Detection-Based Speech Recognition with Sparse Point Process Models

Size: px
Start display at page:

Download "Detection-Based Speech Recognition with Sparse Point Process Models"

Transcription

1 Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas, Texas

2 Are Frames the Optimal Level of Detail? q t 1 q t q t x t 1 x t x t+1... six zero six three seven...?

3 A Unified Event-Driven Approach Our Strategy: Only model and explain the portions of the signal we are reasonably confident about Point Process Models (PPM) [Jansen & Niyogi (2009)] 1 Transform the signal into sparse temporal point patterns of acoustic events 2 Decode linguistic objects according to the temporal statistics of these events Detection-Based ASR Architecture [Ma, Tsao, & Lee (2006)] 1 Run independent detectors for each word in lexicon in parallel 2 Extract word sequence from the combined detector set output Our Goal: Translate past robustness success of point process word modeling to standard small vocabulary task

4 The AURORA2 Evaluation AURORA2 Task Spoken digit sequences (8 khz) both clean and mixed with additive noise at {20, 15, 10, 5, 0, -5} db SNR Stationary (mostly): subway, car, exhibition hall, and street noise Non-stationary: babble, restaurant, airport, and train station We consider clean training evaluation Baseline HTK 3.4 Recognizer MFCCs computed with AURORA Front-End v2.0 (plus vel., acc.) 11 digit models 16 states/model (left-to-right, no skip transitions) + 3 silence states = 179 states 3 GMM components per digit state, 6 GMM components per silence state

5 PPM-Based ASR Architecture D φ1 Nφ1 d w1 Speech D φ2. N φ2 d w2. Decoder Digit Sequence D φn Nφn d wm R Definitions D φi = detector for feature φ i N φi = point pattern (event set) for feature φ i d wj = detector for word w j

6 Hidden State Feature Detectors, D φi 1 Define one feature φ i for each of the 179 HMM states 2 Define detector function for each φ i : g φi (x) = P(φ i x) = P(x φ i )P(φ i ) 179 i=1 P(x φ i)p(φ i ) 3 Threshold g φi at δ φi and pick local maxima times as acoustic events for feature φ i : N φi = {t 1,t 2,...}

7 Point Process Representation Example HTK Lattice: 926 one Point Process Representation: 926 one two two three three four four five five six six seven seven eight eight nine nine zero zero oh oh sil Time (s) real-valued likelihoods (179 states 146 frames) sil Time (s) 69 real-valued times

8 Sliding Model Word Detectors, d wj 1 Let θ w : R {0,1} be indicator function of word occurrence ] 2 Define LLR detector function f w (t) = log [ P(R θw(t)=1) P(R θ w(t)=0) 3 Introduce duration latent variable T : P(R θ w ) = P(R T,θ w )P(T θ w )dt 4 Partition R into three subsets: R l = R (0,t], R t,t = R (t,t+t], and R r = R (t+t,l]. Then, f w (t) = log P(Rt,T T,θ w (t)=1) P(R t,t T,θ w (t)=0) P(T θ w(t)=1)dt.

9 Word Model, P(R t,t T, θ w (t)=1) Inhomogeneous Poisson Process Definition Memoryless point process with feature φ i arrival probability λ φi (t)dt in differential time element dt at time t 1 Normalize all t R t,t to the interval [0,1], yielding R = {N φ i } 179 i=1 2 Assume T -independence of R, independent feature detectors, and inhomogeneous Poisson process model for each N φ i : P(R t,t T,θ w (t)=1) = e R 1 T Rt,T 0 λ φ i (s)ds λ φi (s), i=1 s N φ i 3 Rate functions {λ φi } 179 1=1 are estimated with parametric model or KDE (examples from HMM force-align)

10 Example: seven Poisson Process Model Poisson Process Rate Parameters, λ φi (t) one two 7 three four 6 Feature φ i (HMM State) five six seven eight nine 2 zero oh 1 sil Fraction of Word Duration

11 Background Model, P(R t,t T, θ w (t)=0) Homogeneous Poisson Process Definition Memoryless point process with constant feature φ i arrival probability µ φi dt in any differential time element dt 1 No interval normalization necessary 2 If n φi is the number of events of type φ i in R t,t, then 179 P(R t,t T,θ w (t)=0) = [µ φi ] n φ ie µ φi T, 3 Background rate parameters {µ φi } 179 i=1 are estimated by counting in arbitrary background speech i=1

