Deep Learning for Speech Recognition. Hung-yi Lee

Size: px
Start display at page:

Download "Deep Learning for Speech Recognition. Hung-yi Lee"

Transcription

1 Deep Learning for Speech Recognition Hung-yi Lee

2 Outline Conventional Speech Recognition How to use Deep Learning in acoustic modeling? Why Deep Learning? Speaker Adaptation Multi-task Deep Learning New acoustic features Convolutional Neural Network (CNN) Applications in Acoustic Signal Processing

3 Conventional Speech Recognition

4 Machine Learning helps X Speech Recognition 天氣真好 W This is a structured learning problem. Evaluation function: F X, W = P W X Inference: W = arg max W = arg max W F X, W P X W P W P X = arg max W P W X = arg max W P X W P W P X W : Acoustic Model, P W : Language Model

5 Input Representation Audio is represented by a vector sequence X: X: x 1 x 2 x 3 39 dim MFCC

6 Input Representation - Splice To consider some temporal information MFCC Splice

7 Phoneme Phoneme: basic unit Each word corresponds to a sequence of phonemes. Lexicon what do you think Lexicon Different words can correspond to the same phonemes hh w aa t d uw y uw th ih ng k

8 State Each phoneme correspond to a sequence of states what do you think Phone: hh w aa t d uw y uw th ih ng k Tri-phone: t-d+uw d-uw+y uw-y+uw y-uw+th t-d+uw1 t-d+uw2 t-d+uw3 State: d-uw+y1 d-uw+y2 d-uw+y3

9 State Each state has a stationary distribution for acoustic features Gaussian Mixture Model (GMM) t-d+uw1 P(x t-d+uw1 ) d-uw+y3 P(x d-uw+y3 )

10 State Each state has a stationary distribution for acoustic features pointer P(x d-uw+y3 ) Tied-state pointer P(x t-d+uw1 ) Same Address

11 Acoustic Model W: W = arg max W what do you think? P X W P W P(X W) = P(X S) S: X: a b c d e s 1 s 2 s 3 s 4 s 5 Assume we also know the alignment s 1 s T. x 1 x 2 x 3 x 4 x 5 P X S, h = T t=1 transition P s t s t 1 P x t s t emission

12 Acoustic Model W: W = arg max W what do you think? P X W P W P(X W) = P(X S) S: a b c d e Actually, we don t know the alignment. X: s 1 s 2 s 3 s 4 s 5 x 1 x 2 x 3 x 4 x 5 T P X S max s 1 s T t=1 P s t s t 1 P x t s t (Viterbi algorithm)

13 How to use Deep Learning?

14 People imagine Acoustic features This can not be true! DNN can only take fixed length vectors as input. DNN Hello

15 What DNN can do is P(a x i ) Size of output layer = No. of states P(b x i ) P(c x i ) DNN DNN input: One acoustic feature DNN output: Probability of each state x i

16 Low rank approximation Output layer W N M W: M X N N is the size of the last hidden layer M is the size of output layer Number of states Input layer M can be large if the outputs are the states of tri-phone.

17 Low rank approximation N K N K V M W M U K < M,N Less parameters Output layer M Output layer U M W linear K N V N

18 How we use deep learning There are three ways to use DNN for acoustic modeling Way 1. Tandem Way 2. DNN-HMM hybrid Way 3. End-to-end Efforts for exploiting deep learning

19 How to use Deep Learning? Way 1: Tandem

20 Way 1: Tandem system P(a x i ) P(b x i ) P(c x i ) Size of output layer = No. of states DNN new feature x i Input of your original speech recognition system x i Last hidden layer or bottleneck layer are also possible.

21 How to use Deep Learning? Way 2: DNN-HMM hybrid

22 Way 2: DNN-HMM Hybrid W = arg max W P W X = arg max T P X W max s 1 s T t=1 W P X W P W P s t s t 1 P x t s t From DNN DNN P s t x t x t P x t s t = P x t, s t P s t = P s t x t P x t P s t Count from training data

23 Way 2: DNN-HMM Hybrid T P X W max s 1 s T t=1 P s t s t 1 P x t s t DNN P X W max P X W; θ T s 1 s T t=1 P s t s t 1 P s t x t P s t P s t x t DNN θ From original HMM Count from training data x t This assembled vehicle works.

