Kinematics Unit. Measurement

Size: px
Start display at page:

Download "Kinematics Unit. Measurement"

Transcription

1 Kinematics Unit Measurement

2 The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations; will make predictions. Observations will tell if the prediction is accurate, and the cycle goes on. Physics- The study of the natural world

3 The four fundamental forces Electromagnetic Gravity Nuclear Strong Nuclear Weak Any force in nature must be one of these four fundamental forces. There have been many attempts to unify these forces (Grand unified theory). The work is ongoing.

4 How does a new theory get accepted? Predictions agree better with data Explains a greater range of phenomena

5 Physics is needed in both architecture and engineering. Other fields that use physics, and make contributions to it: physiology, zoology, life sciences,

6 Communication between architects and engineers is essential if disaster is to be avoided.

7 Models, Theories, and Laws Models are very useful during the process of understanding phenomena. A model creates mental pictures; care must be taken to understand the limits of the model and not take it too seriously. A theory is detailed and can give testable predictions. A law is a brief description of how nature behaves in a broad set of circumstances. A principle is similar to a law, but applies to a narrower range of phenomena.

8 Measurement and Uncertainty; Significant Figures No measurement is exact; there is always some uncertainty due to limited instrument accuracy and difficulty reading results. The photograph to the left illustrates this it would be difficult to measure the width of this 2x4 to better than a millimeter.

9 Estimated uncertainty is written with a ± sign; for example: Percent uncertainty is the ratio of the uncertainty to the measured value, multiplied by 100:

10 Significant Figures The number of significant figures is the number of reliably known digits in a number. It is usually possible to tell the number of significant figures by the way the number is written: cm has 4 significant figures cm has 2 significant figures (the initial zeroes don t count) 80 km is ambiguous it could have 1 or 2 significant figures. If it has 3, it should be written 80.0 km. Using scientific notation for a number avoids any ambiguity. (e.g. 8.0x10 1 km has 2 sig figs)

11 When multiplying or dividing numbers, the result has as many significant figures as the number used in the calculation with the fewest significant figures. Example: 11.3 cm x 6.8 cm = 77 cm In this example 11.3 has 3 sig figs, and 6.8 has 2 sig figs. The final result must have 2 sig figs according to our rule. When adding or subtracting, the answer is no more accurate (number of decimal places) than the least accurate number used. See the example on the next page.

12 Example: Add 5.67 J, 1.1 J, and J 5.67 J (two decimal places) 1.1 J (one decimal place) J (four decimal place) 7.7 J (one decimal place)

13 Example with multiple operations: (25.23 m+ 0.5 m m)/ (1.5 s)=? Solution: Do the addition m/ 1.5 s Carry an extra digit in the number. This number is actually only significant to 28.4 ( 3 SF), according to the addition/subtraction rule. Now do the division. According to the multiplication/ division rule the final result must have 2 SF (significant figures). Final answer = 19 m/s *One generally rounds up if the adjacent number is >= 5

14 Keep One Extra Digit in Intermediate Answers When doing multi-step calculations, keep at least one more significant digit in intermediate results than needed in your final answer. For instance, if a final answer requires two significant digits, then carry at least three significant digits in calculations. If you round-off all your intermediate answers to only two digits, you are discarding the information contained in the third digit, and as a result the second digit in your final answer might be incorrect. (This phenomenon is known as "round-off error.") The Two Greatest Sins Regarding Significant Digits Writing more digits in a final answer than justified by the number of digits in the data. Rounding-off, say, to two digits in an intermediate answer, and then writing three digits in the final answer don t round mid-calculation

15 Vector and Scalar Quantities Measurable physical quantities can be either a scalar or a vector quantity. Scalars have no spatial direction associated with them while vectors do. Examples of scalars: mass, temperature, speed, time Examples of vectors: velocity, momentum, force.

16 Units, Standards, and the SI (MKS) System Quantity Unit Standard Length Meter Length of the path traveled by light in 1/299,792,458 second. Time Second Time required for 9,192,631,770 periods of radiation emitted by cesium atoms Mass Kilogram Platinum cylinder in International Bureau of Weights and Measures, Paris

17 These are the standard SI prefixes for indicating powers of 10. Many are familiar; Y, Z, E, h, da, a, z, and y are rarely used.

18 We will be working in the SI system, where the basic units are kilograms, meters, and seconds. Other systems: cgs; units are grams, centimeters, and seconds. British engineering system has force instead of mass as one of its basic quantities, which are feet, pounds, and seconds.