12 Graph-Based Decoder [Ma, Tsao, & Lee (2006)] Input: Digit detectors produce candidate detect set, along with confidence scores (f w ) and durations (arg max T of integrand) Decoder DAG Definition Vertices: start at t = 0, end at t =, two for each digit detect (left and right boundary) 1 Connect each vertex to next left boundary vertex with weight 0 2 Connect each left boundary vertex to its right boundary vertex with weight f w (t) 3 Connect each right boundary vertex to all left boundaries within 20 ms prior with weight 0 (no cycles) L one R L six R s L nine L two R R e Decode: Min-cost path from start to end with Dijkstra s algorithm time

13 What About Robustness? g φ (t) = P(φ x t ) for φ = seven 5 clean Subway, 20 db SNR g φ (t) Time (s)

14 Feature Detector Threshold Adaptation 1 Find feature detector threshold δ φ i that maintains background firing rate from clean speech 2 Use clean word/background models with adapted phone detector threshold Underlying Assumptions 1 Times/relative strengths of local maxima preserved 2 Background rate is adequate statistic Background (Mean) Firing Rate (Hz) Detector Behavior for Feature φ = seven 5 δ* φ δ φ clean 20 db subway Detector Threshold µ φ This method is entirely unsupervised

15 Clean Speech Performance HTK (% Acc) PPM (% Acc) Only 0.7% WER increase after a 400X reduction in representational data Possible explantion: forced aligned digit training examples were imperfect

16 Non-Stationary Noise Performance Train: Clean, Test: Babble SNR HTK PPM Adapt PPM 20 db db db db db db Avg. (0-20) Train: Clean, Test: Airport SNR HTK PPM Adapt PPM 20 db db db db db db Avg. (0-20) Non-adapted PPM system is significantly more robust than the HMM system to non-stationary noise Unsupervised feature detector threshold adaptation provides further gains

17 Stationary Noise Performance Train: Clean, Test: Subway SNR HTK PPM Adapt PPM 20 db db db db db db Avg. (0-20) Train: Clean, Test: Car SNR HTK PPM Adapt PPM 20 db db db db db db Avg. (0-20) Non-adapted PPM less robust than HTK system to stationary noise Suboptimal feature detector threshold is culprit Unsupervised threshold adaptation improves robustness over HTK levels at lower SNRs

18 Conclusions 1 Discarding 99.7% of the HMM lattice results in negligible loss in small vocabulary recognition accuracy 2 Sparse point process word models + detection-based ASR architecture improves robustness to all non-stationary noise sources in AURORA2 3 Unsupervised PPM adaptation (only 1 minute of data) improves robustness to all noise sources 4 Our system is compatible with other noise robustness techniques (both front end and GMM adaptation) 5 Sparse point process representations may supply the computational efficiency required to scale up detection-based ASR systems

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models Statistical NLP Spring 2010 The Noisy Channel Model Lecture 9: Acoustic Models Dan Klein UC Berkeley Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions Language model: Distributions

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY MengSun,HugoVanhamme Department of Electrical Engineering-ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Bus

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

Model-Based Margin Estimation for Hidden Markov Model Learning and Generalization

Model-Based Margin Estimation for Hidden Markov Model Learning and Generalization 1 2 3 4 5 6 7 8 Model-Based Margin Estimation for Hidden Markov Model Learning and Generalization Sabato Marco Siniscalchi a,, Jinyu Li b, Chin-Hui Lee c a Faculty of Engineering and Architecture, Kore

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

Statistical NLP Spring Digitizing Speech

Statistical NLP Spring Digitizing Speech Statistical NLP Spring 2008 Lecture 10: Acoustic Models Dan Klein UC Berkeley Digitizing Speech 1 Frame Extraction A frame (25 ms wide) extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon

More information

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ...