24 Way 2: DNN-HMM Hybrid Sequential Training W = arg max W P X W; θ P W Given training data X 1, W 1, X 2, W 2, X r, W r, Find-tune the DNN parameters θ such that P X r W r ; θ P W r P X r W; θ P W increase decrease (W is any word sequence different from W r )

25 How to use Deep Learning? Way 3: End-to-end

26 Way 3: End-to-end - Character Input: acoustic features (spectrograms) Output: characters (and space) + null (~) No phoneme and lexicon (No OOV problem) A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A. Ng Deep Speech: Scaling up end-to-end speech recognition, arxiv: v2, 2014.

27 Way 3: End-to-end - Character HIS FRIEND S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition with recurrent neural networks." Proceedings of the 31st International Conference on Machine Learning (ICML-14)

28 Way 3: End-to-end Word? apple bog cat Output layer ~50k words in the lexicon DNN padding with zero! Size = 200 times of acoustic features Input layer Use other systems to get the word boundaries Ref: Bengio, Samy, and Georg Heigold. "Word embeddings for speech recognition., Interspeech

29 Why Deep Learning?

30 Deeper is better? Word error rate (WER) multiple layers Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." Interspeech hidden layer Deeper is Better

31 Deeper is better? Word error rate (WER) multiple layers Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." Interspeech hidden layer Deeper is Better For a fixed number of parameters, a deep model is clearly better than the shallow one.

32 What does DNN do? A. Mohamed, G. Hinton, and G. Penn, Understanding how Deep Belief Networks Perform Acoustic Modelling, in ICASSP, Speaker normalization is automatically done in DNN Input Acoustic Feature (MFCC) 1-st Hidden Layer

33 What does DNN do? A. Mohamed, G. Hinton, and G. Penn, Understanding how Deep Belief Networks Perform Acoustic Modelling, in ICASSP, Speaker normalization is automatically done in DNN Input Acoustic Feature (MFCC) 8-th Hidden Layer

34 What does DNN do? In ordinary acoustic models, all the states are modeled independently Not effective way to model human voice high front back The sound of vowel is only controlled by a few factors. low

35 What does DNN do? front high back Vu, Ngoc Thang, Jochen Weiner, and Tanja Schultz. "Investigating the Learning Effect of Multilingual Bottle-Neck Features for ASR." Interspeech Output of hidden layer reduce to two dimensions /i/ /e/ /a/ low /o/ /u/ The lower layers detect the manner of articulation All the states share the results from the same set of detectors. Use parameters effectively

36 Speaker Adaptation

37 Speaker Adaptation Speaker adaptation: use different models to recognition the speech of different speakers Collect the audio data of each speaker A DNN model for each speaker Challenge: limited data for training Not enough data for directly training a DNN model Not enough data for just fine-tune a speaker independent DNN model

38 Categories of Methods Conservative training Transformation methods Speaker-aware Training Re-train the whole DNN with some constraints Only train the parameter of one layer Do not really change the DNN parameters Need less training data

39 Conservative Training Output layer output close Output layer parameter close Input layer initialization Input layer Audio data of Many speakers A little data from target speaker

40 Transformation methods Add an extra layer Output layer Output layer Fix all the other parameters W Input layer layer i+1 layer i W W a Input layer layer i+1 extra layer layer i A little data from target speaker

41 Transformation methods Add the extra layer between the input and first layer With splicing layer 1 extra layer layer 1 extra layers W a W a W a W a Larger W a More data Smaller W a less data

42 Transformation methods SVD bottleneck adaptation Output layer U M linear W a V K N K is usually small

43 Speaker-aware Training Can also be noiseaware, devise aware training, Lots of mismatched data Data of Speaker 1 Data of Speaker 2 Data of Speaker 3 Speaker information Fixed length low dimension vectors Text transcription is not needed for extracting the vectors.

