Gaussian Processes for Audio Feature Extraction

Size: px
Start display at page:

Download "Gaussian Processes for Audio Feature Extraction"

Transcription

1 Gaussian Processes for Audio Feature Extraction Dr. Richard E. Turner Computational and Biological Learning Lab Department of Engineering University of Cambridge

2 Machine hearing pipeline signal T samples

3 Machine hearing pipeline time-frequency (TF) analysis frequency T' D > T samples short time Fourier transform spectrogram wavelet filter bank (non-linear) signal T samples

4 Machine hearing pipeline probabilistic model HMM (speech recognition) NMF (source separation, denoising) ICA (source separation, denoising) time-frequency (TF) analysis frequency T' D > T samples short time Fourier transform spectrogram wavelet filter bank (non-linear) signal T samples

5 Problems with conventional pipeline probabilistic model noise (source mixtures) hard to model in TF domain (hard to propagate uncertainty noise/missing data - from signal to TF domain) time-frequency (TF) analysis frequency T' D > T samples (non-linear) signal T samples

6 Problems with conventional pipeline probabilistic model noise (source mixtures) hard to model in TF domain (hard to propagate uncertainty noise/missing data - from signal to TF domain) time-frequency (TF) analysis frequency T' D > T samples hard to enforce/learn dependencies intrinsic to the FT analysis image of mapping (injective) (non-linear) signal T samples

7 Problems with conventional pipeline probabilistic model noise (source mixtures) hard to model in TF domain (hard to propagate uncertainty noise/missing data - from signal to TF domain) time-frequency (TF) analysis frequency T' D > T samples hard to enforce/learn dependencies intrinsic to the FT analysis image of mapping (injective) (non-linear) learning based on time-frequency representation ignores Jacobian signal T samples

8 Problems with conventional pipeline probabilistic model noise (source mixtures) hard to model in TF domain (hard to propagate uncertainty noise/missing data - from signal to TF domain) time-frequency (TF) analysis frequency T' D > T samples hard to enforce/learn dependencies intrinsic to the FT analysis image of mapping (injective) (non-linear) learning based on time-frequency representation ignores Jacobian signal T samples

9 Problems with conventional pipeline probabilistic model noise (source mixtures) hard to model in TF domain (hard to propagate uncertainty noise/missing data - from signal to TF domain) time-frequency (TF) analysis frequency T' D > T samples hard to enforce/learn dependencies intrinsic to the FT analysis image of mapping (injective) (non-linear) learning based on time-frequency representation ignores Jacobian signal T samples hard to adapt both top and bottom layers

10 Goal of this talk probabilistic model probabilise time-frequency analysis (construct generative model in which inference corresponds to classical time-frequency analysis) time-frequency (TF) analysis frequency build a hierachical model that incorporates downstream processing module T' D > T samples classical signal processing (non-linear) machine learning signal T samples

11 A typical audio pipeline signal y time /s

12 A typical audio pipeline spectrogram frequency /khz magnitude short time Fourier transform Fourier transform window signal y time /s

13 A typical audio pipeline NMF spectrogram frequency /khz magnitude short time Fourier transform Fourier transform window signal y time /s

14 A typical audio pipeline NMF spectrogram frequency /khz magnitude short time Fourier transform Fourier transform window signal y time /s

15 What form of generative model corresponds to the STFT? desire: expected value of latent time-frequency coefficients s d,1:t = STFT assume y formed by (weighted) superposition of band-limited signals s d,1:t linearity of inference can be assured by setting the distributions of each s d,1:t and the noise to be Gaussian time-invariance = generative model statistically stationary = GP prior over STFT coefficients, p(s d,1:t ) = G(s d,1:t ;, Γ), stationary Γ t,t T k=1 FT 1 t,k γ kft k,t where FT k,t =e 2πi(k 1)(t 1)/T