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ... Statistical NLP Spring 2008 Digitizing Speech Lecture 10: Acoustic Models Dan Klein UC Berkeley Frame Extraction A frame (25 ms wide extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon Arnfield

More information

Sparse Models for Speech Recognition

Sparse Models for Speech Recognition Sparse Models for Speech Recognition Weibin Zhang and Pascale Fung Human Language Technology Center Hong Kong University of Science and Technology Outline Introduction to speech recognition Motivations

More information

Deep Learning for Speech Recognition. Hung-yi Lee

Deep Learning for Speech Recognition. Hung-yi Lee Deep Learning for Speech Recognition Hung-yi Lee Outline Conventional Speech Recognition How to use Deep Learning in acoustic modeling? Why Deep Learning? Speaker Adaptation Multi-task Deep Learning New

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

A Low-Cost Robust Front-end for Embedded ASR System

A Low-Cost Robust Front-end for Embedded ASR System A Low-Cost Robust Front-end for Embedded ASR System Lihui Guo 1, Xin He 2, Yue Lu 1, and Yaxin Zhang 2 1 Department of Computer Science and Technology, East China Normal University, Shanghai 200062 2 Motorola

More information

ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION

ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION Zaragoza Del 8 al 1 de Noviembre de 26 ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION Ana I. García Moral, Carmen Peláez Moreno EPS-Universidad Carlos III

More information

Discriminant Feature Space Transformations for Automatic Speech Recognition

Discriminant Feature Space Transformations for Automatic Speech Recognition Discriminant Feature Space Transformations for Automatic Speech Recognition Vikrant Tomar McGill ID: 260394445 Department of Electrical & Computer Engineering McGill University Montreal, Canada February

More information

Hidden Markov Modelling

Hidden Markov Modelling Hidden Markov Modelling Introduction Problem formulation Forward-Backward algorithm Viterbi search Baum-Welch parameter estimation Other considerations Multiple observation sequences Phone-based models

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 7(extra): (Generalized) Hidden Markov Models Henrik Madsen Lecture Notes September 2016 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes

More information

Environmental Sound Classification in Realistic Situations

Environmental Sound Classification in Realistic Situations Environmental Sound Classification in Realistic Situations K. Haddad, W. Song Brüel & Kjær Sound and Vibration Measurement A/S, Skodsborgvej 307, 2850 Nærum, Denmark. X. Valero La Salle, Universistat Ramon

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data Statistical Machine Learning from Data Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL),

More information

] Automatic Speech Recognition (CS753)

] Automatic Speech Recognition (CS753) ] Automatic Speech Recognition (CS753) Lecture 17: Discriminative Training for HMMs Instructor: Preethi Jyothi Sep 28, 2017 Discriminative Training Recall: MLE for HMMs Maximum likelihood estimation (MLE)

More information

Multi-level Gaussian selection for accurate low-resource ASR systems

Multi-level Gaussian selection for accurate low-resource ASR systems Multi-level Gaussian selection for accurate low-resource ASR systems Leïla Zouari, Gérard Chollet GET-ENST/CNRS-LTCI 46 rue Barrault, 75634 Paris cedex 13, France Abstract For Automatic Speech Recognition

More information

Model-Based Approaches to Robust Speech Recognition

Model-Based Approaches to Robust Speech Recognition Model-Based Approaches to Robust Speech Recognition Mark Gales with Hank Liao, Rogier van Dalen, Chris Longworth (work partly funded by Toshiba Research Europe Ltd) 11 June 2008 King s College London Seminar

More information

Hierarchical Multi-Stream Posterior Based Speech Recognition System

Hierarchical Multi-Stream Posterior Based Speech Recognition System Hierarchical Multi-Stream Posterior Based Speech Recognition System Hamed Ketabdar 1,2, Hervé Bourlard 1,2 and Samy Bengio 1 1 IDIAP Research Institute, Martigny, Switzerland 2 Ecole Polytechnique Fédérale

More information

Zeros of z-transform(zzt) representation and chirp group delay processing for analysis of source and filter characteristics of speech signals

Zeros of z-transform(zzt) representation and chirp group delay processing for analysis of source and filter characteristics of speech signals Zeros of z-transformzzt representation and chirp group delay processing for analysis of source and filter characteristics of speech signals Baris Bozkurt 1 Collaboration with LIMSI-CNRS, France 07/03/2017

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Improved Speech Presence Probabilities Using HMM-Based Inference, with Applications to Speech Enhancement and ASR

Improved Speech Presence Probabilities Using HMM-Based Inference, with Applications to Speech Enhancement and ASR Improved Speech Presence Probabilities Using HMM-Based Inference, with Applications to Speech Enhancement and ASR Bengt J. Borgström, Student Member, IEEE, and Abeer Alwan, IEEE Fellow Abstract This paper

