Statistical Phrase-Based Speech Translation

Size: px
Start display at page:

Download "Statistical Phrase-Based Speech Translation"

Transcription

1 Statistical Phrase-Based Speech Translation Lambert Mathias 1 William Byrne 2 1 Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University 2 Machine Intelligence Laboratory Departent of Engineering Cambridge University May / CLSP Student Seminar

2 Outline

3 Outline

4 Outline

5 Outline

6 Outline

7 A model based approach to translation is easy to formulate Target Speech Target Sentence Source Sentence A t J 1 s I 1 P(A t J 1) P(t J 1 s I 1) P(s I 1)

8 Serial Architecture Recognition t b 1 J = argmax P(A t1)p(t J 1) J t 1 J Translation s b 1 I = argmax P( t bj 1 si 1) P(s1) I s 1 I Integrated architecture j ff bs 1 I = argmax P(s1){max I P(t J t 1 J 1 s1) I P(A t1)} I s I 1 Given the ASR models and the translation models, speech translation is easy to do!

9 Serial Architecture Recognition t b 1 J = argmax P(A t1)p(t J 1) J t 1 J Translation s b 1 I = argmax P( t bj 1 si 1) P(s1) I s 1 I Integrated architecture j ff bs 1 I = argmax P(s1){max I P(t J t 1 J 1 s1) I P(A t1)} I s I 1 Given the ASR models and the translation models, speech translation is easy to do!

10 Serial Architecture Recognition t b 1 J = argmax P(A t1)p(t J 1) J t 1 J Translation s b 1 I = argmax P( t bj 1 si 1) P(s1) I s 1 I Integrated architecture j ff bs 1 I = argmax P(s1){max I P(t J t 1 J 1 s1) I P(A t1)} I s I 1 Given the ASR models and the translation models, speech translation is easy to do!

11 Recovering from ASR errors Translating alternative hypotheses Processing the monolingual information available on the target side Correcting disfluencies on the target side Coupling ASR to MT 1-best transcription N-best lists (R.Zhang et al 2004, V.H. Quan et al 2005) Word graphs (S. Saleem et al 2004, E. Matusov et al 2005) Key Idea Maximum ASR signal transfer to the translation component

12 Recovering from ASR errors Translating alternative hypotheses Processing the monolingual information available on the target side Correcting disfluencies on the target side Coupling ASR to MT 1-best transcription N-best lists (R.Zhang et al 2004, V.H. Quan et al 2005) Word graphs (S. Saleem et al 2004, E. Matusov et al 2005) Key Idea Maximum ASR signal transfer to the translation component

13 Recovering from ASR errors Translating alternative hypotheses Processing the monolingual information available on the target side Correcting disfluencies on the target side Coupling ASR to MT 1-best transcription N-best lists (R.Zhang et al 2004, V.H. Quan et al 2005) Word graphs (S. Saleem et al 2004, E. Matusov et al 2005) Key Idea Maximum ASR signal transfer to the translation component

14 Outline

15 Target Speech Target Sentence Target Phrase Source Phrase Source Sentence A t J 1 v R 1 u K 1 s I 1 Models P(A t J 1 ) P(t J 1 vr 1 ) P(v R 1 uk 1 ) P(u K 1 si 1 ) P(s I 1 ) FSMs L Ω Φ W G ASR Word Lattice Target Phrase Segmentation Transducer Phrase Translation, Reordering Transducer Source Phrase Segmentation Transducer Source Language Model The final translation is given by j bs 1 I = argmax max P(A t1) J v 1 R,uK 1,K {z } s I 1 max t J 1 L ASR Word Lattice P(t J 1, v R 1, u K 1 s I 1) P(s I 1) {z } Translation Model ff.

16 The translation is from a lattice of phrase sequences Target phrase segmentation: P(A v R 1 ) = P(v R 1 tj 1 ) P(A tj 1 ) Corrresponding FSM Q = Ω L Acoustic scores retained during target segmentation Implemented as a best-path search through the translation FSM T T = G W Φ Q Simple formulation with minimal changes to existing models We are now ready to translate speech!

17 The translation is from a lattice of phrase sequences Target phrase segmentation: P(A v R 1 ) = P(v R 1 tj 1 ) P(A tj 1 ) Corrresponding FSM Q = Ω L Acoustic scores retained during target segmentation Implemented as a best-path search through the translation FSM T T = G W Φ Q Simple formulation with minimal changes to existing models We are now ready to translate speech!