19 Converting Units Converting between metric units, for example from kg to g, is easy, as all it involves is powers of 10. Converting to and from British units is considerably more work. For example, given that 1 m = ft, this 8611-m mountain is feet high.

20 Conversions Example: What is the equivalent of 500 mm in metres? Example: 500 mm X 1 m = m 1000 mm Convert 120 km/h to m/s Solution: 120 km h 1000 m 1 km 1 h 60 minutes Converson factors: 1 km= 1000 m 1 h = 60 minutes 1 minute = 60 s 1 minute 60 s = 33.3 m/s Notice that the units cancel to give the correct units. Each ratio has a value of 1.

21 Precision and Accuracy Precision: The degree of exactness to which the measurement of a quantity can be reproduced. For instance if the value of acceleration due to gravity is measured to be 8.83 ms -2 and 8.79 ms -2 in a second trial, what is the precision? The average value is 8.81 ms -2, thus the acceleration due to gravity can be stated as ( ) ms -2. The precision is 0.02 ms -2 - a precise measurement, but inaccurate (see below). Accuracy: The extent to which a measured value agrees with a standard value. In the experiment to measure the acceleration due to gravity, the accuracy is the difference between the student s measurement and the defined value (the defined value is 9.81). Let s assume that the measured value was 9.83 ms -2. Then the accuracy would be = 0.02 ms

22

23 Errors-Systematic and Random Random Error: These are random errors inherent in measurements. The effect would be on the spread (precision) of the data. The more tightly grouped the data the smaller the random error Systematic Error: These kind of errors skew the data (either high or low). A systematic error will shift the data away from the true value. It has and effect on the accuracy of the data.

24 Order of Magnitude: Rapid Estimating A quick way to estimate a calculated quantity is to round off all numbers to one significant figure and then calculate. Your result should at least be the right order of magnitude; this can be expressed by rounding it off to the nearest power of 10. Diagrams are also very useful in making estimations.

25 Graphical Analysis Intro A relationship between two variables can be shown by a graph. Often a graph is a convenient and powerful way to represent the data. The shape of the graph can give insight into the nature of the relationship. The general convention is to have the independent variable on the horizontal (x) axis, and the dependent variable on the vertical (y) axis. It should noted that this convention is often ignored. The independent variable is usually the variable that is initially changed and the dependent variable responds.

26 These are the steps to make a graph: Collect data. Measure quantities and place in a table. Plot data on a graph (scatter plot) after picking appropriate scales. One picks a scale (units per division) that spreads the data out to make good use of the page. Often the line of best fit is drawn through the data points. The line of best fit is the best straight line through the points. The slope of the line of best fit is often useful to determine. When graphing you should be aware of these points: Make sure your graph, and axes are properly labeled. Make sure you include units on axes and on data tables Give your graph a title even if it is Y versus X.

27 An example of a relationship is how the weight (W) added to a vertical spring is related to the stretch (x)of the spring. The amount of stretch (measured from its original unstretched length) turns out to be directly proportional to the weight. The relationship is given by W= kx, where k is some constant. This is a linear relationship (y = mx +b) with a y intercept of zero. On would expect the data to be linear if one plotted W versus x. The degree of random and systematic error can be observed by examining the data. If the points are more spread out this indicates more random error. If the data is shifted (y intercept 0) it indicates a systematic error. If for some reason the data appears curved perhaps the assumptions of the relationship being linear is not correct.

28 Kinematics in One Dimension

29 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example, if you are sitting on a train and someone walks down the aisle, their speed with respect to the train is a few miles per hour, at most. Their speed with respect to the ground is much higher.

30 Distance and Displacement We make a distinction between distance and displacement. Displacement or position (blue line) is how far the object is from a given reference point, regardless of how it got there. It is a vector. Distance traveled (dashed line) is measured along the actual path. It is a scalar.

31 The change in displacement is written: Left: Change in Displacement is positive. Right: Change in Displacement is negative.

32 Average Velocity and Speed Speed: how far an object travels in a given time interval Velocity includes directional information: average velocity = change in displacement change in time = Δx Δt

33 Example: Bob walks to the right a distance of 8.00 m, then left a distance of 6.00m in a total time of 4.00 s. What was his average velocity and average speed over this time? Solution: The average speed is total distance divided by time: s = = 3.50 m/s The average velocity is change is position divided by time: υ = = m/s to the right

34 Instantaneous Velocity The instantaneous velocity is the average velocity, in the limit as the time interval becomes infinitesimally short. These graphs show (a) constant velocity and (b) varying velocity.