More information

Wavelet Transform in Speech Segmentation

Wavelet Transform in Speech Segmentation Wavelet Transform in Speech Segmentation M. Ziółko, 1 J. Gałka 1 and T. Drwięga 2 1 Department of Electronics, AGH University of Science and Technology, Kraków, Poland, ziolko@agh.edu.pl, jgalka@agh.edu.pl

More information

Estimation of Cepstral Coefficients for Robust Speech Recognition

Estimation of Cepstral Coefficients for Robust Speech Recognition Estimation of Cepstral Coefficients for Robust Speech Recognition by Kevin M. Indrebo, B.S., M.S. A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment

More information

Speech Enhancement with Applications in Speech Recognition

Speech Enhancement with Applications in Speech Recognition Speech Enhancement with Applications in Speech Recognition A First Year Report Submitted to the School of Computer Engineering of the Nanyang Technological University by Xiao Xiong for the Confirmation

More information

SPEECH ENHANCEMENT USING PCA AND VARIANCE OF THE RECONSTRUCTION ERROR IN DISTRIBUTED SPEECH RECOGNITION

SPEECH ENHANCEMENT USING PCA AND VARIANCE OF THE RECONSTRUCTION ERROR IN DISTRIBUTED SPEECH RECOGNITION SPEECH ENHANCEMENT USING PCA AND VARIANCE OF THE RECONSTRUCTION ERROR IN DISTRIBUTED SPEECH RECOGNITION Amin Haji Abolhassani 1, Sid-Ahmed Selouani 2, Douglas O Shaughnessy 1 1 INRS-Energie-Matériaux-Télécommunications,

More information

AUDIO-VISUAL RELIABILITY ESTIMATES USING STREAM

AUDIO-VISUAL RELIABILITY ESTIMATES USING STREAM SCHOOL OF ENGINEERING - STI ELECTRICAL ENGINEERING INSTITUTE SIGNAL PROCESSING LABORATORY Mihai Gurban ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE EPFL - FSTI - IEL - LTS Station Switzerland-5 LAUSANNE Phone:

More information

Jorge Silva and Shrikanth Narayanan, Senior Member, IEEE. 1 is the probability measure induced by the probability density function

Jorge Silva and Shrikanth Narayanan, Senior Member, IEEE. 1 is the probability measure induced by the probability density function 890 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006 Average Divergence Distance as a Statistical Discrimination Measure for Hidden Markov Models Jorge Silva and Shrikanth

More information

Ngram Review. CS 136 Lecture 10 Language Modeling. Thanks to Dan Jurafsky for these slides. October13, 2017 Professor Meteer

Ngram Review. CS 136 Lecture 10 Language Modeling. Thanks to Dan Jurafsky for these slides. October13, 2017 Professor Meteer + Ngram Review October13, 2017 Professor Meteer CS 136 Lecture 10 Language Modeling Thanks to Dan Jurafsky for these slides + ASR components n Feature Extraction, MFCCs, start of Acoustic n HMMs, the Forward

More information

Detection of Overlapping Acoustic Events Based on NMF with Shared Basis Vectors

Detection of Overlapping Acoustic Events Based on NMF with Shared Basis Vectors Detection of Overlapping Acoustic Events Based on NMF with Shared Basis Vectors Kazumasa Yamamoto Department of Computer Science Chubu University Kasugai, Aichi, Japan Email: yamamoto@cs.chubu.ac.jp Chikara

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Heikki Kallasjoki,

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Gaussian Processes for Audio Feature Extraction

Gaussian Processes for Audio Feature Extraction Gaussian Processes for Audio Feature Extraction Dr. Richard E. Turner (ret26@cam.ac.uk) Computational and Biological Learning Lab Department of Engineering University of Cambridge Machine hearing pipeline

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Proc. of NCC 2010, Chennai, India

Proc. of NCC 2010, Chennai, India Proc. of NCC 2010, Chennai, India Trajectory and surface modeling of LSF for low rate speech coding M. Deepak and Preeti Rao Department of Electrical Engineering Indian Institute of Technology, Bombay

