Automatic Speech Recognition (CS753)

Size: px
Start display at page:

Download "Automatic Speech Recognition (CS753)"

Transcription

1 Automatic Speech Recognition (CS753) Lecture 18: Search & Decoding (Part I) Instructor: Preethi Jyothi Mar 23, 2017

2 Recall ASR Decoding W = arg max W Pr(O A W )Pr(W ) W = arg max w N 1,N 8" < Y N : n=1 # 2 Pr(w n wn n m+1 1 ) 4 X q T 1,wN 1 TY t=1 39 = Pr(O t q t,w1 N )Pr(q t q t 1,w1 N ) 5 ; Viterbi arg max w N 1,N (" N Y n=1 Pr(w n w n 1 n m+1 ) #"max q T 1,wN 1 TY t=1 #) Pr(O t q t,w1 N )Pr(q t q t 1,w1 N ) Viterbi approximation divides the above optimisation problem into sub-problems that allows the efficient application of dynamic programming An exact search using Viterbi is infeasible for large vocabulary tasks!

3 Recall Viterbi search Viterbi search finds the most probable path through a trellis of time on the X-axis and states on the Y-axis q F end end end end v 1 (2)=.32 v 2 (2)= max(.32*.12,.02*.08) =.038 q 2 H H P(C H) * P(1 C).3 *.5 P(H H) * P(1 H).6 *.2 H H q 1 q 0 C start P(H start)*p(3 H).8 *.4 P(C start) * P(3 C).2 *.1 v 1 (1) =.02 C P(H C) * P(1 H).4 *.2 P(C C) * P(1 C).5 *.5 v 2 (1) = max(.32*.15,.02*.25) =.048 start start start C C o 1 o 2 o 3 Viterbi algorithm: Only needs to maintain information about the most probable path at each state Image from [JM]: Jurafsky & Martin, 3rd edition, Chapter 9

4 ASR Search Network Network of HMM states d ax b Network of phones b oy the birds walking are 0 boy is Network of words

5 word1 word2 word3 Time-state trellis Time, t

6 Viterbi search over the large trellis Exact search is infeasible for large vocabulary tasks Unknown word boundaries Ngram language models greatly increase the search space Solutions Compactly represent the search space using WFST-based optimisations Beam search: Prune away parts of the search space that aren t promising

7 Viterbi search over the large trellis Exact search is infeasible for large vocabulary tasks Unknown word boundaries Ngram language models greatly increase the search space Solutions Compactly represent the search space using WFST-based optimisations Beam search: Prune away parts of the search space that aren t promising

8 Two main WFST Optimizations Use determinization to reduce/eliminate redundancy Recall not all weighted transducers are determinizable To ensure determinizability of L G, introduce disambiguation symbols in L to deal with homophones in the lexicon read : r eh d #0 red : r eh d #1 Propagate the disambiguation symbols as self-loops back to C and H. Resulting machines are H, C, L

9 Two main WFST Optimizations Use determinization to reduce/eliminate redundancy Use minimization to reduce space requirements Minimization ensures that the final composed machine has minimum number of states Final optimization cascade: N = πε(min(det(h det(c det(l G))))) Replaces disambiguation symbols in input alphabet of H with ε

10 Example G bob:bob 0 bond:bond 1 rob:rob slept:slept read:read ate:ate 2

11 Compact language models (G) Use Backoff Ngram language models for G a,b c / Pr(c a,b) b,c ε / α(a,b) b c / Pr(c b) ε / α(b,c) c ε / α(b) c / Pr(c) ε

12 Example G bob:bob 0 bond:bond 1 rob:rob slept:slept read:read ate:ate 2

13 Example L :Lexicon with disambig symbols 0 1 b:bob 5 b:bond 9 r:rob 12 s:slept 17 r:read 20 ey:ate 2 aa:- 6 aa:- 10 aa:- 13 l:- 18 eh:- 21 t:- 3 b:- 4 #0:- 7 n:- 8 d:- 11 b:- 14 eh:- 15 p:- 16 t:- 19 d:-