35 Acceleration Acceleration is the rate of change of velocity.

36 Acceleration is a vector, although in onedimensional motion we only need the sign. The previous image shows positive acceleration; here is negative acceleration:

37 There is a difference between negative acceleration and deceleration: Negative acceleration is acceleration in the negative direction as defined by the coordinate system. Deceleration occurs when the acceleration is opposite in direction to the velocity.

38 The instantaneous acceleration is the average acceleration, in the limit as the time interval becomes infinitesimally short.

39 Graphical Analysis of Linear Motion (1-D) The following graphs represent the motion of an object in one dimension (a line) This is a graph of x vs. t for an object moving with constant velocity. The velocity is the slope of the x-t curve.

40 On the left we have a graph of velocity vs. time for an object with varying velocity; on the right we have the resulting x vs. t curve. The instantaneous velocity (on the position time graph) is slope of the tangent line to the curve at any given point. The slope of the line on a velocity- time graph is the acceleration.

41 Example: d(m) Describe the object s motion over the 55 s t(s) 0-10s: Constant velocity of 6 m/s, or constant speed of 6 m/s in positive direction 10-15s : Stationary 15-40s: Constant velocity of -4 m/s, or constant speed of 4 m/s in negative direction. Also it comes back to its starting point at 40s s: Constant velocity of 2.67 m/s or constant speed of 2.67 m/s in positive direction.

42 Example: d (3) (0,0) (1) (2) (4) t How would you describe the motion of an object given by the position time graph above? Use the tangent line to the curve.

43 Solution: It is initially stationary at a negative position till (1) It starts to speed up in the positive direction crossing the origin and reaching a max velocity near (2) It starts to slow down and has a velocity of zero at (3) and immediately changes direction. It starts to speed up in the negative direction and reaches a constant negative velocity for a short time It starts to slow down before (4) and comes to a stop. It remains stationary at a positive position The above deductions are made by reading directly off the graph and by using the slope of the tangent line (velocity).

44 Example: Using this position-time graph, answer the following questions on the next slide

45 a) What was the average speed from t=0 to t=21 s? b) What was the average velocity over the same time interval? c) At what times was the velocity zero? d) At what times was the object moving in the positive direction? e) At what times was the object moving in the negative direction? f) What was the object's velocity at t=9.0 s? g) What was the object's velocity at t=21 s? h) What was the object's greatest speed? i) Estimate the object's velocity at t=30 s? j) When did the object first pass through d=0 m?

46 a) 1.33 m/s b) m/s c) 0 to 6 s, 11 to 18 s, 27 s, and 34.5s d) s, s e) 6-11 s, s f) -4 m/s g) 2.67 m/s h) 4 m/s i) approx m/s j) t=9 s

47 Acceleration Position time graphs Acceleration occurs when there is a changing velocity. A positive change in velocity indicates a positive acceleration, and a negative change in velocity indicates a negative acceleration. Using the slope of the tangent line on a position-time graph the nature of the acceleration can be deduced. In figure 1, one can see the slope of the tangent line going from -, to flat, to +. This indicates a positive acceleration. One way to remember is that a happy smile is positive J. In figure 2, one can see the slope of the tangent line going from +, to flat, to -. This indicates a negative acceleration. One way to remember is that an unhappy smile is negative L. d d figure 1 figure 2 t t

48 The change in displacement is the area beneath the v vs. t curve. If the line is below the x axis (v<0) then that area would give an negative change in displacement. By calculating areas one can determine both total distance travelled and the net change in displacement.

49 Example: Using this velocity-time graph, answer the following questions on the next slide

50 a)at what times did the object have zero velocity?. b)find the object's change in displacement over the first 15 s. c)what was the average velocity over the first 15 seconds? d) What was the average speed over the first 15 s? e) What was the object's average acceleration from t=20 to t=30s? f) Over what time period(s) was the object's acceleration +? g) Over what time period(s) was the object's acceleration -?