16 Time-frequency analysis as inference generation complex sinusoids time-varying (complex) coefficients

17 Time-frequency analysis as inference generation complex sinusoids time-varying (complex) coefficients

18 Time-frequency analysis as inference generation inference complex sinusoids time-varying (complex) coefficients

19 Time-frequency analysis as inference complex sinusoids generation time-varying (complex) coefficients inference most probable coefficients given the signal is the STFT STFT STFT window = prior covariance frequency shifted inverse signal covariance

20 Time-frequency analysis as inference generation inference

21 Time-frequency analysis as inference generation inference

22 Time-frequency analysis as inference generation inference

23 Time-frequency analysis as inference generation inference

24 Time-frequency analysis as inference generation inference depends on independent of

25 Time-frequency analysis as inference generation inference depends on independent of signal noise

26 Time-frequency analysis as inference generation inference depends on independent of signal noise Wiener filter

27 Time-frequency analysis as inference generation inference depends on independent of signal noise Wiener filter

28 Time-frequency analysis as inference generation inference depends on independent of signal noise Wiener filter STFT window = prior covariance frequency shifted inverse signal covariance

29 Time-frequency analysis as inference generation inference probabilistic filter bank depends on independent of signal noise Wiener filter probabilistic STFT STFT window = prior covariance frequency shifted inverse signal covariance

30 Time-frequency analysis as inference probabilistic models in which inference recovers STFT, filter bank, wavelet analysis unifes a number of existing probabilistic time-series models & connects to traditional sig. proc. can learn window of STFT and frequencies (equivalently filter properties) frequency shift relationship mimics classical relationship between these time-frequency relationships hops/down-sampling and finite window used correspond to FITC (uniformly spaced pseudo-points) and sparse-covariance approximations rediscover Nyquist in the context of approximation GPs

31 Probabilistic audio processing pipeline 2.6 envelopes freq /khz mean spectrum carriers freq /khz.1 = bandpass Gaussian noise 1 signal time /ms

32 Probabilistic audio processing pipeline 2.6 envelopes freq /khz mean spectrum carriers freq /khz.1 = bandpass Gaussian noise 1 signal time /ms

33 Probabilistic audio processing pipeline mean spectrum envelope patterns 2.6 = slow Gaussian process envelopes freq /khz mean spectrum carriers freq /khz.1 = bandpass Gaussian noise 1 signal time /ms

34 Key Observation fix envelopes: Inference and Learning posterior over carriers is Gaussian posterior mean given by an (adaptive) filter Leads to MAP estimation of the envelopes (or HMCMC), let z lt = log h lt Z MAP = arg max p(z Y) Z p(z Y) = 1 Z p(z, Y) = 1 dxp(z, Y, X) = 1 Z Z p(z) dxp(y A, X)p(X) Compute integral efficiently using chain stuctured approximation and Kalman Smoothing Leads to gradient based optimisation for transformed amplitudes Learning: approximate Maximum Likelihood θ = arg max θ p(y θ) NMF: zero-temperature EM, one E-Step, initialise constant envelopes

35 Audio modelling

36 Audio modelling fire stream wind rain frequency /kh foot step time /s tent-zip Turner, 21

37 Audio modelling fire stream wind rain frequency /kh foot step time /s tent-zip Turner, 21

38 Audio modelling frequency /kh time /s Turner, 21

39 Statistical texture synthesis Old approach: build detailed physical models (e.g. rain drops) New approach train model on your favourite texture sample from the prior, and then from the likelihood. Waveform unique, but statistically matched to original Often perceptually indistinguishable

40 Audio denoising SNR improvement /db SNR before /db NMF tnmf GTF GTFtNMF adapted filters unadapted filters Wiener spectral subtract block threshold PESQ improvement PESQ before SNR log spec improvement /db SNR log spec before /db 5 5 y t y t y t y t y t y t time /ms time /ms

41 Audio missing data imputation SNR /db missing region /ms tnmf GTF GTFtNMF unadapted filters adapted filters PESQ missing region /ms SNR log spec /db missing region /ms y t y t y t y t y t y t time /ms time /ms