18 The translation is from a lattice of phrase sequences Target phrase segmentation: P(A v R 1 ) = P(v R 1 tj 1 ) P(A tj 1 ) Corrresponding FSM Q = Ω L Acoustic scores retained during target segmentation Implemented as a best-path search through the translation FSM T T = G W Φ Q Simple formulation with minimal changes to existing models We are now ready to translate speech!

19 NOTE Original Problem: How to translate ASR word lattices? New Problem: How to efficiently extract phrases from ASR lattices? Phrases are extracted using the GRM Library Controlling ambiguity in phrase extraction Pruning the ASR word lattice Extract phrases under the posterior distribution P Q = P(v1 R A) = t 1 J P(v1 R tj 1 ) P(A tj 1 ) P(tJ 1 ) P(A) The target LM P(t J 1) does not show up in the original formulation!

20 NOTE Original Problem: How to translate ASR word lattices? New Problem: How to efficiently extract phrases from ASR lattices? Phrases are extracted using the GRM Library Controlling ambiguity in phrase extraction Pruning the ASR word lattice Extract phrases under the posterior distribution P Q = P(v1 R A) = t 1 J P(v1 R tj 1 ) P(A tj 1 ) P(tJ 1 ) P(A) The target LM P(t J 1) does not show up in the original formulation!

21 NOTE Original Problem: How to translate ASR word lattices? New Problem: How to efficiently extract phrases from ASR lattices? Phrases are extracted using the GRM Library Controlling ambiguity in phrase extraction Pruning the ASR word lattice Extract phrases under the posterior distribution P Q = P(v1 R A) = t 1 J P(v1 R tj 1 ) P(A tj 1 ) P(tJ 1 ) P(A) The target LM P(t J 1) does not show up in the original formulation!

22 Well-formedness of target sentence in text-based MT Weak translation models Need to choose the right t J 1 from a set of hypotheses Experimentally shown to improve translation quality 1 Need to correctly incorporate the target LM (In progress...) 1 D. Dechelotte, H. Schwenk an Jean-Luc Gauvain, Olivier Galibert, and Lori Lamel. Investigating Translation of Parliament Speeches. ASRU, 2005

23 A neat trick to include the target LM P(t J 1) 2 j ff bs 1 I = argmax maxp(t1, J s1) I P(A t1) I t 1 J s I 1 P(t J 1, s I 1) = JY j=1 P(t j, s j t j 1 j m, g s j 1 j m ) Involves a complicated procedure in order to estimate the m-gram tuple based model Considers only a single segmentation of the parallel text So what s new in our framework Unified modeling framework of the underlying ASR and SMT system Different model parameterization Direct extension of the text based MT system, straightforward implementation 2 E Matusov, S Kanthak, H Ney. On the integration of speech recognition and statistical machine translation, InterSpeech, 2005.

24 A neat trick to include the target LM P(t J 1) 2 j ff bs 1 I = argmax maxp(t1, J s1) I P(A t1) I t 1 J s I 1 P(t J 1, s I 1) = JY j=1 P(t j, s j t j 1 j m, g s j 1 j m ) Involves a complicated procedure in order to estimate the m-gram tuple based model Considers only a single segmentation of the parallel text So what s new in our framework Unified modeling framework of the underlying ASR and SMT system Different model parameterization Direct extension of the text based MT system, straightforward implementation 2 E Matusov, S Kanthak, H Ney. On the integration of speech recognition and statistical machine translation, InterSpeech, 2005.

25 Outline

26 OpenLab 2006 EPPS Spanish to English task, 2005 TC-STAR evaluation data Spanish Source DEV EVAL Monotone Verbatim Transcription Phrase ASR 1-Best Order ASR lattice How many new foreign phrases does speech translation introduce? Verbatim ASR ASR transcription 1-best pruned #Spanish phrases How many new foreign phrases were found in bitext? Verbatim ASR ASR transcription 1-best pruned #Spanish phrases

27 OpenLab 2006 EPPS Spanish to English task, 2005 TC-STAR evaluation data Spanish Source DEV EVAL Monotone Verbatim Transcription Phrase ASR 1-Best Order ASR lattice How many new foreign phrases does speech translation introduce? Verbatim ASR ASR transcription 1-best pruned #Spanish phrases How many new foreign phrases were found in bitext? Verbatim ASR ASR transcription 1-best pruned #Spanish phrases

28 OpenLab 2006 EPPS Spanish to English task, 2005 TC-STAR evaluation data Spanish Source DEV EVAL Monotone Verbatim Transcription Phrase ASR 1-Best Order ASR lattice How many new foreign phrases does speech translation introduce? Verbatim ASR ASR transcription 1-best pruned #Spanish phrases How many new foreign phrases were found in bitext? Verbatim ASR ASR transcription 1-best pruned #Spanish phrases

