitation 1. Each of five satellites makes a circular orbit about an object that is much more massive than any of the satellites. The mass and orbital radius of each

More information

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity

Gravity and Orbits. Objectives. Clarify a number of basic concepts. Gravity Gravity and Orbits Objectives Clarify a number of basic concepts Speed vs. velocity Acceleration, and its relation to force Momentum and angular momentum Gravity Understand its basic workings Understand

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Who was Isaac Newton?

Who was Isaac Newton? Forces & Motion Who was Isaac Newton? Born: December 25, 1643 in England (the same year Galileo died) knighted by Queen Anne in 1705 to become Sir Isaac Newton at age 64 The first person to describe universal

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction)

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Ch. 12 - Forces & Motion Force --> a push or a pull that acts on an object Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Force is measured

More information

Unit 2: Forces Chapter 6: Systems in Motion

Unit 2: Forces Chapter 6: Systems in Motion Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

More information

II. Universal Gravitation - Newton 4th Law

II. Universal Gravitation - Newton 4th Law Periodic Motion I. Circular Motion - kinematics & centripetal acceleration - dynamics & centripetal force - centrifugal force II. Universal Gravitation - Newton s 4 th Law - force fields & orbits III.

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

Circular Orbits. Slide Pearson Education, Inc.

Circular Orbits. Slide Pearson Education, Inc. Circular Orbits The figure shows a perfectly smooth, spherical, airless planet with one tower of height h. A projectile is launched parallel to the ground with speed v 0. If v 0 is very small, as in trajectory

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law of Motion Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law: Football Correlation Newton s 2 nd Law of Motion What is the difference between tossing a ball and throwing

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the

More information

Matter, Force, Energy, Motion, and the Nature of Science (NOS)

Matter, Force, Energy, Motion, and the Nature of Science (NOS) Matter, Force, Energy, Motion, and the Nature of Science (NOS) Elementary SCIEnCE Dr. Suzanne Donnelly Longwood University donnellysm@longwood.edu Day 3: Morning schedule Problem-Based Learning (PBL) What

More information

Physics Final Practice Exam Part 1

Physics Final Practice Exam Part 1 Physics Final Practice Exam Part 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics?

More information

Unit Assessment: Relationship Between Force, Motion, and Energy

Unit Assessment: Relationship Between Force, Motion, and Energy Assessment Unit Assessment: Relationship Between Force, Motion, and Energy Instructions Check your understanding with this assessment. 1) Lifting a 20,000 N anvil one meter requires 20,000 joules (newtons/meter).

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion

Natural Questions. About 2000 years ago Greek scientists were confused about motion. and developed a theory of motion Natural Questions First natural question: Next question: What these things made of? Why and how things move? About 2000 years ago Greek scientists were confused about motion. Aristotle --- First to study

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

Physics Revision Guide Volume 1

Physics Revision Guide Volume 1 Physics Revision Guide Volume 1 "Many people do not plan to fail, they just fail to plan!" Develop a customized success plan Create necessity in you to take action now Boost your confidence in your revision

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The

More information

Chapter 4: Newton's Second Law of Motion

Chapter 4: Newton's Second Law of Motion Lecture Outline Chapter 4: Newton's Second Law of Motion This lecture will help you understand: Force Causes Acceleration Friction Mass and Weight Newton's Second Law of Motion Free Fall Nonfree Fall Force

More information

Unit 5 Circular Motion and Gravitation

Unit 5 Circular Motion and Gravitation Unit 5 Circular Motion and Gravitation In the game of tetherball, the struck ball whirls around a pole. In what direction does the net force on the ball point? 1) Tetherball 1) toward the top of the pole

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0

6. Find the centripetal acceleration of the car in m/s 2 a b c d e. 32.0 PHYSICS 5 TEST 2 REVIEW 1. A car slows down as it travels from point A to B as it approaches an S curve shown to the right. It then travels at constant speed through the turn from point B to C. Select