44 Speaker-aware Training Training data: Speaker 1 train Output layer Speaker 2 Acoustic features are appended with speaker information features Testing data: test Acoustic feature Speaker Information All the speaker use the same DNN model Different speaker augmented by different features

45 Multi-task Learning

46 Multitask Learning The multi-layer structure makes DNN suitable for multitask learning Task A Task B Task A Task B Input feature Input feature for task A Input feature for task B

47 Multitask Learning - Multilingual states of French states of German states of Spanish states of Italian states of Mandarin acoustic features Human languages share some common characteristics.

48 Character Error Rate Multitask Learning - Multilingual Mandarin only With European Language Hours of training data for Mandarin Huang, Jui-Ting, et al. "Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers." Acoustics, Speech and Signal Processing (ICASSP), 2013

49 Multitask Learning - Different units A B A= state B = phoneme A= state B = gender acoustic features A= state B = grapheme (character)

50 Deep Learning for Acoustic Modeling New acoustic features

51 MFCC spectrogram DFT Waveform Input of DNN MFCC DCT log filter bank

52 Filter-bank Output spectrogram DFT Waveform Input of DNN Kind of standard now log filter bank

53 Spectrogram spectrogram DFT Waveform common today Input of DNN 5% relative improvement over fitlerbank output Ref: ainath, T. N., Kingsbury, B., Mohamed, A. R., & Ramabhadran, B., Learning filter banks within a deep neural network framework, In Automatic Speech Recognition and Understanding (ASRU), 2013

54 Spectrogram

55 Waveform? Input of DNN If success, no Signal & Systems Waveform People tried, but not better than spectrogram yet Ref: Tüske, Z., Golik, P., Schlüter, R., & Ney, H., Acoustic modeling with deep neural networks using raw time signal for LVCSR, In INTERPSEECH 2014 Still need to take Signal & Systems

56 Waveform?

57 Convolutional Neural Network (CNN)

58 Frequency CNN Speech can be treated as images Spectrogram Time

59 CNN CNN Probabilities of states CNN Replace DNN by CNN Image

60 CNN Max Maxout Max Max pooling a 1 b 1 a 2 b 2 Max

61 CNN Tóth, László. "Convolutional Deep Maxout Networks for Phone Recognition, Interspeech, 2014.

62 Applications in Acoustic Signal Processing

63 DNN for Speech Enhancement Clean Speech for mobile commination or speech recognition DNN Noisy Speech Demo for speech enhancement:

64 DNN for Voice Conversion Female DNN Male Demo for Voice Conversion:

65 Concluding Remarks

66 Concluding Remarks Conventional Speech Recognition How to use Deep Learning in acoustic modeling? Why Deep Learning? Speaker Adaptation Multi-task Deep Learning New acoustic features Convolutional Neural Network (CNN) Applications in Acoustic Signal Processing

67 Thank you for your attention!

68 More Researches related to Speech Find the lectures related to deep learning Spoken Content Retrieval lecture recordings Summary Speech Summarization Speech Recognition 你好 core techniques Computer Assisted Language Learning I would like to leave Taipei on November 2nd Information Extraction Hi Hello Dialogue

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments Andreas Schwarz, Christian Huemmer, Roland Maas, Walter Kellermann Lehrstuhl für Multimediakommunikation

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Deep Learning for Automatic Speech Recognition Part II

Deep Learning for Automatic Speech Recognition Part II Deep Learning for Automatic Speech Recognition Part II Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief revisit of sampling, pitch/formant and MFCC DNN-HMM

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 20: HMMs / Speech / ML 11/8/2011 Dan Klein UC Berkeley Today HMMs Demo bonanza! Most likely explanation queries Speech recognition A massive HMM! Details

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models Statistical NLP Spring 2010 The Noisy Channel Model Lecture 9: Acoustic Models Dan Klein UC Berkeley Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions Language model: Distributions

More information

Lecture 5: GMM Acoustic Modeling and Feature Extraction

Lecture 5: GMM Acoustic Modeling and Feature Extraction CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 5: GMM Acoustic Modeling and Feature Extraction Original slides by Dan Jurafsky Outline for Today Acoustic