29 Outline

30 Presented a generative model of speech-to-text translation 3 Tight coupling of the ASR and SMT models via word lattices Initial results on speech translation a little dissapointing Modeling problems: Proper integration of the target LM Phrases extracted from ASR lattices are not in bitext ASR errors Disfluencies, silences and other spoken language phenomena ASR output error-correction disfluency removal, inserting phrase boundaries, SU detection etc... 3 L. Mathias and W. Byrne. Statistical phrase-based speech translation. ICASSP, 2006

Automatic Speech Recognition and Statistical Machine Translation under Uncertainty

Automatic Speech Recognition and Statistical Machine Translation under Uncertainty Outlines Automatic Speech Recognition and Statistical Machine Translation under Uncertainty Lambert Mathias Advisor: Prof. William Byrne Thesis Committee: Prof. Gerard Meyer, Prof. Trac Tran and Prof.

More information

Statistical Machine Translation and Automatic Speech Recognition under Uncertainty

Statistical Machine Translation and Automatic Speech Recognition under Uncertainty Statistical Machine Translation and Automatic Speech Recognition under Uncertainty Lambert Mathias A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree

More information

Speech Translation: from Singlebest to N-Best to Lattice Translation. Spoken Language Communication Laboratories

Speech Translation: from Singlebest to N-Best to Lattice Translation. Spoken Language Communication Laboratories Speech Translation: from Singlebest to N-Best to Lattice Translation Ruiqiang ZHANG Genichiro KIKUI Spoken Language Communication Laboratories 2 Speech Translation Structure Single-best only ASR Single-best

More information

TALP Phrase-Based System and TALP System Combination for the IWSLT 2006 IWSLT 2006, Kyoto

TALP Phrase-Based System and TALP System Combination for the IWSLT 2006 IWSLT 2006, Kyoto TALP Phrase-Based System and TALP System Combination for the IWSLT 2006 IWSLT 2006, Kyoto Marta R. Costa-jussà, Josep M. Crego, Adrià de Gispert, Patrik Lambert, Maxim Khalilov, José A.R. Fonollosa, José

More information

Phrase-Based Statistical Machine Translation with Pivot Languages

Phrase-Based Statistical Machine Translation with Pivot Languages Phrase-Based Statistical Machine Translation with Pivot Languages N. Bertoldi, M. Barbaiani, M. Federico, R. Cattoni FBK, Trento - Italy Rovira i Virgili University, Tarragona - Spain October 21st, 2008

More information

Multiple System Combination. Jinhua Du CNGL July 23, 2008

Multiple System Combination. Jinhua Du CNGL July 23, 2008 Multiple System Combination Jinhua Du CNGL July 23, 2008 Outline Introduction Motivation Current Achievements Combination Strategies Key Techniques System Combination Framework in IA Large-Scale Experiments

More information

Chapter 3: Basics of Language Modelling

Chapter 3: Basics of Language Modelling Chapter 3: Basics of Language Modelling Motivation Language Models are used in Speech Recognition Machine Translation Natural Language Generation Query completion For research and development: need a simple

More information

Out of GIZA Efficient Word Alignment Models for SMT

Out of GIZA Efficient Word Alignment Models for SMT Out of GIZA Efficient Word Alignment Models for SMT Yanjun Ma National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Series March 4, 2009 Y. Ma (DCU) Out of Giza

More information

Statistical Machine Translation. Part III: Search Problem. Complexity issues. DP beam-search: with single and multi-stacks

Statistical Machine Translation. Part III: Search Problem. Complexity issues. DP beam-search: with single and multi-stacks Statistical Machine Translation Marcello Federico FBK-irst Trento, Italy Galileo Galilei PhD School - University of Pisa Pisa, 7-19 May 008 Part III: Search Problem 1 Complexity issues A search: with single

More information

Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices Graeme Blackwood, Adrià de Gispert, William Byrne Machine Intelligence Laboratory Cambridge

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Triplet Lexicon Models for Statistical Machine Translation

Triplet Lexicon Models for Statistical Machine Translation Triplet Lexicon Models for Statistical Machine Translation Saša Hasan, Juri Ganitkevitch, Hermann Ney and Jesús Andrés Ferrer lastname@cs.rwth-aachen.de CLSP Student Seminar February 6, 2009 Human Language

More information

Language Modelling. Marcello Federico FBK-irst Trento, Italy. MT Marathon, Edinburgh, M. Federico SLM MT Marathon, Edinburgh, 2012