51 a) t= 12.2 s, and t=25 s b) d= = m c) v= 137.5/15 = 9.17 m/s d) s= ( )/15 = 11.0 m/s e) a= (13- (-10))/10 = 2.3 m/s 2 f) t greater than 20 s g) t= 8 to 15 s

52 Motion at Constant Acceleration & the Kinematic Equations The average velocity of an object during a time interval t is, change in position (displacement) divided by change in time. The acceleration, assumed constant, is

53 In addition, as the velocity is increasing at a constant rate, we know that Combining these last three equations, we find: Or, often x-x 0 is synonymous with d for change in displacement d = υ 0 t at 2

54 We can also combine these equations so as to eliminate t: We now have all the equations we need to solve constant-acceleration problems.

55 Summary (Equivalent) Relationships: d = υ 0 t at 2 υ = υ 0 + at υ 2 = υ ad υ = υ 0 +υ 2 d = υt d= change in displacement (m) v 0 = initial velocity(m/s) v= final velocity (m/s) a= acceleration (m/s 2 ) t= change in time (s) υ = average velocity (m/s) Only true for constant a. *These equations can only be used over periods of a constant acceleration

56 Solving Problems 1. Read the whole problem and make sure you understand it. Then read it again. 2. Decide on the objects under study and what the time interval is. 3. Draw a diagram and choose coordinate axes. Define a positive x direction. 4. Write down the known (given) quantities, and then the unknown ones that you need to find. 5. What physics applies here? Plan an approach to a solution.

57 6. Which equations relate the known and unknown quantities? Are they valid in this situation? Solve algebraically for the unknown quantities, and check that your result is sensible (correct dimensions). 7. Calculate the solution and round it to the appropriate number of significant figures. 8. Look at the result is it reasonable? Does it agree with a rough estimate? 9. Check the units again.

58 Falling Objects Near the surface of the Earth, all objects experience approximately the same acceleration due to gravity. This is one of the most common examples of motion with constant acceleration.

59 In the absence of air resistance, all objects fall with the same acceleration, although this may be hard to tell by testing in an environment where there is air resistance.

60 The acceleration due to gravity at the Earth s surface is approximately 9.80 m/s 2.

Chapter 1 Introduction, Measurement, Estimating

Chapter 1 Introduction, Measurement, Estimating Chapter 1 Introduction, Measurement, Estimating The Nature of Science Units of Chapter 1 Physics and Its Relation to Other Fields Models, Theories, and Laws Measurement and Uncertainty; Significant Figures

More information

Lecture PowerPoints. Chapter 1 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 1 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 1 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics: Principles with Applications, 6 th edition

Physics: Principles with Applications, 6 th edition Lecture PowerPoints Chapter 1 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Welcome to the Cytobiology and Proteomics Unit at the Department of Biomedical Sciences. Radosław Bednarek, Ph.D.

Welcome to the Cytobiology and Proteomics Unit at the Department of Biomedical Sciences. Radosław Bednarek, Ph.D. Welcome to the Cytobiology and Proteomics Unit at the Department of Biomedical Sciences Radosław Bednarek, Ph.D. Seminars Compulsory In the case of absence from the seminars the student is obligated to

More information

One dimensional Motion test 8/24

One dimensional Motion test 8/24 8/16/017 One dimensional Motion test 8/4 The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

Lecture PowerPoints. Chapter 1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Course: Phys-109 General Physics I. Text book: Physics, 6 th edition, D. C. Giancoli.

Course: Phys-109 General Physics I. Text book: Physics, 6 th edition, D. C. Giancoli. Few Initial Remarks Course: Phys-109 General Physics I Text book: Physics, 6 th edition, D. C. Giancoli. Few Initial Remarks Instructor: Dr. Mauricio Barbi Email: barbi@uregina.ca Tel: 585-4260 Office:

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Ch. 1, Physics & Measurement

Ch. 1, Physics & Measurement Ch. 1, Physics & Measurement Outline Ch. 1, Physics & Measurement 1. Physics is an experimental science Measurements Units 2. Physics is a quantitative science Mathematics Algebra & Calculus 3. International

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Introduction Syllabus and teaching strategy Physics Introduction Mathematical review trigonometry vectors Motion in one dimension http://www.physics.wayne.edu/~apetrov/phy2130/

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion Physics for Scientists and Engineers Chapter 1 Concepts of Motion Spring, 2008 Ho Jung Paik Physics Fundamental science concerned with the basic principles of the Universe foundation of other physical

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information

Today s lecture. WEST VIRGINIA UNIVERSITY Physics

Today s lecture. WEST VIRGINIA UNIVERSITY Physics Today s lecture Units, Estimations, Graphs, Trigonometry: Units - Standards of Length, Mass, and Time Dimensional Analysis Uncertainty and significant digits Order of magnitude estimations Coordinate Systems

More information

Chapter 1. A Physics Toolkit

Chapter 1. A Physics Toolkit Chapter 1 A Physics Toolkit Chapter 1 A Physics Toolkit In this chapter you will: Use mathematical tools to measure and predict. Apply accuracy and precision when measuring. Display and evaluate data graphically.