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Deep Learning for Automatic Speech Recognition Part I

Deep Learning for Automatic Speech Recognition Part I Deep Learning for Automatic Speech Recognition Part I Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief history of automatic speech recognition Speech

More information

Very Deep Convolutional Neural Networks for LVCSR

Very Deep Convolutional Neural Networks for LVCSR INTERSPEECH 2015 Very Deep Convolutional Neural Networks for LVCSR Mengxiao Bi, Yanmin Qian, Kai Yu Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering SpeechLab,

More information

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks INTERSPEECH 2014 Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks Ryu Takeda, Naoyuki Kanda, and Nobuo Nukaga Central Research Laboratory, Hitachi Ltd., 1-280, Kokubunji-shi,

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition

Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition INTERSPEECH 2014 Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition Zhen Huang 1, Jinyu Li 2, Chao Weng 1, Chin-Hui Lee

More information

Deep learning attracts lots of attention.

Deep learning attracts lots of attention. Deep Learning Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD/Jeff Dean Ups and downs of Deep Learning

More information

Robust Sound Event Detection in Continuous Audio Environments

Robust Sound Event Detection in Continuous Audio Environments Robust Sound Event Detection in Continuous Audio Environments Haomin Zhang 1, Ian McLoughlin 2,1, Yan Song 1 1 National Engineering Laboratory of Speech and Language Information Processing The University

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 12: Acoustic Feature Extraction for ASR Instructor: Preethi Jyothi Feb 13, 2017 Speech Signal Analysis Generate discrete samples A frame Need to focus on short

More information

Statistical NLP Spring Digitizing Speech

Statistical NLP Spring Digitizing Speech Statistical NLP Spring 2008 Lecture 10: Acoustic Models Dan Klein UC Berkeley Digitizing Speech 1 Frame Extraction A frame (25 ms wide) extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon

More information

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ...

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ... Statistical NLP Spring 2008 Digitizing Speech Lecture 10: Acoustic Models Dan Klein UC Berkeley Frame Extraction A frame (25 ms wide extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon Arnfield

More information

End-to-end Automatic Speech Recognition

End-to-end Automatic Speech Recognition End-to-end Automatic Speech Recognition Markus Nussbaum-Thom IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598, USA Markus Nussbaum-Thom. February 22, 2017 Nussbaum-Thom: IBM Thomas J. Watson

More information

Deep Neural Network and Its Application in Speech Recognition

Deep Neural Network and Its Application in Speech Recognition Deep Learning What, Why, and How A Tutorial Given at NLP&CC 2013 Deep Neural Network and Its Application in Speech Recognition Dong Yu Microsoft Research Thanks to my collaborators: Li Deng, Frank Seide,

More information

Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition

Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition INTERSPEECH 017 August 0 4, 017, Stockholm, Sweden Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition Jaeyoung Kim 1, Mostafa El-Khamy 1, Jungwon Lee 1 1 Samsung Semiconductor,

More information

Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures for LVCSR Tasks

Modeling Time-Frequency Patterns with LSTM vs. Convolutional Architectures for LVCSR Tasks Modeling Time-Frequency Patterns with LSTM vs Convolutional Architectures for LVCSR Tasks Tara N Sainath, Bo Li Google, Inc New York, NY, USA {tsainath, boboli}@googlecom Abstract Various neural network

More information

Speaker recognition by means of Deep Belief Networks

Speaker recognition by means of Deep Belief Networks Speaker recognition by means of Deep Belief Networks Vasileios Vasilakakis, Sandro Cumani, Pietro Laface, Politecnico di Torino, Italy {first.lastname}@polito.it 1. Abstract Most state of the art speaker

More information

Speech recognition. Lecture 14: Neural Networks. Andrew Senior December 12, Google NYC

Speech recognition. Lecture 14: Neural Networks. Andrew Senior December 12, Google NYC Andrew Senior 1 Speech recognition Lecture 14: Neural Networks Andrew Senior Google NYC December 12, 2013 Andrew Senior 2 1