Language Modelling. Marcello Federico FBK-irst Trento, Italy. MT Marathon, Edinburgh, M. Federico SLM MT Marathon, Edinburgh, 2012 Language Modelling Marcello Federico FBK-irst Trento, Italy MT Marathon, Edinburgh, 2012 Outline 1 Role of LM in ASR and MT N-gram Language Models Evaluation of Language Models Smoothing Schemes Discounting

More information

Variational Decoding for Statistical Machine Translation

Variational Decoding for Statistical Machine Translation Variational Decoding for Statistical Machine Translation Zhifei Li, Jason Eisner, and Sanjeev Khudanpur Center for Language and Speech Processing Computer Science Department Johns Hopkins University 1

More information

Recent Developments in Statistical Dialogue Systems

Recent Developments in Statistical Dialogue Systems Recent Developments in Statistical Dialogue Systems Steve Young Machine Intelligence Laboratory Information Engineering Division Cambridge University Engineering Department Cambridge, UK Contents Review

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Department of Computer Science and Engineering, Department of Electronic and Computer Engineering, HKUST, Hong Kong, Dec. 04, 2012

Department of Computer Science and Engineering, Department of Electronic and Computer Engineering, HKUST, Hong Kong, Dec. 04, 2012 Department of Computer Science and Engineering, Department of Electronic and Computer Engineering, HKUST, Hong Kong, Dec. 04, 2012 The Statistical Approach to Speech Recognition and Natural Language Processing:

More information

Unsupervised Model Adaptation using Information-Theoretic Criterion

Unsupervised Model Adaptation using Information-Theoretic Criterion Unsupervised Model Adaptation using Information-Theoretic Criterion Ariya Rastrow 1, Frederick Jelinek 1, Abhinav Sethy 2 and Bhuvana Ramabhadran 2 1 Human Language Technology Center of Excellence, and

More information

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister A Syntax-based Statistical Machine Translation Model Alexander Friedl, Georg Teichtmeister 4.12.2006 Introduction The model Experiment Conclusion Statistical Translation Model (STM): - mathematical model

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

Decoding in Statistical Machine Translation. Mid-course Evaluation. Decoding. Christian Hardmeier

Decoding in Statistical Machine Translation. Mid-course Evaluation. Decoding. Christian Hardmeier Decoding in Statistical Machine Translation Christian Hardmeier 2016-05-04 Mid-course Evaluation http://stp.lingfil.uu.se/~sara/kurser/mt16/ mid-course-eval.html Decoding The decoder is the part of the

More information

The Geometry of Statistical Machine Translation

The Geometry of Statistical Machine Translation The Geometry of Statistical Machine Translation Presented by Rory Waite 16th of December 2015 ntroduction Linear Models Convex Geometry The Minkowski Sum Projected MERT Conclusions ntroduction We provide

More information

Fun with weighted FSTs

Fun with weighted FSTs Fun with weighted FSTs Informatics 2A: Lecture 18 Shay Cohen School of Informatics University of Edinburgh 29 October 2018 1 / 35 Kedzie et al. (2018) - Content Selection in Deep Learning Models of Summarization

More information

Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization

Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization Ariya Rastrow, Mark Dredze, Sanjeev Khudanpur Human Language Technology Center of Excellence Center for Language

More information

Hidden Markov Modelling

Hidden Markov Modelling Hidden Markov Modelling Introduction Problem formulation Forward-Backward algorithm Viterbi search Baum-Welch parameter estimation Other considerations Multiple observation sequences Phone-based models

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

An Empirical Study on Computing Consensus Translations from Multiple Machine Translation Systems

An Empirical Study on Computing Consensus Translations from Multiple Machine Translation Systems An Empirical Study on Computing Consensus Translations from Multiple Machine Translation Systems Wolfgang Macherey Google Inc. 1600 Amphitheatre Parkway Mountain View, CA 94043, USA wmach@google.com Franz

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

Fast and Scalable Decoding with Language Model Look-Ahead for Phrase-based Statistical Machine Translation

Fast and Scalable Decoding with Language Model Look-Ahead for Phrase-based Statistical Machine Translation Fast and Scalable Decoding with Language Model Look-Ahead for Phrase-based Statistical Machine Translation Joern Wuebker, Hermann Ney Human Language Technology and Pattern Recognition Group Computer Science

More information

Sequences and Information

Sequences and Information Sequences and Information Rahul Siddharthan The Institute of Mathematical Sciences, Chennai, India http://www.imsc.res.in/ rsidd/ Facets 16, 04/07/2016 This box says something By looking at the symbols

More information

Tuning as Linear Regression

Tuning as Linear Regression Tuning as Linear Regression Marzieh Bazrafshan, Tagyoung Chung and Daniel Gildea Department of Computer Science University of Rochester Rochester, NY 14627 Abstract We propose a tuning method for statistical