14 L G 0 1 b:bob 2 b:bond 3 r:rob 4 aa:- 5 aa:- 6 aa:- 7 b:- 8 n:- 9 b:- 10 #0:- 11 d: s:slept 14 r:read 15 ey:ate 16 l:- 17 eh:- 18 t:- 19 eh:- 20 d:- 21 p:- 22 t:- det(l G) 0 1 b:- 2 r:rob 3 aa:- 4 aa:- 5 b:bob 6 n:bond 7 b:- 8 #0:- 9 d: r:read 12 s:slept 13 ey:ate 14 eh:- 15 l:- 16 t:- 17 d:- 18 eh:- 19 p:- 20 t:-

15 min(det(l G)) 0 1 b:- 2 r:rob 3 aa:- 4 aa:- 5 b:bob 6 n:bond 7 b:- #0:- d:- 8 9 r:read 10 s:slept 11 ey:ate 12 eh:- 13 l:- 14 t:- d:- 15 eh:- p:- det(l G) 0 1 b:- 2 r:rob 3 aa:- 4 aa:- 5 b:bob 6 n:bond 7 b:- 8 #0:- 9 d: r:read 12 s:slept 13 ey:ate 14 eh:- 15 l:- 16 t:- 17 d:- 18 eh:- 19 p:- 20 t:-

16 Viterbi search over the large trellis Exact search is infeasible for large vocabulary tasks Unknown word boundaries Ngram language models greatly increase the search space Solutions Compactly represent the search space using WFST-based optimisations Beam search: Prune away parts of the search space that aren t promising

17 Beam pruning At each time-step t, only retain those nodes in the time-state trellis that are within a fixed threshold δ (beam width) of the best path Given active nodes from the last time-step: Examine nodes in the current time-step that are reachable from active nodes in the previous timestep Get active nodes for the current time-step by only retaining nodes with hypotheses that score close to the score of the best hypothesis

18 Beam search Beam search at each node keeps only hypotheses with scores that fall within a threshold of the current best hypothesis Hypotheses with Q(t, s) < δ max Q(t, s ) are pruned here, δ controls the beam width Search errors could occur if the most probable hypothesis gets pruned Trade-off between balancing search errors and speeding up decoding

19 Static and dynamic networks What we ve seen so far: Static decoding graph H C L G Determinize/minimize to make this graph more compact Another approach: Dynamic graph expansion Dynamically build the graph with active states on the fly Do on-the-fly composition with the language model G (H C L) G

20 Multi-pass search Some models are too expensive to implement in first-pass decoding (e.g. RNN-based LMs) First-pass decoding: Use simpler model (e.g. Ngram LMs) to find most probable word sequences and represent as a word lattice or an N-best list Rescore first-pass hypotheses using complex model to find the best word sequence

21 Multi-pass decoding with N-best lists Simple algorithm: Modify the Viterbi algorithm to return the N- best word sequences for a given speech input DRA speech input If music be the food of love... Simple Knowledge Source N-Best Decoder N-Best List?Alice was beginning to get...?every happy family...?in a hole in the ground...?if music be the food of love...?if music be the foot of dove... Smarter Knowledge Source Rescoring 1-Best Utterance If music be the food of love... Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

22 Multi-pass decoding with N-best lists Simple algorithm: Modify the Viterbi algorithm to return the N- best word sequences for a given speech input Rank Path logprob logprob 1. it s an area that s naturally sort of mysterious that s an area that s naturally sort of mysterious it s an area that s not really sort of mysterious that scenario that s naturally sort of mysterious there s an area that s naturally sort of mysterious that s an area that s not really sort of mysterious the scenario that s naturally sort of mysterious so it s an area that s naturally sort of mysterious that scenario that s not really sort of mysterious there s an area that s not really sort of mysterious N-best lists aren t as diverse as we d like. And, not enough information in N-best lists to effectively use other knowledge sources AFTAM LM Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

23 Multi-pass decoding with lattices ASR lattice: Weighted automata/directed graph representing alternate word hypotheses from an ASR system so, it s it s there s that s an area that s naturally sort of mysterious that the scenario not really

24 Multi-pass decoding with lattices Confusion networks/sausages: Lattices that show competing/ confusable words and can be used to compute posterior probabilities at the word level it s there s that s the an area that s naturally sort of mysterious that scenario not