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

arxiv: v1 [cs.cl] 23 Sep 2013

arxiv: v1 [cs.cl] 23 Sep 2013 Feature Learning with Gaussian Restricted Boltzmann Machine for Robust Speech Recognition Xin Zheng 1,2, Zhiyong Wu 1,2,3, Helen Meng 1,3, Weifeng Li 1, Lianhong Cai 1,2 arxiv:1309.6176v1 [cs.cl] 23 Sep

More information

A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property

A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property Jianshu Chen Department of Electrical Engineering University of California Los Angeles, CA 90034, USA

More information

Lecture 9: Speech Recognition. Recognizing Speech

Lecture 9: Speech Recognition. Recognizing Speech EE E68: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis http://www.ee.columbia.edu/~dpwe/e68/

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data Statistical Machine Learning from Data Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL),

More information

Lecture 9: Speech Recognition

Lecture 9: Speech Recognition EE E682: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 1 2 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis

More information

Deep Recurrent Neural Networks

Deep Recurrent Neural Networks Deep Recurrent Neural Networks Artem Chernodub e-mail: a.chernodub@gmail.com web: http://zzphoto.me ZZ Photo IMMSP NASU 2 / 28 Neuroscience Biological-inspired models Machine Learning p x y = p y x p(x)/p(y)

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 25&29 January 2018 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

arxiv: v4 [cs.cl] 5 Jun 2017

arxiv: v4 [cs.cl] 5 Jun 2017 Multitask Learning with CTC and Segmental CRF for Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, and Noah A Smith Toyota Technological Institute at Chicago, USA School of Computer Science, Carnegie

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

FEATURE SELECTION USING FISHER S RATIO TECHNIQUE FOR AUTOMATIC SPEECH RECOGNITION

FEATURE SELECTION USING FISHER S RATIO TECHNIQUE FOR AUTOMATIC SPEECH RECOGNITION FEATURE SELECTION USING FISHER S RATIO TECHNIQUE FOR AUTOMATIC SPEECH RECOGNITION Sarika Hegde 1, K. K. Achary 2 and Surendra Shetty 3 1 Department of Computer Applications, NMAM.I.T., Nitte, Karkala Taluk,

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 8: Tied state HMMs + DNNs in ASR Instructor: Preethi Jyothi Aug 17, 2017 Final Project Landscape Voice conversion using GANs Musical Note Extraction Keystroke

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Unfolded Recurrent Neural Networks for Speech Recognition

Unfolded Recurrent Neural Networks for Speech Recognition INTERSPEECH 2014 Unfolded Recurrent Neural Networks for Speech Recognition George Saon, Hagen Soltau, Ahmad Emami and Michael Picheny IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598 gsaon@us.ibm.com

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Particle Filters and Applications of HMMs Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Recap: Reasoning

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Particle Filters and Applications of HMMs Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials

More information

Lecture 14. Advanced Neural Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom

Lecture 14. Advanced Neural Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom Lecture 14 Advanced Neural Networks Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom Watson Group IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen,nussbaum}@us.ibm.com

More information

Large Vocabulary Continuous Speech Recognition with Long Short-Term Recurrent Networks

Large Vocabulary Continuous Speech Recognition with Long Short-Term Recurrent Networks Large Vocabulary Continuous Speech Recognition with Long Short-Term Recurrent Networks Haşim Sak, Andrew Senior, Oriol Vinyals, Georg Heigold, Erik McDermott, Rajat Monga, Mark Mao, Françoise Beaufays

More information

Sparse Models for Speech Recognition

Sparse Models for Speech Recognition Sparse Models for Speech Recognition Weibin Zhang and Pascale Fung Human Language Technology Center Hong Kong University of Science and Technology Outline Introduction to speech recognition Motivations

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH RECOGNITION USING SPLIT-VQ. Yongqiang Wang, Jinyu Li and Yifan Gong

SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH RECOGNITION USING SPLIT-VQ. Yongqiang Wang, Jinyu Li and Yifan Gong SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH RECOGNITION USING SPLIT-VQ Yongqiang Wang, Jinyu Li and Yifan Gong Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 {erw, jinyli,

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries

Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries INTERSPEECH 2017 August 20 24, 2017, Stockholm, Sweden Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries Yu-Hsuan Wang, Cheng-Tao Chung, Hung-yi

More information

Discriminative training of GMM-HMM acoustic model by RPCL type Bayesian Ying-Yang harmony learning

Discriminative training of GMM-HMM acoustic model by RPCL type Bayesian Ying-Yang harmony learning Discriminative training of GMM-HMM acoustic model by RPCL type Bayesian Ying-Yang harmony learning Zaihu Pang 1, Xihong Wu 1, and Lei Xu 1,2 1 Speech and Hearing Research Center, Key Laboratory of Machine

More information

Speech and Language Processing. Chapter 9 of SLP Automatic Speech Recognition (II)

Speech and Language Processing. Chapter 9 of SLP Automatic Speech Recognition (II) Speech and Language Processing Chapter 9 of SLP Automatic Speech Recognition (II) Outline for ASR ASR Architecture The Noisy Channel Model Five easy pieces of an ASR system 1) Language Model 2) Lexicon/Pronunciation

More information

REGULARIZING DNN ACOUSTIC MODELS WITH GAUSSIAN STOCHASTIC NEURONS. Hao Zhang, Yajie Miao, Florian Metze

REGULARIZING DNN ACOUSTIC MODELS WITH GAUSSIAN STOCHASTIC NEURONS. Hao Zhang, Yajie Miao, Florian Metze REGULARIZING DNN ACOUSTIC MODELS WITH GAUSSIAN STOCHASTIC NEURONS Hao Zhang, Yajie Miao, Florian Metze Language Technologies Institute, School of Computer Science, Carnegie Mellon University Pittsburgh,

More information

Course 495: Advanced Statistical Machine Learning/Pattern Recognition

Course 495: Advanced Statistical Machine Learning/Pattern Recognition Course 495: Advanced Statistical Machine Learning/Pattern Recognition Lecturer: Stefanos Zafeiriou Goal (Lectures): To present discrete and continuous valued probabilistic linear dynamical systems (HMMs

More information

MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING. Liang Lu and Steve Renals

MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING. Liang Lu and Steve Renals MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING Liang Lu and Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK {liang.lu, s.renals}@ed.ac.uk ABSTRACT

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

An exploration of dropout with LSTMs

An exploration of dropout with LSTMs An exploration of out with LSTMs Gaofeng Cheng 1,3, Vijayaditya Peddinti 4,5, Daniel Povey 4,5, Vimal Manohar 4,5, Sanjeev Khudanpur 4,5,Yonghong Yan 1,2,3 1 Key Laboratory of Speech Acoustics and Content

More information

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course)

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course) 10. Hidden Markov Models (HMM) for Speech Processing (some slides taken from Glass and Zue course) Definition of an HMM The HMM are powerful statistical methods to characterize the observed samples of

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 21: Speaker Adaptation Instructor: Preethi Jyothi Oct 23, 2017 Speaker variations Major cause of variability in speech is the differences between speakers Speaking

More information

Speech and Language Processing

Speech and Language Processing Speech and Language Processing Lecture 5 Neural network based acoustic and language models Information and Communications Engineering Course Takahiro Shinoaki 08//6 Lecture Plan (Shinoaki s part) I gives

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Dynamic Time-Alignment Kernel in Support Vector Machine

Dynamic Time-Alignment Kernel in Support Vector Machine Dynamic Time-Alignment Kernel in Support Vector Machine Hiroshi Shimodaira School of Information Science, Japan Advanced Institute of Science and Technology sim@jaist.ac.jp Mitsuru Nakai School of Information

More information

CS230: Lecture 10 Sequence models II

CS230: Lecture 10 Sequence models II CS23: Lecture 1 Sequence models II Today s outline We will learn how to: - Automatically score an NLP model I. BLEU score - Improve Machine II. Beam Search Translation results with Beam search III. Speech