More information

] Automatic Speech Recognition (CS753)

] Automatic Speech Recognition (CS753) ] Automatic Speech Recognition (CS753) Lecture 17: Discriminative Training for HMMs Instructor: Preethi Jyothi Sep 28, 2017 Discriminative Training Recall: MLE for HMMs Maximum likelihood estimation (MLE)

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machine Translation Marcello Federico FBK-irst Trento, Italy Galileo Galilei PhD School University of Pisa Pisa, 7-19 May 2008 Part V: Language Modeling 1 Comparing ASR and statistical MT N-gram

More information

Word Alignment for Statistical Machine Translation Using Hidden Markov Models

Word Alignment for Statistical Machine Translation Using Hidden Markov Models Word Alignment for Statistical Machine Translation Using Hidden Markov Models by Anahita Mansouri Bigvand A Depth Report Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of

More information

A Systematic Comparison of Training Criteria for Statistical Machine Translation

A Systematic Comparison of Training Criteria for Statistical Machine Translation A Systematic Comparison of Training Criteria for Statistical Machine Translation Richard Zens and Saša Hasan and Hermann Ney Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6

More information

Text Mining. March 3, March 3, / 49

Text Mining. March 3, March 3, / 49 Text Mining March 3, 2017 March 3, 2017 1 / 49 Outline Language Identification Tokenisation Part-Of-Speech (POS) tagging Hidden Markov Models - Sequential Taggers Viterbi Algorithm March 3, 2017 2 / 49

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013 Machine Translation CL1: Jordan Boyd-Graber University of Maryland November 11, 2013 Adapted from material by Philipp Koehn CL1: Jordan Boyd-Graber (UMD) Machine Translation November 11, 2013 1 / 48 Roadmap

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing N-grams and language models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 25 Introduction Goals: Estimate the probability that a

More information

What to Expect from Expected Kneser-Ney Smoothing

What to Expect from Expected Kneser-Ney Smoothing What to Expect from Expected Kneser-Ney Smoothing Michael Levit, Sarangarajan Parthasarathy, Shuangyu Chang Microsoft, USA {mlevit sarangp shchang}@microsoft.com Abstract Kneser-Ney smoothing on expected

More information

Chapter 3: Basics of Language Modeling

Chapter 3: Basics of Language Modeling Chapter 3: Basics of Language Modeling Section 3.1. Language Modeling in Automatic Speech Recognition (ASR) All graphs in this section are from the book by Schukat-Talamazzini unless indicated otherwise

More information

Statistical NLP Spring Corpus-Based MT

Statistical NLP Spring Corpus-Based MT Statistical NLP Spring 2010 Lecture 17: Word / Phrase MT Dan Klein UC Berkeley Corpus-Based MT Modeling correspondences between languages Sentence-aligned parallel corpus: Yo lo haré mañana I will do it

More information

Corpus-Based MT. Statistical NLP Spring Unsupervised Word Alignment. Alignment Error Rate. IBM Models 1/2. Problems with Model 1

Corpus-Based MT. Statistical NLP Spring Unsupervised Word Alignment. Alignment Error Rate. IBM Models 1/2. Problems with Model 1 Statistical NLP Spring 2010 Corpus-Based MT Modeling correspondences between languages Sentence-aligned parallel corpus: Yo lo haré mañana I will do it tomorrow Hasta pronto See you soon Hasta pronto See

More information

Theory of Alignment Generators and Applications to Statistical Machine Translation

Theory of Alignment Generators and Applications to Statistical Machine Translation Theory of Alignment Generators and Applications to Statistical Machine Translation Raghavendra Udupa U Hemanta K Mai IBM India Research Laboratory, New Delhi {uraghave, hemantkm}@inibmcom Abstract Viterbi

More information

IBM Model 1 for Machine Translation

IBM Model 1 for Machine Translation IBM Model 1 for Machine Translation Micha Elsner March 28, 2014 2 Machine translation A key area of computational linguistics Bar-Hillel points out that human-like translation requires understanding of

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Machine Recognition of Sounds in Mixtures

Machine Recognition of Sounds in Mixtures Machine Recognition of Sounds in Mixtures Outline 1 2 3 4 Computational Auditory Scene Analysis Speech Recognition as Source Formation Sound Fragment Decoding Results & Conclusions Dan Ellis

More information

Lattice-based System Combination for Statistical Machine Translation

Lattice-based System Combination for Statistical Machine Translation Lattice-based System Combination for Statistical Machine Translation Yang Feng, Yang Liu, Haitao Mi, Qun Liu, Yajuan Lu Key Laboratory of Intelligent Information Processing Institute of Computing Technology