More information

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3

INTRODUCTION AND KINEMATICS. Physics Unit 1 Chapters 1-3 INTRODUCTION AND KINEMATICS Physics Unit 1 Chapters 1-3 This Slideshow was developed to accompany the textbook OpenStax Physics Available for free at https://openstaxcollege.org/textbooks/college-physics

More information

Physics 10 Scientific Measurement Workbook Mr. Proctor

Physics 10 Scientific Measurement Workbook Mr. Proctor Physics 10 Scientific Measurement Workbook Mr. Proctor Name: MEASUREMENT OF MATTER - Science 10 textbook reference pages 344-351 The Seven Fundamental Measurements (with units) in Physics are: meter (m)

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

2053 College Physics. Chapter 1 Introduction

2053 College Physics. Chapter 1 Introduction 2053 College Physics Chapter 1 Introduction 1 Fundamental Quantities and Their Dimension Length [L] Mass [M] Time [T] other physical quantities can be constructed from these three 2 Systems of Measurement

More information

Principles and Problems. Chapter 1: A Physics Toolkit

Principles and Problems. Chapter 1: A Physics Toolkit PHYSICS Principles and Problems Chapter 1: A Physics Toolkit CHAPTER 1 A Physics Toolkit BIG IDEA Physicists use scientific methods to investigate energy and matter. CHAPTER 1 Table Of Contents Section

More information

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 2 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Physics 20. Introduction & Review. Real tough physics equations. Real smart physics guy

Physics 20. Introduction & Review. Real tough physics equations. Real smart physics guy Physics 20 Introduction & Review Real tough physics equations Real smart physics guy Is Physics Hard? People find physics difficult because it requires a detail-oriented, organized thought process. Success,

More information

How do physicists study problems?

How do physicists study problems? What is Physics? The branch of science that studies the physical world (from atoms to the universe); The study of the nature of matter and energy and how they are related; The ability to understand or

More information

Raymond A. Serway Chris Vuille. Chapter One. Introduction

Raymond A. Serway Chris Vuille. Chapter One. Introduction Raymond A. Serway Chris Vuille Chapter One Introduction Theories and Experiments The goal of physics is to develop theories based on experiments A physical theory, usually expressed mathematically, describes

More information

Measurement: The Basics

Measurement: The Basics I. Introduction Measurement: The Basics Physics is first and foremost an experimental science, meaning that its accumulated body of knowledge is due to the meticulous experiments performed by teams of

More information

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc.

From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. PreClass Notes: Chapter 1 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by Jason Harlow, University

More information

Chapter 2 - Analyzing Data

Chapter 2 - Analyzing Data Chapter 2 - Analyzing Data Section 1: Units and Measurements Section 2: Scientific Notation and Dimensional Analysis Section 3: Uncertainty in Data Section 4: Representing Data Chemists collect and analyze

More information

Energy Flow in Technological Systems. December 01, 2014

Energy Flow in Technological Systems. December 01, 2014 Energy Flow in Technological Systems Scientific Notation (Exponents) Scientific notation is used when we are dealing with very large or very small numbers. A number placed in scientific notation is made

More information

Review of Scientific Notation and Significant Figures

Review of Scientific Notation and Significant Figures II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

More information

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation Measurement Chapter 2 Measurements and Problem Solving Quantitative observation Comparison based on an accepted scale e.g. Meter stick Has 2 parts number and unit Number tells comparison Unit tells scale

More information

Methods and Tools of Physics

Methods and Tools of Physics Methods and Tools of Physics Order of Magnitude Estimation: Essential idea: Scientists aim towards designing experiments that can give a true value from their measurements, but due to the limited precision

More information

PHYSICS 1 REVIEW PACKET

PHYSICS 1 REVIEW PACKET PHYSICS 1 REVIEW PACKET Powers of Ten Scientific Notation and Prefixes Exponents on the Calculator Conversions A Little Trig Accuracy and Precision of Measurement Significant Figures Motion in One Dimension

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Physics 11. Unit 1 Mathematical Toolkits