More information

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model (most slides from Sharon Goldwater; some adapted from Philipp Koehn) 5 October 2016 Nathan Schneider

More information

IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation

IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation IMISOUND: An Unsupervised System for Sound Query by Vocal Imitation Yichi Zhang and Zhiyao Duan Audio Information Research (AIR) Lab Department of Electrical and Computer Engineering University of Rochester

More information

Upper Bound Kullback-Leibler Divergence for Hidden Markov Models with Application as Discrimination Measure for Speech Recognition

Upper Bound Kullback-Leibler Divergence for Hidden Markov Models with Application as Discrimination Measure for Speech Recognition Upper Bound Kullback-Leibler Divergence for Hidden Markov Models with Application as Discrimination Measure for Speech Recognition Jorge Silva and Shrikanth Narayanan Speech Analysis and Interpretation

More information

LINEARLY AUGMENTED DEEP NEURAL NETWORK

LINEARLY AUGMENTED DEEP NEURAL NETWORK LINEARLY AUGMENTED DEEP NEURAL NETWORK Pegah Ghahremani Johns Hopkins University, Baltimore pghahre1@jhu.edu Jasha Droppo, Michael L. Seltzer Microsoft Research, Redmond {jdroppo,mseltzer}@microsoft.com

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg Temporal Reasoning Kai Arras, University of Freiburg 1 Temporal Reasoning Contents Introduction Temporal Reasoning Hidden Markov Models Linear Dynamical Systems (LDS) Kalman Filter 2 Temporal Reasoning

More information

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS. Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS. Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton SPEECH RECOGITIO WITH DEEP RECURRET EURAL ETWORKS Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton Department of Computer Science, University of Toronto ABSTRACT Recurrent neural networks (Rs) are

More information

Forward algorithm vs. particle filtering

Forward algorithm vs. particle filtering Particle Filtering ØSometimes X is too big to use exact inference X may be too big to even store B(X) E.g. X is continuous X 2 may be too big to do updates ØSolution: approximate inference Track samples

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Deep Neural Networks

Deep Neural Networks Deep Neural Networks DT2118 Speech and Speaker Recognition Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 45 Outline State-to-Output Probability Model Artificial Neural Networks Perceptron Multi

More information

Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models

Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models Liang Lu, Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK {liang.lu,

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee New Activation Function Rectified Linear Unit (ReLU) σ z a a = z Reason: 1. Fast to compute 2. Biological reason a = 0 [Xavier Glorot, AISTATS 11] [Andrew L.

More information

Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017

Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017 Adapting Wavenet for Speech Enhancement DARIO RETHAGE JULY 12, 2017 I am v Master Student v 6 months @ Music Technology Group, Universitat Pompeu Fabra v Deep learning for acoustic source separation v

More information

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm

CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm + September13, 2016 Professor Meteer CS 136a Lecture 7 Speech Recognition Architecture: Training models with the Forward backward algorithm Thanks to Dan Jurafsky for these slides + ASR components n Feature

More information

Acoustic Unit Discovery (AUD) Models. Leda Sarı

Acoustic Unit Discovery (AUD) Models. Leda Sarı Acoustic Unit Discovery (AUD) Models Leda Sarı Lucas Ondel and Lukáš Burget A summary of AUD experiments from JHU Frederick Jelinek Summer Workshop 2016 lsari2@illinois.edu November 07, 2016 1 / 23 The

More information

Introduction to Deep Learning

Introduction to Deep Learning Introduction to Deep Learning A. G. Schwing & S. Fidler University of Toronto, 2014 A. G. Schwing & S. Fidler (UofT) CSC420: Intro to Image Understanding 2014 1 / 35 Outline 1 Universality of Neural Networks

More information

1. Markov models. 1.1 Markov-chain

1. Markov models. 1.1 Markov-chain 1. Markov models 1.1 Markov-chain Let X be a random variable X = (X 1,..., X t ) taking values in some set S = {s 1,..., s N }. The sequence is Markov chain if it has the following properties: 1. Limited