More information

End-to-end Automatic Speech Recognition

End-to-end Automatic Speech Recognition End-to-end Automatic Speech Recognition Markus Nussbaum-Thom IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598, USA Markus Nussbaum-Thom. February 22, 2017 Nussbaum-Thom: IBM Thomas J. Watson

More information

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti

Quasi-Synchronous Phrase Dependency Grammars for Machine Translation. lti Quasi-Synchronous Phrase Dependency Grammars for Machine Translation Kevin Gimpel Noah A. Smith 1 Introduction MT using dependency grammars on phrases Phrases capture local reordering and idiomatic translations

More information

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri Speech Recognition Lecture 5: N-gram Language Models Eugene Weinstein Google, NYU Courant Institute eugenew@cs.nyu.edu Slide Credit: Mehryar Mohri Components Acoustic and pronunciation model: Pr(o w) =

More information

Evaluation. Brian Thompson slides by Philipp Koehn. 25 September 2018

Evaluation. Brian Thompson slides by Philipp Koehn. 25 September 2018 Evaluation Brian Thompson slides by Philipp Koehn 25 September 2018 Evaluation 1 How good is a given machine translation system? Hard problem, since many different translations acceptable semantic equivalence

More information

Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer

Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer Gábor Gosztolya, András Kocsor Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University

More information

Multi-Task Word Alignment Triangulation for Low-Resource Languages

Multi-Task Word Alignment Triangulation for Low-Resource Languages Multi-Task Word Alignment Triangulation for Low-Resource Languages Tomer Levinboim and David Chiang Department of Computer Science and Engineering University of Notre Dame {levinboim.1,dchiang}@nd.edu

More information

Improved Decipherment of Homophonic Ciphers

Improved Decipherment of Homophonic Ciphers Improved Decipherment of Homophonic Ciphers Malte Nuhn and Julian Schamper and Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department, RWTH Aachen University, Aachen,

More information

Deep Learning for Speech Recognition. Hung-yi Lee

Deep Learning for Speech Recognition. Hung-yi Lee Deep Learning for Speech Recognition Hung-yi Lee Outline Conventional Speech Recognition How to use Deep Learning in acoustic modeling? Why Deep Learning? Speaker Adaptation Multi-task Deep Learning New

More information

Computing Lattice BLEU Oracle Scores for Machine Translation

Computing Lattice BLEU Oracle Scores for Machine Translation Computing Lattice Oracle Scores for Machine Translation Artem Sokolov & Guillaume Wisniewski & François Yvon {firstname.lastname}@limsi.fr LIMSI, Orsay, France 1 Introduction 2 Oracle Decoding Task 3 Proposed

More information

Bitext Alignment for Statistical Machine Translation

Bitext Alignment for Statistical Machine Translation Bitext Alignment for Statistical Machine Translation Yonggang Deng Advisor: Prof. William Byrne Thesis Committee: Prof. William Byrne, Prof. Trac Tran Prof. Jerry Prince and Prof. Gerard Meyer Center for

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Algorithms for NLP. Machine Translation II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Machine Translation II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Machine Translation II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Project 4: Word Alignment! Will be released soon! (~Monday) Phrase-Based System Overview

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 18: Search & Decoding (Part I) Instructor: Preethi Jyothi Mar 23, 2017 Recall ASR Decoding W = arg max W Pr(O A W )Pr(W ) W = arg max w N 1,N 8" < Y N : n=1

More information

N-gram Language Model. Language Models. Outline. Language Model Evaluation. Given a text w = w 1...,w t,...,w w we can compute its probability by:

N-gram Language Model. Language Models. Outline. Language Model Evaluation. Given a text w = w 1...,w t,...,w w we can compute its probability by: N-gram Language Model 2 Given a text w = w 1...,w t,...,w w we can compute its probability by: Language Models Marcello Federico FBK-irst Trento, Italy 2016 w Y Pr(w) =Pr(w 1 ) Pr(w t h t ) (1) t=2 where

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

Lecture 10. Discriminative Training, ROVER, and Consensus. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Lecture 10. Discriminative Training, ROVER, and Consensus. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen Lecture 10 Discriminative Training, ROVER, and Consensus Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com

More information

Sparse Models for Speech Recognition

Sparse Models for Speech Recognition Sparse Models for Speech Recognition Weibin Zhang and Pascale Fung Human Language Technology Center Hong Kong University of Science and Technology Outline Introduction to speech recognition Motivations