42 Unifying classical and probabilistic audio signal processing Probabilistic signal processing robustness adaptation fast methods important variables Classical signal processing

43 Probabilistic signal processing Classical signal processing Cemgil & Godsill freq shift Qi & Minka Filter Bank & Hilbert freq shift STFT estimation Amplitudes Spectrogram

44 Additional slides

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

Non-Negative Matrix Factorization And Its Application to Audio. Tuomas Virtanen Tampere University of Technology

Non-Negative Matrix Factorization And Its Application to Audio. Tuomas Virtanen Tampere University of Technology Non-Negative Matrix Factorization And Its Application to Audio Tuomas Virtanen Tampere University of Technology tuomas.virtanen@tut.fi 2 Contents Introduction to audio signals Spectrogram representation

More information

arxiv: v5 [eess.sp] 12 Nov 2018

arxiv: v5 [eess.sp] 12 Nov 2018 UNIFYING PROBABILISTIC MODELS FOR TIME-FREQUENCY ANALYSIS William J. Wilkinson 1, Michael Riis Andersen 2, Joshua D. Reiss 1, Dan Stowell 1, and Arno Solin 2 1 Centre for Digital Music Queen Mary University

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement

Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement Bayesian Estimation of Time-Frequency Coefficients for Audio Signal Enhancement Patrick J. Wolfe Department of Engineering University of Cambridge Cambridge CB2 1PZ, UK pjw47@eng.cam.ac.uk Simon J. Godsill

More information

Generative models for amplitude modulation: Gaussian Modulation Cascade Processes

Generative models for amplitude modulation: Gaussian Modulation Cascade Processes Generative models for amplitude modulation: Gaussian Modulation Cascade Processes Richard Turner (turner@gatsby.ucl.ac.uk) Maneesh Sahani (maneesh@gatsby.ucl.ac.uk) Gatsby Computational Neuroscience Unit,

More information

Covariance smoothing and consistent Wiener filtering for artifact reduction in audio source separation

Covariance smoothing and consistent Wiener filtering for artifact reduction in audio source separation Covariance smoothing and consistent Wiener filtering for artifact reduction in audio source separation Emmanuel Vincent METISS Team Inria Rennes - Bretagne Atlantique E. Vincent (Inria) Artifact reduction

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Introduction to time-frequency analysis. From linear to energy-based representations

Introduction to time-frequency analysis. From linear to energy-based representations Introduction to time-frequency analysis. From linear to energy-based representations Rosario Ceravolo Politecnico di Torino Dep. Structural Engineering UNIVERSITA DI TRENTO Course on «Identification and

More information

Variational inference

Variational inference Simon Leglaive Télécom ParisTech, CNRS LTCI, Université Paris Saclay November 18, 2016, Télécom ParisTech, Paris, France. Outline Introduction Probabilistic model Problem Log-likelihood decomposition EM

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION Hiroazu Kameoa The University of Toyo / Nippon Telegraph and Telephone Corporation ABSTRACT This paper proposes a novel

More information

Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017

Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017 Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017 I am v Master Student v 6 months @ Music Technology Group, Universitat Pompeu Fabra v Deep learning for acoustic source separation v

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

SINGLE CHANNEL SPEECH MUSIC SEPARATION USING NONNEGATIVE MATRIX FACTORIZATION AND SPECTRAL MASKS. Emad M. Grais and Hakan Erdogan

SINGLE CHANNEL SPEECH MUSIC SEPARATION USING NONNEGATIVE MATRIX FACTORIZATION AND SPECTRAL MASKS. Emad M. Grais and Hakan Erdogan SINGLE CHANNEL SPEECH MUSIC SEPARATION USING NONNEGATIVE MATRIX FACTORIZATION AND SPECTRAL MASKS Emad M. Grais and Hakan Erdogan Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Multiresolution Analysis

Multiresolution Analysis Multiresolution Analysis DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Frames Short-time Fourier transform