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it. Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

More information

Newton s first law. Projectile Motion. Newton s First Law. Newton s First Law

Newton s first law. Projectile Motion. Newton s First Law. Newton s First Law Newton s first law Projectile Motion Reading Supplemental Textbook Material Chapter 13 Pages 88-95 An object at rest tends to stay at rest and an object in motion tends to stay in motion with the same

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

4.8 The Normal Force. Apparent Weight

4.8 The Normal Force. Apparent Weight 4.8 The Normal Force Apparent Weight Definition: The apparent weight of an object is the reading of the scale. It is equal to the normal force the man exerts on the scale. For a man standing on a scale

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Lecture 9 Chapter 13 Gravitation. Gravitation

Lecture 9 Chapter 13 Gravitation. Gravitation Lecture 9 Chapter 13 Gravitation Gravitation UNIVERSAL GRAVITATION For any two masses in the universe: F = Gm 1m 2 r 2 G = a constant evaluated by Henry Cavendish +F -F m 1 m 2 r Two people pass in a hall.

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Physics 100 Reminder: for on-line lectures

Physics 100 Reminder:  for on-line lectures Physics 100 Reminder: http://www.hunter.cuny.edu/physics/courses/physics100/fall-2016 for on-line lectures Today: Finish Chapter 3 Chap 4 - Newton s Second Law In Chapter 4, we establish a relationship

More information

First few slides are additional review problems from Chs. 1 and 2. WEST VIRGINIA UNIVERSITY Physics

First few slides are additional review problems from Chs. 1 and 2. WEST VIRGINIA UNIVERSITY Physics First few slides are additional review problems from Chs. 1 and 2 Average Speed A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 35

More information

The Laws of Motion. Before You Read. Science Journal

The Laws of Motion. Before You Read. Science Journal The Laws of Motion Before You Read Before you read the chapter, use the What I know column to list three things you know about motion. Then list three questions you have about motion in the What I want

More information

Newton s Laws.

Newton s Laws. Newton s Laws http://mathsforeurope.digibel.be/images Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. dynamic equilibrium: moving relative to us static equilibrium: appears

More information

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.) Newton s Laws 1) Inertia - objects in motion stay in motion 2) F=ma 3) Equal and opposite reactions Newton's 1 st Law What is the natural state of motion of an object? An object at rest remains at rest,

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions

Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion. Multiple-Choice Questions Conceptual Integrated Science, 2e (Hewitt et al.) Chapter 2 Describing Motion Multiple-Choice Questions 1) Whereas Aristotle relied on logic in explaining nature, Galileo relied on A) observation. B) patterns.

More information

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Chapter 6. Circular Motion and Other Applications of Newton s Laws Chapter 6 Circular Motion and Other Applications of Newton s Laws Circular Motion Two analysis models using Newton s Laws of Motion have been developed. The models have been applied to linear motion. Newton

More information

Conceptual Physical Science

Conceptual Physical Science Hewitt/Suchocki/Hewitt Conceptual Physical Science Fourth Edition Chapter 1: PATTERNS OF MOTION AND EQUILIBRIUM This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass

More information

An object moving in a circle with radius at speed is said to be undergoing.

An object moving in a circle with radius at speed is said to be undergoing. Circular Motion Study Guide North Allegheny High School Mr. Neff An object moving in a circle with radius at speed is said to be undergoing. In this case, the object is because it is constantly changing

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 4 Main points of last lecture Scalars vs. Vectors Vectors A: (A x, A y ) or A & θ Addition/Subtraction Projectile Motion X-direction: a x = 0 (v x = constant)

More information

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35 Summary Newton s law of gravity describes the gravitational force between A. the earth and the

More information

Note on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force?

Note on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force? Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 14, 014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

The Laws of Motion. Newton s Second Law

The Laws of Motion. Newton s Second Law The Laws of Motion Newton s Second Law Key Concepts What is Newton s second law of motion? How does centripetal force affect circular motion? What do you think? Read the two statements below and decide

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.)