More information

A New Smoothing Method for Lexicon-based Handwritten Text Keyword Spotting

A New Smoothing Method for Lexicon-based Handwritten Text Keyword Spotting A New Smoothing Method for Lexicon-based Handwritten Text Keyword Spotting Joan Puigcerver, Alejandro H. Toselli, Enrique Vidal {joapuipe,ahector,evidal}@prhlt.upv.es Pattern Recognition and Human Language

More information

Machine Translation without Words through Substring Alignment

Machine Translation without Words through Substring Alignment Machine Translation without Words through Substring Alignment Graham Neubig 1,2,3, Taro Watanabe 2, Shinsuke Mori 1, Tatsuya Kawahara 1 1 2 3 now at 1 Machine Translation Translate a source sentence F

More information

Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks

Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks Daniel Povey 1,2, Gaofeng Cheng 3, Yiming Wang 1, Ke Li 1, Hainan Xu 1, Mahsa Yarmohamadi 1, Sanjeev Khudanpur 1,2 1 Center for Language

More information

Chapter 2 Computer Assisted Transcription: General Framework

Chapter 2 Computer Assisted Transcription: General Framework Chapter 2 Computer Assisted Transcription: General Framework With Contribution Of: Verónica Romero and Luis Rodriguez. Contents 2.1 Introduction.................................... 47 2.2 CommonStatisticalFrameworkforHTRandASR...

More information

Finite-State Transducers

Finite-State Transducers Finite-State Transducers - Seminar on Natural Language Processing - Michael Pradel July 6, 2007 Finite-state transducers play an important role in natural language processing. They provide a model for

More information

DT2118 Speech and Speaker Recognition

DT2118 Speech and Speaker Recognition DT2118 Speech and Speaker Recognition Language Modelling Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 56 Outline Introduction Formal Language Theory Stochastic Language Models (SLM) N-gram Language

More information

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks INTERSPEECH 2014 Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks Ryu Takeda, Naoyuki Kanda, and Nobuo Nukaga Central Research Laboratory, Hitachi Ltd., 1-280, Kokubunji-shi,

More information

Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B)

Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B) Examples My mood can take 2 possible values: happy, sad. The weather can take 3 possible vales: sunny, rainy, cloudy My friends know me pretty well and say that: P(Mood=happy Weather=rainy) = 0.25 P(Mood=happy

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Spatial Role Labeling CS365 Course Project

Spatial Role Labeling CS365 Course Project Spatial Role Labeling CS365 Course Project Amit Kumar, akkumar@iitk.ac.in Chandra Sekhar, gchandra@iitk.ac.in Supervisor : Dr.Amitabha Mukerjee ABSTRACT In natural language processing one of the important

More information

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model (most slides from Sharon Goldwater; some adapted from Philipp Koehn) 5 October 2016 Nathan Schneider

More information

Natural Language Processing and Recurrent Neural Networks

Natural Language Processing and Recurrent Neural Networks Natural Language Processing and Recurrent Neural Networks Pranay Tarafdar October 19 th, 2018 Outline Introduction to NLP Word2vec RNN GRU LSTM Demo What is NLP? Natural Language? : Huge amount of information

More information

n-gram-based MT : what s behind us, what s ahead

n-gram-based MT : what s behind us, what s ahead n-gram-based MT : what s behind us, what s ahead F. Yvon and the LIMSI MT crew LIMSI CNRS and Université Paris Sud MT Marathon in Prague, Sep 8th, 215 F. Yvon (LIMSI) n-gram-based MT MTM@Prague - 215-9-8

More information

Incremental HMM Alignment for MT System Combination

Incremental HMM Alignment for MT System Combination Incremental HMM Alignment for MT System Combination Chi-Ho Li Microsoft Research Asia 49 Zhichun Road, Beijing, China chl@microsoft.com Yupeng Liu Harbin Institute of Technology 92 Xidazhi Street, Harbin,

More information

Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre

Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre Around the Speaker De-Identification (Speaker diarization for de-identification ++) Itshak Lapidot Moez Ajili Jean-Francois Bonastre The 2 Parts HDM based diarization System The homogeneity measure 2 Outline

More information

A Fast Re-scoring Strategy to Capture Long-Distance Dependencies

A Fast Re-scoring Strategy to Capture Long-Distance Dependencies A Fast Re-scoring Strategy to Capture Long-Distance Dependencies Anoop Deoras HLT-COE and CLSP Johns Hopkins University Baltimore MD 21218, USA adeoras@jhu.edu, Tomáš Mikolov Kenneth Church Brno University

More information

1. Markov models. 1.1 Markov-chain

1. Markov models. 1.1 Markov-chain 1. Markov models 1.1 Markov-chain Let X be a random variable X = (X 1,..., X t ) taking values in some set S = {s 1,..., s N }. The sequence is Markov chain if it has the following properties: 1. Limited