Physics 11. Unit 1 Mathematical Toolkits Physics 11 Unit 1 Mathematical Toolkits 1 1.1 Measurement and scientific notations Système International d Unités (SI Units) The base units for measurement of fundamental quantities. Other units can be

More information

Appendix B: Skills Handbook

Appendix B: Skills Handbook Appendix B: Skills Handbook Effective communication is an important part of science. To avoid confusion when measuring and doing mathematical calculations, there are accepted conventions and practices

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

PH 221-1D Spring 2013

PH 221-1D Spring 2013 PH 221-1D Spring 2013 Introduction and Measurement Lecture 1 Chapter 1 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) The Nature of Physics The science of physics has developed out of

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

PHY 101: GENERAL PHYSICS I

PHY 101: GENERAL PHYSICS I PHY 101: GENERAL PHYSICS I 2013/2014 HARMATTAN SEMESTER Dr. L.A. SUNMONU COURSE OUTLINE 1 Measurement 2 Motion along a straight line 3 Vectors 1 MEASUREMENT INTRODUCTION The goal of physics is to provide

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Chapter Assignment # s 65, 67, & RT-2 Chapter Goal: To introduce the fundamental concepts of motion and to review related basic mathematical principles.

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl, Donald J. DeCoste University of Illinois Chapter 2 Measurements and Calculations

More information

Allows us to work with very large or small numbers more easily. All numbers are a product of 10.

Allows us to work with very large or small numbers more easily. All numbers are a product of 10. Unit 1: Measurements Scientific Notation : Allows us to work with very large or small numbers more easily. All numbers are a product of 10. M x 10n M= signif. digit [ 1 < M < 10 ] n = an integer move the

More information

Chapter 2. Motion in One Dimension. Professor Wa el Salah

Chapter 2. Motion in One Dimension. Professor Wa el Salah Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now, will consider motion in one dimension Along a straight

More information

Physics Mechanics. Lecture 1 Physics and the Laws of Nature

Physics Mechanics. Lecture 1 Physics and the Laws of Nature Physics 170 - Mechanics Lecture 1 Physics and the Laws of Nature 1 Physics: the study of the fundamental laws of nature These laws can be expressed as mathematical equations. (e.g. F = ma, E=mc 2 ) Most

More information

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers.

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers. Scientific Notation Notes Chapter 2: Measurements and Calculations It is used to easily and simply write very large numbers, and very small numbers. It begins with a number greater than zero & less than

More information

Lecture 1. Chapter 1 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Lecture 1. Chapter 1 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 221-3A Fall 2009 Introduction and Measurement Lecture 1 Chapter 1 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) The Nature of Physics The science of physics has developed out of the

More information

AP Physics 1 Summer Assignment Packet

AP Physics 1 Summer Assignment Packet AP Physics 1 Summer Assignment Packet 2017-18 Welcome to AP Physics 1 at David Posnack Jewish Day School. The concepts of physics are the most fundamental found in the sciences. By the end of the year,

More information

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13

General Physics (PHY 170) Chap 2. Acceleration motion with constant acceleration. Tuesday, January 15, 13 General Physics (PHY 170) Chap 2 Acceleration motion with constant acceleration 1 Average Acceleration Changing velocity (non-uniform) means an acceleration is present Average acceleration is the rate

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

AP PHYSICS SUMMER WORK

AP PHYSICS SUMMER WORK Name AP PHYSICS SUMMER WORK For both AP Physics I and II AP Physics 1 Curriculum - Kinematics - Linear Dynamics (Newton s Laws, momentum, oscillations) - Rotational Dynamics - Energy, Work, and Power -

More information

Collecting and Reporting Data

Collecting and Reporting Data Types of Data Data can be classified as qualitative or quantitative: Qualitative data Are observed rather than measured Include written descriptions, videos, photographs, or live observations Examples

More information

αα Measuring Global Temperatures 2.1 Measuring Global Temperatures Introductory Chemistry Fourth Edition Nivaldo J.

αα Measuring Global Temperatures 2.1 Measuring Global Temperatures Introductory Chemistry Fourth Edition Nivaldo J. Introductory Chemistry Fourth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK 2.1 Measuring Global Temperatures

More information

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian

HW Chapter 3 Q 14,15 P 2,7,812,18,24,25. Chapter 3. Motion in the Universe. Dr. Armen Kocharian HW Chapter 3 Q 14,15 P 2,7,812,18,24,25 Chapter 3 Motion in the Universe Dr. Armen Kocharian Predictability The universe is predictable and quantifiable Motion of planets and stars description of motion

More information

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte Reference Guide Contents...1 1. General Scientific Terminology...2 2. Types of Errors...3 3. Scientific Notation...4 4. Significant Figures...6 5. Graphs...7 6. Making Measurements...8 7. Units...9 8.