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

REVIEW OF SINGLE CHANNEL SOURCE SEPARATION TECHNIQUES

REVIEW OF SINGLE CHANNEL SOURCE SEPARATION TECHNIQUES REVIEW OF SINGLE CHANNEL SOURCE SEPARATION TECHNIQUES Kedar Patki University of Rochester Dept. of Electrical and Computer Engineering kedar.patki@rochester.edu ABSTRACT The paper reviews the problem of

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

Course content (will be adapted to the background knowledge of the class):

Course content (will be adapted to the background knowledge of the class): Biomedical Signal Processing and Signal Modeling Lucas C Parra, parra@ccny.cuny.edu Departamento the Fisica, UBA Synopsis This course introduces two fundamental concepts of signal processing: linear systems

More information

Environmental Sound Classification in Realistic Situations

Environmental Sound Classification in Realistic Situations Environmental Sound Classification in Realistic Situations K. Haddad, W. Song Brüel & Kjær Sound and Vibration Measurement A/S, Skodsborgvej 307, 2850 Nærum, Denmark. X. Valero La Salle, Universistat Ramon

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Machine Recognition of Sounds in Mixtures

Machine Recognition of Sounds in Mixtures Machine Recognition of Sounds in Mixtures Outline 1 2 3 4 Computational Auditory Scene Analysis Speech Recognition as Source Formation Sound Fragment Decoding Results & Conclusions Dan Ellis

More information

The 1d Kalman Filter. 1 Understanding the forward model. Richard Turner

The 1d Kalman Filter. 1 Understanding the forward model. Richard Turner The d Kalman Filter Richard Turner This is a Jekyll and Hyde of a document and should really be split up. We start with Jekyll which contains a very short derivation for the d Kalman filter, the purpose

More information

State Space Representation of Gaussian Processes

State Space Representation of Gaussian Processes State Space Representation of Gaussian Processes Simo Särkkä Department of Biomedical Engineering and Computational Science (BECS) Aalto University, Espoo, Finland June 12th, 2013 Simo Särkkä (Aalto University)

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

State Space Gaussian Processes with Non-Gaussian Likelihoods

State Space Gaussian Processes with Non-Gaussian Likelihoods State Space Gaussian Processes with Non-Gaussian Likelihoods Hannes Nickisch 1 Arno Solin 2 Alexander Grigorievskiy 2,3 1 Philips Research, 2 Aalto University, 3 Silo.AI ICML2018 July 13, 2018 Outline

More information

TinySR. Peter Schmidt-Nielsen. August 27, 2014

TinySR. Peter Schmidt-Nielsen. August 27, 2014 TinySR Peter Schmidt-Nielsen August 27, 2014 Abstract TinySR is a light weight real-time small vocabulary speech recognizer written entirely in portable C. The library fits in a single file (plus header),

More information

Joint Filtering and Factorization for Recovering Latent Structure from Noisy Speech Data

Joint Filtering and Factorization for Recovering Latent Structure from Noisy Speech Data Joint Filtering and Factorization for Recovering Latent Structure from Noisy Speech Data Colin Vaz, Vikram Ramanarayanan, and Shrikanth Narayanan Ming Hsieh Department of Electrical Engineering University

More information

CURRENT state-of-the-art automatic speech recognition

CURRENT state-of-the-art automatic speech recognition 1850 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 6, AUGUST 2007 Switching Linear Dynamical Systems for Noise Robust Speech Recognition Bertrand Mesot and David Barber Abstract

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 1 Time-Dependent FT Announcements! Midterm: 2/22/216 Open everything... but cheat sheet recommended instead 1am-12pm How s the lab going? Frequency Analysis with

More information

Frequency Domain Speech Analysis

Frequency Domain Speech Analysis Frequency Domain Speech Analysis Short Time Fourier Analysis Cepstral Analysis Windowed (short time) Fourier Transform Spectrogram of speech signals Filter bank implementation* (Real) cepstrum and complex