More information

ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING

ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING Amit Das, Jinyu Li, Rui Zhao, Yifan Gong Microsoft AI and Research, One Microsoft Way, Redmond, WA 98052 amitdas@illinois.edu,{jinyli,

More information

Hidden Markov Modelling

Hidden Markov Modelling Hidden Markov Modelling Introduction Problem formulation Forward-Backward algorithm Viterbi search Baum-Welch parameter estimation Other considerations Multiple observation sequences Phone-based models

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Particle Filters and Applications of HMMs Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro

More information

WaveNet: A Generative Model for Raw Audio

WaveNet: A Generative Model for Raw Audio WaveNet: A Generative Model for Raw Audio Ido Guy & Daniel Brodeski Deep Learning Seminar 2017 TAU Outline Introduction WaveNet Experiments Introduction WaveNet is a deep generative model of raw audio

More information

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY MengSun,HugoVanhamme Department of Electrical Engineering-ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Bus

More information

Deep Learning Tutorial. 李宏毅 Hung-yi Lee

Deep Learning Tutorial. 李宏毅 Hung-yi Lee Deep Learning Tutorial 李宏毅 Hung-yi Lee Outline Part I: Introduction of Deep Learning Part II: Why Deep? Part III: Tips for Training Deep Neural Network Part IV: Neural Network with Memory Part I: Introduction

More information

Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks

Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks Interspeech 2018 2-6 September 2018, Hyderabad Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks Rohith Aralikatti, Dilip Kumar Margam, Tanay Sharma,

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 10 Oct, 13, 2011 CPSC 502, Lecture 10 Slide 1 Today Oct 13 Inference in HMMs More on Robot Localization CPSC 502, Lecture

More information

A Low-Cost Robust Front-end for Embedded ASR System

A Low-Cost Robust Front-end for Embedded ASR System A Low-Cost Robust Front-end for Embedded ASR System Lihui Guo 1, Xin He 2, Yue Lu 1, and Yaxin Zhang 2 1 Department of Computer Science and Technology, East China Normal University, Shanghai 200062 2 Motorola

More information

EECS E6870: Lecture 4: Hidden Markov Models

EECS E6870: Lecture 4: Hidden Markov Models EECS E6870: Lecture 4: Hidden Markov Models Stanley F. Chen, Michael A. Picheny and Bhuvana Ramabhadran IBM T. J. Watson Research Center Yorktown Heights, NY 10549 stanchen@us.ibm.com, picheny@us.ibm.com,

More information

Unsupervised Model Adaptation using Information-Theoretic Criterion

Unsupervised Model Adaptation using Information-Theoretic Criterion Unsupervised Model Adaptation using Information-Theoretic Criterion Ariya Rastrow 1, Frederick Jelinek 1, Abhinav Sethy 2 and Bhuvana Ramabhadran 2 1 Human Language Technology Center of Excellence, and

More information

Speech Recognition. Department of Computer Science & Information Engineering National Taiwan Normal University. References:

Speech Recognition. Department of Computer Science & Information Engineering National Taiwan Normal University. References: Acoustic Modeling for Speech Recognition Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References:. X. Huang et. al. Spoken Language age Processing.

More information

Deep Learning. Hung-yi Lee 李宏毅

Deep Learning. Hung-yi Lee 李宏毅 Deep Learning Hung-yi Lee 李宏毅 Deep learning attracts lots of attention. I believe you have seen lots of exciting results before. Deep learning trends at Google. Source: SIGMOD 206/Jeff Dean 958: Perceptron

More information

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

A NONPARAMETRIC BAYESIAN APPROACH FOR SPOKEN TERM DETECTION BY EXAMPLE QUERY

A NONPARAMETRIC BAYESIAN APPROACH FOR SPOKEN TERM DETECTION BY EXAMPLE QUERY A NONPARAMETRIC BAYESIAN APPROACH FOR SPOKEN TERM DETECTION BY EXAMPLE QUERY Amir Hossein Harati Nead Torbati and Joseph Picone College of Engineering, Temple University Philadelphia, Pennsylvania, USA

More information