More information

Mixtures of Gaussians with Sparse Structure

Mixtures of Gaussians with Sparse Structure Mixtures of Gaussians with Sparse Structure Costas Boulis 1 Abstract When fitting a mixture of Gaussians to training data there are usually two choices for the type of Gaussians used. Either diagonal or

More information

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition ABSTRACT It is well known that the expectation-maximization (EM) algorithm, commonly used to estimate hidden

More information

Template-Based Representations. Sargur Srihari

Template-Based Representations. Sargur Srihari Template-Based Representations Sargur srihari@cedar.buffalo.edu 1 Topics Variable-based vs Template-based Temporal Models Basic Assumptions Dynamic Bayesian Networks Hidden Markov Models Linear Dynamical

More information

Lecture 9: Speech Recognition. Recognizing Speech

Lecture 9: Speech Recognition. Recognizing Speech EE E68: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis http://www.ee.columbia.edu/~dpwe/e68/

More information

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm + September13, 2016 Professor Meteer CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm Thanks to Dan Jurafsky for these slides + ASR components n Feature

More information

Lecture 9: Speech Recognition

Lecture 9: Speech Recognition EE E682: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 1 2 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Forward algorithm vs. particle filtering

Forward algorithm vs. particle filtering Particle Filtering ØSometimes X is too big to use exact inference X may be too big to even store B(X) E.g. X is continuous X 2 may be too big to do updates ØSolution: approximate inference Track samples

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

Acoustic Unit Discovery (AUD) Models. Leda Sarı

Acoustic Unit Discovery (AUD) Models. Leda Sarı Acoustic Unit Discovery (AUD) Models Leda Sarı Lucas Ondel and Lukáš Burget A summary of AUD experiments from JHU Frederick Jelinek Summer Workshop 2016 lsari2@illinois.edu November 07, 2016 1 / 23 The

More information

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms Recognition of Visual Speech Elements Using Adaptively Boosted Hidden Markov Models. Say Wei Foo, Yong Lian, Liang Dong. IEEE Transactions on Circuits and Systems for Video Technology, May 2004. Shankar

More information

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments Andreas Schwarz, Christian Huemmer, Roland Maas, Walter Kellermann Lehrstuhl für Multimediakommunikation

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Design and Implementation of Speech Recognition Systems

Design and Implementation of Speech Recognition Systems Design and Implementation of Speech Recognition Systems Spring 2013 Class 7: Templates to HMMs 13 Feb 2013 1 Recap Thus far, we have looked at dynamic programming for string matching, And derived DTW from

More information

Eigenvoice Speaker Adaptation via Composite Kernel PCA

Eigenvoice Speaker Adaptation via Composite Kernel PCA Eigenvoice Speaker Adaptation via Composite Kernel PCA James T. Kwok, Brian Mak and Simon Ho Department of Computer Science Hong Kong University of Science and Technology Clear Water Bay, Hong Kong [jamesk,mak,csho]@cs.ust.hk

More information

Robust Speech Recognition in the Presence of Additive Noise. Svein Gunnar Storebakken Pettersen

Robust Speech Recognition in the Presence of Additive Noise. Svein Gunnar Storebakken Pettersen Robust Speech Recognition in the Presence of Additive Noise Svein Gunnar Storebakken Pettersen A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of PHILOSOPHIAE DOCTOR

More information

Robust Sound Event Detection in Continuous Audio Environments

Robust Sound Event Detection in Continuous Audio Environments Robust Sound Event Detection in Continuous Audio Environments Haomin Zhang 1, Ian McLoughlin 2,1, Yan Song 1 1 National Engineering Laboratory of Speech and Language Information Processing The University

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

FEATURE PRUNING IN LIKELIHOOD EVALUATION OF HMM-BASED SPEECH RECOGNITION. Xiao Li and Jeff Bilmes

FEATURE PRUNING IN LIKELIHOOD EVALUATION OF HMM-BASED SPEECH RECOGNITION. Xiao Li and Jeff Bilmes FEATURE PRUNING IN LIKELIHOOD EVALUATION OF HMM-BASED SPEECH RECOGNITION Xiao Li and Jeff Bilmes Department of Electrical Engineering University. of Washington, Seattle {lixiao, bilmes}@ee.washington.edu

More information

Noise Classification based on PCA. Nattanun Thatphithakkul, Boontee Kruatrachue, Chai Wutiwiwatchai, Vataya Boonpiam