More information

AP Physics Math Review Packet

AP Physics Math Review Packet AP Physics Math Review Packet The science of physics was developed to help explain the physics environment around us. Many of the subjects covered in this class will help you understand the physical world

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

AP Physics 1 Summer Assignment 2016

AP Physics 1 Summer Assignment 2016 AP Physics 1 Summer Assignment 2016 You need to do this assignment on your own paper AND YOU MUST SHOW ALL OF YOUR WORK TO RECEIVE CREDIT. You can put the answers on this assignment sheet or you can put

More information

Introductory Chemistry Fifth Edition Nivaldo J. Tro

Introductory Chemistry Fifth Edition Nivaldo J. Tro Introductory Chemistry Fifth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK Reporting the Measure of Global

More information

Chapter 1. Units, Physical Quantities, and Vectors

Chapter 1. Units, Physical Quantities, and Vectors Chapter 1 Units, Physical Quantities, and Vectors 1.3 Standards and Units The metric system is also known as the S I system of units. (S I! Syst me International). A. Length The unit of length in the metric

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

see page 8 of these notes )

see page 8 of these notes ) UNIT 1 Note Packet INTRODUCTION TO CHEMISTRY Name: METRICS AND MEASUREMENT In the chemistry classroom and lab, the metric system of measurement is used, so it is important to know what you are measuring,

More information

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS Name: Partner s Name: EXPERIMENT 1500-7 2D FORCE VECTORS INTRODUCTION A vector is represented by an arrow: it has a direction and a magnitude (or length). Vectors can be moved around the page without changing

More information

Using Scientific Measurements

Using Scientific Measurements Section 3 Main Ideas Accuracy is different from precision. Significant figures are those measured precisely, plus one estimated digit. Scientific notation is used to express very large or very small numbers.

More information

PHYSICS - CLUTCH CH 01: UNITS & VECTORS.

PHYSICS - CLUTCH CH 01: UNITS & VECTORS. !! www.clutchprep.com Physics is the study of natural phenomena, including LOTS of measurements and equations. Physics = math + rules. UNITS IN PHYSICS We measure in nature. Measurements must have. - For

More information

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Preview Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Section 1 Scientific Method Objectives Describe the purpose of

More information

General Physics (PHY 170) Physics and the Laws of Nature

General Physics (PHY 170) Physics and the Laws of Nature General Physics (PHY 170) Chap 1 Physics and the Laws of Nature Physics: the study of the fundamental laws of nature. These laws can be expressed as mathematical equations. (e.g. F = m a, E=m c 2 ) Most

More information

Umm Al-Qura University Dr. Abdulsalam Ali. Physics 101. Lecture 1. Lecturer: Dr. Abdulsalam Ali Soud

Umm Al-Qura University Dr. Abdulsalam Ali. Physics 101. Lecture 1. Lecturer: Dr. Abdulsalam Ali Soud Physics 101 Lecture 1 Lecturer: Dr. Abdulsalam Ali Soud Course Text Book Course Text Book Physics 4 th By James S. Walker COURSE SYLLABUS Week No. 1 2 3 4 Contents Introduction to Physics 1- Unit of Length,

More information

AP Physics C Mechanics Summer Assignment

AP Physics C Mechanics Summer Assignment AP Physics C Mechanics Summer Assignment 2018 2019 School Year Welcome to AP Physics C, an exciting and intensive introductory college physics course for students majoring in the physical sciences or engineering.