More information

Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005

Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005 Is early vision optimised for extracting higher order dependencies? Karklin and Lewicki, NIPS 2005 Richard Turner (turner@gatsby.ucl.ac.uk) Gatsby Computational Neuroscience Unit, 02/03/2006 Outline Historical

More information

HST.582J/6.555J/16.456J

HST.582J/6.555J/16.456J Blind Source Separation: PCA & ICA HST.582J/6.555J/16.456J Gari D. Clifford gari [at] mit. edu http://www.mit.edu/~gari G. D. Clifford 2005-2009 What is BSS? Assume an observation (signal) is a linear

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Lecture Notes 5: Multiresolution Analysis

Lecture Notes 5: Multiresolution Analysis Optimization-based data analysis Fall 2017 Lecture Notes 5: Multiresolution Analysis 1 Frames A frame is a generalization of an orthonormal basis. The inner products between the vectors in a frame and

More information

Power Supply Quality Analysis Using S-Transform and SVM Classifier

Power Supply Quality Analysis Using S-Transform and SVM Classifier Journal of Power and Energy Engineering, 2014, 2, 438-447 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/10.4236/jpee.2014.24059 Power Supply Quality Analysis

More information

A latent variable modelling approach to the acoustic-to-articulatory mapping problem

A latent variable modelling approach to the acoustic-to-articulatory mapping problem A latent variable modelling approach to the acoustic-to-articulatory mapping problem Miguel Á. Carreira-Perpiñán and Steve Renals Dept. of Computer Science, University of Sheffield {miguel,sjr}@dcs.shef.ac.uk

More information

VID3: Sampling and Quantization

VID3: Sampling and Quantization Video Transmission VID3: Sampling and Quantization By Prof. Gregory D. Durgin copyright 2009 all rights reserved Claude E. Shannon (1916-2001) Mathematician and Electrical Engineer Worked for Bell Labs

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

Various signal sampling and reconstruction methods

Various signal sampling and reconstruction methods Various signal sampling and reconstruction methods Rolands Shavelis, Modris Greitans 14 Dzerbenes str., Riga LV-1006, Latvia Contents Classical uniform sampling and reconstruction Advanced sampling and

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

PROBABILISTIC REASONING OVER TIME

PROBABILISTIC REASONING OVER TIME PROBABILISTIC REASONING OVER TIME In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear. Outline Time and uncertainty Inference:

More information

Single-channel source separation using non-negative matrix factorization

Single-channel source separation using non-negative matrix factorization Single-channel source separation using non-negative matrix factorization Mikkel N. Schmidt Technical University of Denmark mns@imm.dtu.dk www.mikkelschmidt.dk DTU Informatics Department of Informatics

More information

ECE521 Lecture 19 HMM cont. Inference in HMM

ECE521 Lecture 19 HMM cont. Inference in HMM ECE521 Lecture 19 HMM cont. Inference in HMM Outline Hidden Markov models Model definitions and notations Inference in HMMs Learning in HMMs 2 Formally, a hidden Markov model defines a generative process

More information

1. Calculation of the DFT

1. Calculation of the DFT ELE E4810: Digital Signal Processing Topic 10: The Fast Fourier Transform 1. Calculation of the DFT. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform 1 1. Calculation of the DFT! Filter

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen

Lecture 3. Linear Regression II Bastian Leibe RWTH Aachen Advanced Machine Learning Lecture 3 Linear Regression II 02.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de This Lecture: Advanced Machine Learning Regression

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

TIME-FREQUENCY ANALYSIS: TUTORIAL. Werner Kozek & Götz Pfander

TIME-FREQUENCY ANALYSIS: TUTORIAL. Werner Kozek & Götz Pfander TIME-FREQUENCY ANALYSIS: TUTORIAL Werner Kozek & Götz Pfander Overview TF-Analysis: Spectral Visualization of nonstationary signals (speech, audio,...) Spectrogram (time-varying spectrum estimation) TF-methods