Noise Classification based on PCA. Nattanun Thatphithakkul, Boontee Kruatrachue, Chai Wutiwiwatchai, Vataya Boonpiam Noise Classification based on PCA Nattanun Thatphithakkul, Boontee Kruatrachue, Chai Wutiwiwatchai, Vataya Boonpiam 1 Outline Introduction Principle component analysis (PCA) Classification using PCA Experiment

More information

Hidden Markov Models Hamid R. Rabiee

Hidden Markov Models Hamid R. Rabiee Hidden Markov Models Hamid R. Rabiee 1 Hidden Markov Models (HMMs) In the previous slides, we have seen that in many cases the underlying behavior of nature could be modeled as a Markov process. However

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer

Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer Improving the Multi-Stack Decoding Algorithm in a Segment-based Speech Recognizer Gábor Gosztolya, András Kocsor Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Maximum Likelihood and Maximum A Posteriori Adaptation for Distributed Speaker Recognition Systems

Maximum Likelihood and Maximum A Posteriori Adaptation for Distributed Speaker Recognition Systems Maximum Likelihood and Maximum A Posteriori Adaptation for Distributed Speaker Recognition Systems Chin-Hung Sit 1, Man-Wai Mak 1, and Sun-Yuan Kung 2 1 Center for Multimedia Signal Processing Dept. of

More information

An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition

An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition Samy Bengio Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP) CP 592, rue du Simplon 4, 1920 Martigny, Switzerland

More information

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Heiga ZEN (Byung Ha CHUN) Nagoya Inst. of Tech., Japan Overview. Research backgrounds 2.

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION HIDDEN MARKOV MODELS IN SPEECH RECOGNITION Wayne Ward Carnegie Mellon University Pittsburgh, PA 1 Acknowledgements Much of this talk is derived from the paper "An Introduction to Hidden Markov Models",

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Language Models, Graphical Models Sameer Maskey Week 13, April 13, 2010 Some slides provided by Stanley Chen and from Bishop Book Resources 1 Announcements Final Project Due,

More information

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius

Doctoral Course in Speech Recognition. May 2007 Kjell Elenius Doctoral Course in Speech Recognition May 2007 Kjell Elenius CHAPTER 12 BASIC SEARCH ALGORITHMS State-based search paradigm Triplet S, O, G S, set of initial states O, set of operators applied on a state

More information

The effect of speaking rate and vowel context on the perception of consonants. in babble noise

The effect of speaking rate and vowel context on the perception of consonants. in babble noise The effect of speaking rate and vowel context on the perception of consonants in babble noise Anirudh Raju Department of Electrical Engineering, University of California, Los Angeles, California, USA anirudh90@ucla.edu

More information

Discriminative training of GMM-HMM acoustic model by RPCL type Bayesian Ying-Yang harmony learning

Discriminative training of GMM-HMM acoustic model by RPCL type Bayesian Ying-Yang harmony learning Discriminative training of GMM-HMM acoustic model by RPCL type Bayesian Ying-Yang harmony learning Zaihu Pang 1, Xihong Wu 1, and Lei Xu 1,2 1 Speech and Hearing Research Center, Key Laboratory of Machine

More information

Lecture 5: GMM Acoustic Modeling and Feature Extraction

Lecture 5: GMM Acoustic Modeling and Feature Extraction CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 5: GMM Acoustic Modeling and Feature Extraction Original slides by Dan Jurafsky Outline for Today Acoustic

More information

PHONEME CLASSIFICATION OVER THE RECONSTRUCTED PHASE SPACE USING PRINCIPAL COMPONENT ANALYSIS

PHONEME CLASSIFICATION OVER THE RECONSTRUCTED PHASE SPACE USING PRINCIPAL COMPONENT ANALYSIS PHONEME CLASSIFICATION OVER THE RECONSTRUCTED PHASE SPACE USING PRINCIPAL COMPONENT ANALYSIS Jinjin Ye jinjin.ye@mu.edu Michael T. Johnson mike.johnson@mu.edu Richard J. Povinelli richard.povinelli@mu.edu