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

Chapter 1: Concepts of Motion

Chapter 1: Concepts of Motion 1.1 Motion diagrams Multiple-exposure photographs with images taken at even time intervals Spacing of images indicative of speed and acceleration speeding up constant speed slowing down SMU PHYS1100.1,

More information

ADVANCED PLACEMENT PHYSICS 1

ADVANCED PLACEMENT PHYSICS 1 ADVANCED PLACEMENT PHYSICS 1 MS. LAWLESS ALAWLESS@SOMERVILLESCHOOLS.ORG Purpose of Assignments: This assignment is broken into 8 Skills. Skills 1-6, and 8 are review of science and math literacy. Skill

More information

Unit 2 - Motion. Chapter 3 - Distance and Speed. Unit 2 - Motion 1 / 76

Unit 2 - Motion. Chapter 3 - Distance and Speed. Unit 2 - Motion 1 / 76 Unit 2 - Motion Chapter 3 - Distance and Speed Unit 2 - Motion 1 / 76 Precision and Accuracy Precision is a measure of how closely individual measurements agree with one another. Accuracy refers to how

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

The total time traveled divided by the total time taken to travel it. Average speed =

The total time traveled divided by the total time taken to travel it. Average speed = Unit 3: Motion V = d t Average speed The total time traveled divided by the total time taken to travel it Mathematically: Average speed = Total Distance Travelled Total Time Traveled So just how fast were

More information

Table 2.1 presents examples and explains how the proper results should be written. Table 2.1: Writing Your Results When Adding or Subtracting

Table 2.1 presents examples and explains how the proper results should be written. Table 2.1: Writing Your Results When Adding or Subtracting When you complete a laboratory investigation, it is important to make sense of your data by summarizing it, describing the distributions, and clarifying messy data. Analyzing your data will allow you to

More information

Introduction to Physics Physics 114 Eyres

Introduction to Physics Physics 114 Eyres What is Physics? Introduction to Physics Collecting and analyzing experimental data Making explanations and experimentally testing them Creating different representations of physical processes Finding

More information

INTRODUCTION TO LABORATORY EXPERIMENT AND MEASUREMENT

INTRODUCTION TO LABORATORY EXPERIMENT AND MEASUREMENT INTRODUCTION TO LABORATORY EXPERIMENT AND MEASUREMENT Purpose Theory a. To take some simple measurements to use for statistical analysis b. To learn how to use a Vernier caliper and a micrometer screw

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Measurements. October 06, 2014

Measurements. October 06, 2014 Measurements Measurements Measurements are quantitative observations. What are some kinds of quantitative observations you might make? Temperature Volume Length Mass Student A and Student B measured the

More information

Representing Motion Chapter 2

Representing Motion Chapter 2 Phenomena Representing Motion Chapter 2 Pop Quiz! How fast are you moving at this moment? o A.) 0m/s o B.) 783 mi/h o C.) 350m/s o D.) 30 km/s Pop Quiz! How fast are you moving? oa.) 0m/s ob.) 783 mi/h

More information

Figure 1: Qualitative Observations How do you measure artistic beauty?

Figure 1: Qualitative Observations How do you measure artistic beauty? 2.1 Physical quantities and units Quantitative versus qualitative Most observation in physics are quantitative Descriptive observations (or qualitative) are usually imprecise Figure 1: Qualitative Observations

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

WELCOME TO PHYSICS 201. Dr. Luis Dias Summer 2007 M, Tu, Wed, Th 10am-12pm 245 Walter Hall

WELCOME TO PHYSICS 201. Dr. Luis Dias Summer 2007 M, Tu, Wed, Th 10am-12pm 245 Walter Hall WELCOME TO PHYSICS 201 Dr. Luis Dias Summer 2007 M, Tu, Wed, Th 10am-12pm 245 Walter Hall PHYSICS 201 - Summer 2007 TEXTBOOK: Cutnell & Johnson, 6th ed. SYLLABUS : Please READ IT carefully. LONCAPA Learning

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Experiment 1 - Mass, Volume and Graphing

Experiment 1 - Mass, Volume and Graphing Experiment 1 - Mass, Volume and Graphing In chemistry, as in many other sciences, a major part of the laboratory experience involves taking measurements and then calculating quantities from the results

More information

Unit 1: Introduction Measurement and Scientific Notation. Measurements in physics are carried out in SI units, aka the.

Unit 1: Introduction Measurement and Scientific Notation. Measurements in physics are carried out in SI units, aka the. Measurement and Scientific Notation Measurements in physics are carried out in SI units, aka the. Measurement Unit Symbol Length Mass Time Speed Acceleration Force Energy Prefixes Prefix Symbol Factor

More information

SCIENCE 1206 Unit 4. Physical Science Motion

SCIENCE 1206 Unit 4. Physical Science Motion SCIENCE 1206 Unit 4 Physical Science Motion What is Physics? Physics is the study of motion, matter, energy, and force. Called the Fundamental Science Famous Physicists Galileo Galilei Albert Einstein

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information