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (S753) Lecture 5: idden Markov s (Part I) Instructor: Preethi Jyothi August 7, 2017 Recap: WFSTs applied to ASR WFST-based ASR System Indices s Triphones ontext Transducer

More information

] Automatic Speech Recognition (CS753)

] Automatic Speech Recognition (CS753) ] Automatic Speech Recognition (CS753) Lecture 17: Discriminative Training for HMMs Instructor: Preethi Jyothi Sep 28, 2017 Discriminative Training Recall: MLE for HMMs Maximum likelihood estimation (MLE)

More information

Weighted Finite State Transducers in Automatic Speech Recognition

Weighted Finite State Transducers in Automatic Speech Recognition Weighted Finite State Transducers in Automatic Speech Recognition ZRE lecture 10.04.2013 Mirko Hannemann Slides provided with permission, Daniel Povey some slides from T. Schultz, M. Mohri and M. Riley

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (S753) Lecture 5: idden Markov Models (Part I) Instructor: Preethi Jyothi Lecture 5 OpenFst heat Sheet Quick Intro to OpenFst (www.openfst.org) a 0 label is 0 an 1 2 reserved

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

A Disambiguation Algorithm for Weighted Automata

A Disambiguation Algorithm for Weighted Automata A Disambiguation Algorithm for Weighted Automata Mehryar Mohri a,b and Michael D. Riley b a Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012. b Google Research, 76 Ninth

More information

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION HIDDEN MARKOV MODELS IN SPEECH RECOGNITION Wayne Ward Carnegie Mellon University Pittsburgh, PA 1 Acknowledgements Much of this talk is derived from the paper "An Introduction to Hidden Markov Models",

More information

Speech and Language Processing. Chapter 9 of SLP Automatic Speech Recognition (II)

Speech and Language Processing. Chapter 9 of SLP Automatic Speech Recognition (II) Speech and Language Processing Chapter 9 of SLP Automatic Speech Recognition (II) Outline for ASR ASR Architecture The Noisy Channel Model Five easy pieces of an ASR system 1) Language Model 2) Lexicon/Pronunciation

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 6: Hidden Markov Models (Part II) Instructor: Preethi Jyothi Aug 10, 2017 Recall: Computing Likelihood Problem 1 (Likelihood): Given an HMM l =(A, B) and an

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Speech Translation: from Singlebest to N-Best to Lattice Translation. Spoken Language Communication Laboratories

Speech Translation: from Singlebest to N-Best to Lattice Translation. Spoken Language Communication Laboratories Speech Translation: from Singlebest to N-Best to Lattice Translation Ruiqiang ZHANG Genichiro KIKUI Spoken Language Communication Laboratories 2 Speech Translation Structure Single-best only ASR Single-best

More information

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm + September13, 2016 Professor Meteer CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm Thanks to Dan Jurafsky for these slides + ASR components n Feature

More information

Hidden Markov Modelling

Hidden Markov Modelling Hidden Markov Modelling Introduction Problem formulation Forward-Backward algorithm Viterbi search Baum-Welch parameter estimation Other considerations Multiple observation sequences Phone-based models

More information

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 8: Tied state HMMs + DNNs in ASR Instructor: Preethi Jyothi Aug 17, 2017 Final Project Landscape Voice conversion using GANs Musical Note Extraction Keystroke

More information

Hidden Markov Models Hamid R. Rabiee

Hidden Markov Models Hamid R. Rabiee Hidden Markov Models Hamid R. Rabiee 1 Hidden Markov Models (HMMs) In the previous slides, we have seen that in many cases the underlying behavior of nature could be modeled as a Markov process. However

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 25&29 January 2018 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Pre-Initialized Composition For Large-Vocabulary Speech Recognition

Pre-Initialized Composition For Large-Vocabulary Speech Recognition Pre-Initialized Composition For Large-Vocabulary Speech Recognition Cyril Allauzen, Michael Riley Google Research, 76 Ninth Avenue, New York, NY, USA allauzen@google.com, riley@google.com Abstract This