More information

MVA Processing of Speech Features. Chia-Ping Chen, Jeff Bilmes

MVA Processing of Speech Features. Chia-Ping Chen, Jeff Bilmes MVA Processing of Speech Features Chia-Ping Chen, Jeff Bilmes {chiaping,bilmes}@ee.washington.edu SSLI Lab Dept of EE, University of Washington Seattle, WA - UW Electrical Engineering UWEE Technical Report

More information

Full-covariance model compensation for

Full-covariance model compensation for compensation transms Presentation Toshiba, 12 Mar 2008 Outline compensation transms compensation transms Outline compensation transms compensation transms Noise model x clean speech; n additive ; h convolutional

More information

Robust Speaker Identification

Robust Speaker Identification Robust Speaker Identification by Smarajit Bose Interdisciplinary Statistical Research Unit Indian Statistical Institute, Kolkata Joint work with Amita Pal and Ayanendranath Basu Overview } } } } } } }

More information

Evaluation of the modified group delay feature for isolated word recognition

Evaluation of the modified group delay feature for isolated word recognition Evaluation of the modified group delay feature for isolated word recognition Author Alsteris, Leigh, Paliwal, Kuldip Published 25 Conference Title The 8th International Symposium on Signal Processing and

More information

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks INTERSPEECH 2014 Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks Ryu Takeda, Naoyuki Kanda, and Nobuo Nukaga Central Research Laboratory, Hitachi Ltd., 1-280, Kokubunji-shi,

More information

Noise Compensation for Subspace Gaussian Mixture Models

Noise Compensation for Subspace Gaussian Mixture Models Noise ompensation for ubspace Gaussian Mixture Models Liang Lu University of Edinburgh Joint work with KK hin, A. Ghoshal and. enals Liang Lu, Interspeech, eptember, 2012 Outline Motivation ubspace GMM

More information

Joint Factor Analysis for Speaker Verification

Joint Factor Analysis for Speaker Verification Joint Factor Analysis for Speaker Verification Mengke HU ASPITRG Group, ECE Department Drexel University mengke.hu@gmail.com October 12, 2012 1/37 Outline 1 Speaker Verification Baseline System Session

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course)

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course) 10. Hidden Markov Models (HMM) for Speech Processing (some slides taken from Glass and Zue course) Definition of an HMM The HMM are powerful statistical methods to characterize the observed samples of

More information

How to do backpropagation in a brain

How to do backpropagation in a brain How to do backpropagation in a brain Geoffrey Hinton Canadian Institute for Advanced Research & University of Toronto & Google Inc. Prelude I will start with three slides explaining a popular type of deep

More information

Machine Recognition of Sounds in Mixtures

Machine Recognition of Sounds in Mixtures Machine Recognition of Sounds in Mixtures Outline 1 2 3 4 Computational Auditory Scene Analysis Speech Recognition as Source Formation Sound Fragment Decoding Results & Conclusions Dan Ellis

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Dr Philip Jackson Centre for Vision, Speech & Signal Processing University of Surrey, UK 1 3 2 http://www.ee.surrey.ac.uk/personal/p.jackson/isspr/ Outline 1. Recognizing patterns

More information

A Comparative Study of Histogram Equalization (HEQ) for Robust Speech Recognition

A Comparative Study of Histogram Equalization (HEQ) for Robust Speech Recognition Computational Linguistics and Chinese Language Processing Vol. 12, No. 2, June 2007, pp. 217-238 217 The Association for Computational Linguistics and Chinese Language Processing A Comparative Study of

More information

DNN-based uncertainty estimation for weighted DNN-HMM ASR

DNN-based uncertainty estimation for weighted DNN-HMM ASR DNN-based uncertainty estimation for weighted DNN-HMM ASR José Novoa, Josué Fredes, Nestor Becerra Yoma Speech Processing and Transmission Lab., Universidad de Chile nbecerra@ing.uchile.cl Abstract In

More information

Investigate more robust features for Speech Recognition using Deep Learning

Investigate more robust features for Speech Recognition using Deep Learning DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 Investigate more robust features for Speech Recognition using Deep Learning TIPHANIE DENIAUX KTH ROYAL INSTITUTE

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

Graphical Models for Automatic Speech Recognition

Graphical Models for Automatic Speech Recognition Graphical Models for Automatic Speech Recognition Advanced Signal Processing SE 2, SS05 Stefan Petrik Signal Processing and Speech Communication Laboratory Graz University of Technology GMs for Automatic

More information