More information

Sound Recognition in Mixtures

Sound Recognition in Mixtures Sound Recognition in Mixtures Juhan Nam, Gautham J. Mysore 2, and Paris Smaragdis 2,3 Center for Computer Research in Music and Acoustics, Stanford University, 2 Advanced Technology Labs, Adobe Systems

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

State Space and Hidden Markov Models

State Space and Hidden Markov Models State Space and Hidden Markov Models Kunsch H.R. State Space and Hidden Markov Models. ETH- Zurich Zurich; Aliaksandr Hubin Oslo 2014 Contents 1. Introduction 2. Markov Chains 3. Hidden Markov and State

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Supervised and Unsupervised Speech Enhancement Using Nonnegative Matrix Factorization

Supervised and Unsupervised Speech Enhancement Using Nonnegative Matrix Factorization IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING Supervised and Unsupervised Speech Enhancement Using Nonnegative Matrix Factorization Nasser Mohammadiha*, Student Member, IEEE, Paris Smaragdis,

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

Scalable audio separation with light Kernel Additive Modelling

Scalable audio separation with light Kernel Additive Modelling Scalable audio separation with light Kernel Additive Modelling Antoine Liutkus 1, Derry Fitzgerald 2, Zafar Rafii 3 1 Inria, Université de Lorraine, LORIA, UMR 7503, France 2 NIMBUS Centre, Cork Institute

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2017

Cheng Soon Ong & Christian Walder. Canberra February June 2017 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2017 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 679 Part XIX

More information

Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels

Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels Felipe Tobar ftobar@dim.uchile.cl Center for Mathematical Modeling Universidad de Chile Thang D. Bui tdb@cam.ac.uk Department

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Lecture 6: April 19, 2002

Lecture 6: April 19, 2002 EE596 Pat. Recog. II: Introduction to Graphical Models Spring 2002 Lecturer: Jeff Bilmes Lecture 6: April 19, 2002 University of Washington Dept. of Electrical Engineering Scribe: Huaning Niu,Özgür Çetin

More information

KLT for transient signal analysis

KLT for transient signal analysis The Labyrinth of the Unepected: unforeseen treasures in impossible regions of phase space Nicolò Antonietti 4/1/17 Kerastari, Greece May 9 th June 3 rd Qualitatively definition of transient signals Signals

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

Mel-Generalized Cepstral Representation of Speech A Unified Approach to Speech Spectral Estimation. Keiichi Tokuda

Mel-Generalized Cepstral Representation of Speech A Unified Approach to Speech Spectral Estimation. Keiichi Tokuda Mel-Generalized Cepstral Representation of Speech A Unified Approach to Speech Spectral Estimation Keiichi Tokuda Nagoya Institute of Technology Carnegie Mellon University Tamkang University March 13,

More information

Missing Data and Dynamical Systems

Missing Data and Dynamical Systems U NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CS598PS Machine Learning for Signal Processing Missing Data and Dynamical Systems 12 October 2017 Today s lecture Dealing with missing data Tracking and linear

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Dr Philip Jackson Centre for Vision, Speech & Signal Processing University of Surrey, UK 1 3 2 http://www.ee.surrey.ac.uk/personal/p.jackson/isspr/ Outline 1. Recognizing patterns

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

A State-Space Approach to Dynamic Nonnegative Matrix Factorization

A State-Space Approach to Dynamic Nonnegative Matrix Factorization 1 A State-Space Approach to Dynamic Nonnegative Matrix Factorization Nasser Mohammadiha, Paris Smaragdis, Ghazaleh Panahandeh, Simon Doclo arxiv:179.5v1 [cs.lg] 31 Aug 17 Abstract Nonnegative matrix factorization

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms Recognition of Visual Speech Elements Using Adaptively Boosted Hidden Markov Models. Say Wei Foo, Yong Lian, Liang Dong. IEEE Transactions on Circuits and Systems for Video Technology, May 2004. Shankar

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Lecturer: Stefanos Zafeiriou Goal (Lectures): To present discrete and continuous valued probabilistic linear dynamical systems (HMMs

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information