More information

Statistical Sequence Recognition and Training: An Introduction to HMMs

Statistical Sequence Recognition and Training: An Introduction to HMMs Statistical Sequence Recognition and Training: An Introduction to HMMs EECS 225D Nikki Mirghafori nikki@icsi.berkeley.edu March 7, 2005 Credit: many of the HMM slides have been borrowed and adapted, with

More information

Statistical Machine Translation. Part III: Search Problem. Complexity issues. DP beam-search: with single and multi-stacks

Statistical Machine Translation. Part III: Search Problem. Complexity issues. DP beam-search: with single and multi-stacks Statistical Machine Translation Marcello Federico FBK-irst Trento, Italy Galileo Galilei PhD School - University of Pisa Pisa, 7-19 May 008 Part III: Search Problem 1 Complexity issues A search: with single

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 12: Acoustic Feature Extraction for ASR Instructor: Preethi Jyothi Feb 13, 2017 Speech Signal Analysis Generate discrete samples A frame Need to focus on short

More information

1. Markov models. 1.1 Markov-chain

1. Markov models. 1.1 Markov-chain 1. Markov models 1.1 Markov-chain Let X be a random variable X = (X 1,..., X t ) taking values in some set S = {s 1,..., s N }. The sequence is Markov chain if it has the following properties: 1. Limited

More information

Statistical NLP Spring Digitizing Speech

Statistical NLP Spring Digitizing Speech Statistical NLP Spring 2008 Lecture 10: Acoustic Models Dan Klein UC Berkeley Digitizing Speech 1 Frame Extraction A frame (25 ms wide) extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon

More information

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ...

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ... Statistical NLP Spring 2008 Digitizing Speech Lecture 10: Acoustic Models Dan Klein UC Berkeley Frame Extraction A frame (25 ms wide extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon Arnfield

More information

Sparse Forward-Backward for Fast Training of Conditional Random Fields

Sparse Forward-Backward for Fast Training of Conditional Random Fields Sparse Forward-Backward for Fast Training of Conditional Random Fields Charles Sutton, Chris Pal and Andrew McCallum University of Massachusetts Amherst Dept. Computer Science Amherst, MA 01003 {casutton,

More information

Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer

Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer Gábor Gosztolya, András Kocsor Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course)

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course) 10. Hidden Markov Models (HMM) for Speech Processing (some slides taken from Glass and Zue course) Definition of an HMM The HMM are powerful statistical methods to characterize the observed samples of

More information

Chapter 3: Basics of Language Modeling

Chapter 3: Basics of Language Modeling Chapter 3: Basics of Language Modeling Section 3.1. Language Modeling in Automatic Speech Recognition (ASR) All graphs in this section are from the book by Schukat-Talamazzini unless indicated otherwise

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models Statistical NLP Spring 2010 The Noisy Channel Model Lecture 9: Acoustic Models Dan Klein UC Berkeley Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions Language model: Distributions

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Decoding in Statistical Machine Translation. Mid-course Evaluation. Decoding. Christian Hardmeier

Decoding in Statistical Machine Translation. Mid-course Evaluation. Decoding. Christian Hardmeier Decoding in Statistical Machine Translation Christian Hardmeier 2016-05-04 Mid-course Evaluation http://stp.lingfil.uu.se/~sara/kurser/mt16/ mid-course-eval.html Decoding The decoder is the part of the

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Ngram Review. CS 136 Lecture 10 Language Modeling. Thanks to Dan Jurafsky for these slides. October13, 2017 Professor Meteer

Ngram Review. CS 136 Lecture 10 Language Modeling. Thanks to Dan Jurafsky for these slides. October13, 2017 Professor Meteer + Ngram Review October13, 2017 Professor Meteer CS 136 Lecture 10 Language Modeling Thanks to Dan Jurafsky for these slides + ASR components n Feature Extraction, MFCCs, start of Acoustic n HMMs, the Forward

More information

CSC401/2511 Spring CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto

CSC401/2511 Spring CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto CSC401/2511 Natural Language Computing Spring 2019 Lecture 5 Frank Rudzicz and Chloé Pou-Prom University of Toronto Revisiting PoS tagging Will/MD the/dt chair/nn chair/?? the/dt meeting/nn from/in that/dt