More information

Natural Language Understanding. Kyunghyun Cho, NYU & U. Montreal

Natural Language Understanding. Kyunghyun Cho, NYU & U. Montreal Natural Language Understanding Kyunghyun Cho, NYU & U. Montreal 2 Machine Translation NEURAL MACHINE TRANSLATION 3 Topics: Statistical Machine Translation log p(f e) =log p(e f) + log p(f) f = (La, croissance,

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machine Translation -tree-based models (cont.)- Artem Sokolov Computerlinguistik Universität Heidelberg Sommersemester 2015 material from P. Koehn, S. Riezler, D. Altshuler Bottom-Up Decoding

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Machine Translation Evaluation

Machine Translation Evaluation Machine Translation Evaluation Sara Stymne 2017-03-29 Partly based on Philipp Koehn s slides for chapter 8 Why Evaluation? How good is a given machine translation system? Which one is the best system for

More information

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 )

Part A. P (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 ) P (w M w 1 w 2 w M 1 ) P (w 1 )P (w 2 w 1 )P (w 3 w 2 ) P (w M w M 1 ) Part A 1. A Markov chain is a discrete-time stochastic process, defined by a set of states, a set of transition probabilities (between states), and a set of initial state probabilities; the process proceeds

More information

CSC321 Lecture 15: Recurrent Neural Networks

CSC321 Lecture 15: Recurrent Neural Networks CSC321 Lecture 15: Recurrent Neural Networks Roger Grosse Roger Grosse CSC321 Lecture 15: Recurrent Neural Networks 1 / 26 Overview Sometimes we re interested in predicting sequences Speech-to-text and

More information

statistical machine translation

statistical machine translation statistical machine translation P A R T 3 : D E C O D I N G & E V A L U A T I O N CSC401/2511 Natural Language Computing Spring 2019 Lecture 6 Frank Rudzicz and Chloé Pou-Prom 1 University of Toronto Statistical

More information

CRF Word Alignment & Noisy Channel Translation

CRF Word Alignment & Noisy Channel Translation CRF Word Alignment & Noisy Channel Translation January 31, 2013 Last Time... X p( Translation)= p(, Translation) Alignment Alignment Last Time... X p( Translation)= p(, Translation) Alignment X Alignment

More information

P(t w) = arg maxp(t, w) (5.1) P(t,w) = P(t)P(w t). (5.2) The first term, P(t), can be described using a language model, for example, a bigram model:

P(t w) = arg maxp(t, w) (5.1) P(t,w) = P(t)P(w t). (5.2) The first term, P(t), can be described using a language model, for example, a bigram model: Chapter 5 Text Input 5.1 Problem In the last two chapters we looked at language models, and in your first homework you are building language models for English and Chinese to enable the computer to guess

More information

Pre-Initialized Composition For Large-Vocabulary Speech Recognition

Pre-Initialized Composition For Large-Vocabulary Speech Recognition Pre-Initialized Composition For Large-Vocabulary Speech Recognition Cyril Allauzen, Michael Riley Google Research, 76 Ninth Avenue, New York, NY, USA allauzen@google.com, riley@google.com Abstract This

More information

N-gram Language Modeling

N-gram Language Modeling N-gram Language Modeling Outline: Statistical Language Model (LM) Intro General N-gram models Basic (non-parametric) n-grams Class LMs Mixtures Part I: Statistical Language Model (LM) Intro What is a statistical

More information

Machine Translation: Examples. Statistical NLP Spring Levels of Transfer. Corpus-Based MT. World-Level MT: Examples

Machine Translation: Examples. Statistical NLP Spring Levels of Transfer. Corpus-Based MT. World-Level MT: Examples Statistical NLP Spring 2009 Machine Translation: Examples Lecture 17: Word Alignment Dan Klein UC Berkeley Corpus-Based MT Levels of Transfer Modeling correspondences between languages Sentence-aligned

More information

Word Alignment via Submodular Maximization over Matroids

Word Alignment via Submodular Maximization over Matroids Word Alignment via Submodular Maximization over Matroids Hui Lin, Jeff Bilmes University of Washington, Seattle Dept. of Electrical Engineering June 21, 2011 Lin and Bilmes Submodular Word Alignment June

More information

Section 2.3: Statements Containing Multiple Quantifiers

Section 2.3: Statements Containing Multiple Quantifiers Section 2.3: Statements Containing Multiple Quantifiers In this section, we consider statements such as there is a person in this company who is in charge of all the paperwork where more than one quantifier

More information