3) Which of the following quantities has units of a displacement? (There could be more than one correct choice.) FLEX Physical Sciences AP Physics 1 (Honors Physics) Final Homework Exam 1) A toy rocket is launched vertically from ground level at time t = 0 s. The rocket engine provides constant upward acceleration

More information

Review. First Law Review

Review. First Law Review First Law Review 1. Wile E. Coyote runs off the cliff. He correctly follows Newton s law because he was moving forward, so he continues to move forward. However, he now has an unbalanced force acting down

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Forces. A force is a push or a pull on an object

Forces. A force is a push or a pull on an object Forces Forces A force is a push or a pull on an object Arrows are used to represent forces. The direction of the arrow represent the direction the force that exist or being applied. Forces A net force

More information

3 UCM & Gravity Student Physics Regents Date

3 UCM & Gravity Student Physics Regents Date Student Physics Regents Date 1. Which diagram best represents the gravitational forces, Fg, between a satellite, S, and Earth? A) B) 4. Gravitational force exists between point objects and separated by

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 4: NEWTON S SECOND LAW OF MOTION Force Causes Acceleration Friction Mass Resists Acceleration Newton s Second Law of Motion Free Fall Non-Free Fall Force causes

More information

Newton s Second Law of Motion Force and Acceleration

Newton s Second Law of Motion Force and Acceleration Chapter 3 Reading Guide: Newton s Second Law of Motion Force and Acceleration Complete the Explore! Activity (p.37) 1. Compare the rate at which the book and paper fell when they were side-by-side: Name:

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 3 Kinematics in two and three dimensions. x and y components 1

Chapter 3 Kinematics in two and three dimensions. x and y components 1 Chapter 3 Kinematics in two and three dimensions x and y components 1 Start with 1D Motion 3 independent equations Derive these 2 from the other 3 v = v + at 0 v = 1 avg 2 (v + v) 0 x = x 0 + v 0 t + 1

More information

Overview The Laws of Motion

Overview The Laws of Motion Directed Reading for Content Mastery Overview The Laws of Motion Directions: Fill in the blanks using the terms listed below. force inertia momentum sliding conservation of momentum gravitational ma mv

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

AP Physics C - Problem Drill 18: Gravitation and Circular Motion

AP Physics C - Problem Drill 18: Gravitation and Circular Motion AP Physics C - Problem Drill 18: Gravitation and Circular Motion Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as 1. Two objects some

More information

Falling Objects and Projectile Motion

Falling Objects and Projectile Motion Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave? accelerate, or speed constant? What if they have: different masses? different shapes?

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (!

y(t) = y 0 t! 1 2 gt 2. With y(t final ) = 0, we can solve this for v 0 : v 0 A ĵ. With A! ĵ =!2 and A! = (2) 2 + (! 1. The angle between the vector! A = 3î! 2 ĵ! 5 ˆk and the positive y axis, in degrees, is closest to: A) 19 B) 71 C) 90 D) 109 E) 161 The dot product between the vector! A = 3î! 2 ĵ! 5 ˆk and the unit

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

THE LAWS OF MOTION. Mr. Banks 7 th Grade Science

THE LAWS OF MOTION. Mr. Banks 7 th Grade Science THE LAWS OF MOTION Mr. Banks 7 th Grade Science MOTION Motion is a change in position over a certain amount of time. When you say that something has moved you are describing motion. SPEED Speed is the

More information

WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D.

WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D. WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D. MAGNETIC FORCE WHICH TWO MEASUREMENTS ARE NEEDED TO DETERMINE THE SPEED OF AN OBJECT?

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

Physics Mid-Term Practice Exam

Physics Mid-Term Practice Exam Physics Mid-Term Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which one of the following problems would NOT be a part of physics? a.

More information