More information

Weighted Finite-State Transducers in Automatic Speech Recognition

Weighted Finite-State Transducers in Automatic Speech Recognition Weighted Finite-State Transducers in Automatic Speech Recognition Dr. John McDonough Spoken Language Systems Saarland University January 14, 2010 Introduction In this lecture, we will discuss the application

More information

CS 373: Theory of Computation. Fall 2010

CS 373: Theory of Computation. Fall 2010 CS 373: Theory of Computation Gul Agha Mahesh Viswanathan Fall 2010 1 1 Normal Forms for CFG Normal Forms for Grammars It is typically easier to work with a context free language if given a CFG in a normal

More information

Introduction to Finite Automaton

Introduction to Finite Automaton Lecture 1 Introduction to Finite Automaton IIP-TL@NTU Lim Zhi Hao 2015 Lecture 1 Introduction to Finite Automata (FA) Intuition of FA Informally, it is a collection of a finite set of states and state

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Helen Yannakoudakis 1 Computer Laboratory University of Cambridge Lent 2018 1 Based on slides created by Simone Teufel So far we ve looked at

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 8: Sequence Labeling Jimmy Lin University of Maryland Thursday, March 14, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

Input to Baum-Welch. O unlabeled sequence of observadons Q vocabulary of hidden states. For ice-cream task O = {1,3,2,,} Q = {H,C}

Input to Baum-Welch. O unlabeled sequence of observadons Q vocabulary of hidden states. For ice-cream task O = {1,3,2,,} Q = {H,C} The Learning Problem Baum-Welch = Forward-Backward Algorithm (Baum 1972) Is a special case of the EM or ExpectaDon- MaximizaDon algorithm (Dempster, Laird, Rubin) The algorithm will let us train the transidon

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 21: Speaker Adaptation Instructor: Preethi Jyothi Oct 23, 2017 Speaker variations Major cause of variability in speech is the differences between speakers Speaking

More information

Design and Implementation of Speech Recognition Systems

Design and Implementation of Speech Recognition Systems Design and Implementation of Speech Recognition Systems Spring 2013 Class 7: Templates to HMMs 13 Feb 2013 1 Recap Thus far, we have looked at dynamic programming for string matching, And derived DTW from

More information

N-gram Language Modeling Tutorial

N-gram Language Modeling Tutorial N-gram Language Modeling Tutorial Dustin Hillard and Sarah Petersen Lecture notes courtesy of Prof. Mari Ostendorf Outline: Statistical Language Model (LM) Basics n-gram models Class LMs Cache LMs Mixtures

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

Dynamically Weighted Hidden Markov Model for Spam Deobfuscation

Dynamically Weighted Hidden Markov Model for Spam Deobfuscation Dynamically Weighted Hidden Markov Model for Spam Deobfuscation Seunghak Lee Department of Chemistry POSTECH, Korea boy3@postech.ac.kr Iryoung Jeong Department of Computer Science Education Korea University,

More information

P(t w) = arg maxp(t, w) (5.1) P(t,w) = P(t)P(w t). (5.2) The first term, P(t), can be described using a language model, for example, a bigram model:

P(t w) = arg maxp(t, w) (5.1) P(t,w) = P(t)P(w t). (5.2) The first term, P(t), can be described using a language model, for example, a bigram model: Chapter 5 Text Input 5.1 Problem In the last two chapters we looked at language models, and in your first homework you are building language models for English and Chinese to enable the computer to guess

More information

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22

Parsing. Probabilistic CFG (PCFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 22 Parsing Probabilistic CFG (PCFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 22 Table of contents 1 Introduction 2 PCFG 3 Inside and outside probability 4 Parsing Jurafsky

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Design and Implementation of Speech Recognition Systems

Design and Implementation of Speech Recognition Systems Design and Implementation of Speech Recognition Systems Spring 2012 Class 9: Templates to HMMs 20 Feb 2012 1 Recap Thus far, we have looked at dynamic programming for string matching, And derived DTW from

More information

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model (most slides from Sharon Goldwater; some adapted from Philipp Koehn) 5 October 2016 Nathan Schneider

More information

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009

CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models. The ischool University of Maryland. Wednesday, September 30, 2009 CMSC 723: Computational Linguistics I Session #5 Hidden Markov Models Jimmy Lin The ischool University of Maryland Wednesday, September 30, 2009 Today s Agenda The great leap forward in NLP Hidden Markov

More information

CS230: Lecture 10 Sequence models II

CS230: Lecture 10 Sequence models II CS23: Lecture 1 Sequence models II Today s outline We will learn how to: - Automatically score an NLP model I. BLEU score - Improve Machine II. Beam Search Translation results with Beam search III. Speech

More information

L23: hidden Markov models

L23: hidden Markov models L23: hidden Markov models Discrete Markov processes Hidden Markov models Forward and Backward procedures The Viterbi algorithm This lecture is based on [Rabiner and Juang, 1993] Introduction to Speech

More information

Dynamic Programming: Hidden Markov Models

Dynamic Programming: Hidden Markov Models University of Oslo : Department of Informatics Dynamic Programming: Hidden Markov Models Rebecca Dridan 16 October 2013 INF4820: Algorithms for AI and NLP Topics Recap n-grams Parts-of-speech Hidden Markov

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

Soft Inference and Posterior Marginals. September 19, 2013

Soft Inference and Posterior Marginals. September 19, 2013 Soft Inference and Posterior Marginals September 19, 2013 Soft vs. Hard Inference Hard inference Give me a single solution Viterbi algorithm Maximum spanning tree (Chu-Liu-Edmonds alg.) Soft inference

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Hidden Markov Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 33 Introduction So far, we have classified texts/observations

More information

Augmented Statistical Models for Classifying Sequence Data

Augmented Statistical Models for Classifying Sequence Data Augmented Statistical Models for Classifying Sequence Data Martin Layton Corpus Christi College University of Cambridge September 2006 Dissertation submitted to the University of Cambridge for the degree

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Phrase-Based Statistical Machine Translation with Pivot Languages

Phrase-Based Statistical Machine Translation with Pivot Languages Phrase-Based Statistical Machine Translation with Pivot Languages N. Bertoldi, M. Barbaiani, M. Federico, R. Cattoni FBK, Trento - Italy Rovira i Virgili University, Tarragona - Spain October 21st, 2008

More information

Wavelet Transform in Speech Segmentation

Wavelet Transform in Speech Segmentation Wavelet Transform in Speech Segmentation M. Ziółko, 1 J. Gałka 1 and T. Drwięga 2 1 Department of Electronics, AGH University of Science and Technology, Kraków, Poland, ziolko@agh.edu.pl, jgalka@agh.edu.pl

More information

Statistical Phrase-Based Speech Translation

Statistical Phrase-Based Speech Translation Statistical Phrase-Based Speech Translation Lambert Mathias 1 William Byrne 2 1 Center for Language and Speech Processing Department of Electrical and Computer Engineering Johns Hopkins University 2 Machine

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Graphical Models for Automatic Speech Recognition

Graphical Models for Automatic Speech Recognition Graphical Models for Automatic Speech Recognition Advanced Signal Processing SE 2, SS05 Stefan Petrik Signal Processing and Speech Communication Laboratory Graz University of Technology GMs for Automatic

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Dr Philip Jackson Centre for Vision, Speech & Signal Processing University of Surrey, UK 1 3 2 http://www.ee.surrey.ac.uk/personal/p.jackson/isspr/ Outline 1. Recognizing patterns

More information

Lecture 12: Algorithms for HMMs

Lecture 12: Algorithms for HMMs Lecture 12: Algorithms for HMMs Nathan Schneider (some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes) ENLP 17 October 2016 updated 9 September 2017 Recap: tagging POS tagging is a

More information

Sequence Modeling with Neural Networks

Sequence Modeling with Neural Networks Sequence Modeling with Neural Networks Harini Suresh y 0 y 1 y 2 s 0 s 1 s 2... x 0 x 1 x 2 hat is a sequence? This morning I took the dog for a walk. sentence medical signals speech waveform Successes

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Naive Bayes Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 20 Introduction Classification = supervised method for

More information

Unsupervised Model Adaptation using Information-Theoretic Criterion

Unsupervised Model Adaptation using Information-Theoretic Criterion Unsupervised Model Adaptation using Information-Theoretic Criterion Ariya Rastrow 1, Frederick Jelinek 1, Abhinav Sethy 2 and Bhuvana Ramabhadran 2 1 Human Language Technology Center of Excellence, and

More information

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recap Standard RNNs Training: Backpropagation Through Time (BPTT) Application to sequence modeling Language modeling Applications: Automatic speech

More information

Statistical Machine Translation and Automatic Speech Recognition under Uncertainty

Statistical Machine Translation and Automatic Speech Recognition under Uncertainty Statistical Machine Translation and Automatic Speech Recognition under Uncertainty Lambert Mathias A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree

More information

Chapter 2 Computer Assisted Transcription: General Framework

Chapter 2 Computer Assisted Transcription: General Framework Chapter 2 Computer Assisted Transcription: General Framework With Contribution Of: Verónica Romero and Luis Rodriguez. Contents 2.1 Introduction.................................... 47 2.2 CommonStatisticalFrameworkforHTRandASR...

More information

EECS E6870: Lecture 4: Hidden Markov Models

EECS E6870: Lecture 4: Hidden Markov Models EECS E6870: Lecture 4: Hidden Markov Models Stanley F. Chen, Michael A. Picheny and Bhuvana Ramabhadran IBM T. J. Watson Research Center Yorktown Heights, NY 10549 stanchen@us.ibm.com, picheny@us.ibm.com,

More information

Structured Output Prediction: Generative Models

Structured Output Prediction: Generative Models Structured Output Prediction: Generative Models CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 17.3, 17.4, 17.5.1 Structured Output Prediction Supervised

More information

Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices Graeme Blackwood, Adrià de Gispert, William Byrne Machine Intelligence Laboratory Cambridge

More information

INVITED PAPER Training Augmented Models using SVMs

INVITED PAPER Training Augmented Models using SVMs IEICE TRANS.??, VOL.Exx??, NO.xx XXXX x INVITED PAPER Training Augmented Models using SVMs M.J.F. GALES and M.I. LAYTON, Nonmembers SUMMARY There has been significant interest in developing new forms of

More information

Fun with weighted FSTs

Fun with weighted FSTs Fun with weighted FSTs Informatics 2A: Lecture 18 Shay Cohen School of Informatics University of Edinburgh 29 October 2018 1 / 35 Kedzie et al. (2018) - Content Selection in Deep Learning Models of Summarization

More information

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri Speech Recognition Lecture 5: N-gram Language Models Eugene Weinstein Google, NYU Courant Institute eugenew@cs.nyu.edu Slide Credit: Mehryar Mohri Components Acoustic and pronunciation model: Pr(o w) =

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Information Extraction, Hidden Markov Models Sameer Maskey Week 5, Oct 3, 2012 *many slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny Speech Recognition

More information

Recent Developments in Statistical Dialogue Systems

Recent Developments in Statistical Dialogue Systems Recent Developments in Statistical Dialogue Systems Steve Young Machine Intelligence Laboratory Information Engineering Division Cambridge University Engineering Department Cambridge, UK Contents Review

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization

Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization Ariya Rastrow, Mark Dredze, Sanjeev Khudanpur Human Language Technology Center of Excellence Center for Language

More information

Discriminative models for speech recognition

Discriminative models for speech recognition Discriminative models for speech recognition Anton Ragni Peterhouse University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 2013 Declaration This dissertation is the result of

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Improved Decipherment of Homophonic Ciphers

Improved Decipherment of Homophonic Ciphers Improved Decipherment of Homophonic Ciphers Malte Nuhn and Julian Schamper and Hermann Ney Human Language Technology and Pattern Recognition Computer Science Department, RWTH Aachen University, Aachen,

More information

Multiple System Combination. Jinhua Du CNGL July 23, 2008

Multiple System Combination. Jinhua Du CNGL July 23, 2008 Multiple System Combination Jinhua Du CNGL July 23, 2008 Outline Introduction Motivation Current Achievements Combination Strategies Key Techniques System Combination Framework in IA Large-Scale Experiments

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information