Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Size: px
Start display at page:

Download "Segmental Recurrent Neural Networks for End-to-end Speech Recognition"

Transcription

1 Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016

2 Background A new wave of sequence modelling I. Sutskever, et al., Sequence-to-Sequence Learning with Neural Networks, NIPS 2014 D. Bahdanau, et al., Neural Machine Translation by Jointly Learning to Align and Translate, ICLR 2015 A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, ICML of 28

3 Background Maybe time to review sequence modelling for speech Why speech recognition is special? monotonic alignment long input sequence output sequence is much shorter (word/phonme) 3 of 28

4 Speech Recognition monotonic alignment challenges for attention models long input sequence expensive for globally (sequence-level) normalised model output sequence is much shorter (word/phonme) length mismatch alignment model or not? 4 of 28

5 Speech Recognition Hidden Markov Model monotonic alignment long input sequence locally (frame-level) normalised length mismatch hidden states Connectionist Temporal Classification monotonic alignment long input sequence locally normalised length mismatch blank state 5 of 28

6 Speech Recognition Locally normalised models: conditional independence assumption label bias problem better results given by sequence training: local global normalisation Question: Why not sticking to the globally normalised models from scratch? [1] D. Andor, et al, Globally Normalized Transition-Based Neural Networks, ACL, [2] D. Povey, et al, Purely sequence-trained neural networks for ASR based on lattice-free MMI Interspeech, of 28

7 (Segmental) Conditional Random Field CRF segmental CRF 7 of 28

8 (Segmental) Conditional Random Field CRF [Lafferty et al. 2001] P(y 1:L x 1:T ) = 1 Z(x 1:T ) j ( ) exp w Φ(y j, x 1:T ) (1) where L = T. Segmental (semi-markov) CRF [Sarawagi and Cohen 2004] P(y 1:L, E, x 1:T ) = 1 Z(x 1:T ) j ( ) exp w Φ(y j, e j, x 1:T ) (2) where e j = s j, n j denotes the beginning (s j ) and end (n j ) time tag of y j ; E = {e 1:L } is the latent segment label. 8 of 28

9 (Segmental) Conditional Random Field 1 Z(x 1:T ) j exp ( w Φ(y j, x 1:T ) ) Learnable parameter w Engineering the feature function Φ( ) Designing Φ( ) is much harder for speech than NLP 9 of 28

10 Segmental Recurrent Neural Network Using (recurrent) neural networks to learn the feature function Φ( ). y 1 y 2 y 3 x 1 x 2 x 3 x 4 x 5 x 6 10 of 28

11 Segmental Recurrent Neural Network Training criteria Conditional maximum likelihood L(θ) = log P(y 1:L x 1:T ) = log E P(y 1:L, E x 1:T ) (3) Hinge loss similar to structured SVM. Not studied yet! 11 of 28

12 Segmental Recurrent Neural Network Viterbi decoding Partially Viterbi decoding y 1:L = arg max log y 1:L E P(y 1:L, E x 1:T ) (4) Fully Viterbi decoding y 1:L, E = arg max y 1:L,E log P(y 1:L, E x 1:T ) (5) 12 of 28

13 Related works (Segmental) CRFs for speech Neural CRFs Structured SVMs Two good review papers M. Gales, S. Watanabe and E. Fosler-Lussier, Structured Discriminative Models for Speech Recognition, IEEE Signal Processing Magazine, 2012 E. Fosler-Lussier et al. Conditional random fields in speech, audio, and language processing, Proceedings of the IEEE, of 28

14 Comparison to CTC [1] A. Senior, et al, Acoustic Modelling with CD-CTC-sMBR LSTM RNNs, ASRU of 28

15 Comparison to CTC ŷ 1 ŷ 2 ŷ 3 ŷ 4 15 of 28 x 1 x 2 x 3 x 4 p(y x) = p(ŷ 1 x 1 ) p(ŷ 2 x 2 ) p(ŷ 3 x 3 ) p(ŷ 4 x 4 )

16 Comparison to CTC <b> ŷ 2 ŷ 3 ŷ 4 x 1 x 2 x 3 x 4 16 of 28 p(y x) = p( b x 1 ) p(ŷ }{{} 2 x 2 ) p(ŷ 3 x 3 ) p(ŷ 4 x 4 ) =1

17 Comparison to CTC <b> ŷ 2 ŷ 3 ŷ 4 x 1 x 2 x 3 x 4 p(y x) = p( b x 1 ) p(ŷ 2 x 2 ) p(ŷ 3 x 3 ) p(ŷ 4 x 4 ) 17 of 28

18 Comparison to CTC <b> <b> ŷ 3 ŷ 4 x 1 x 2 x 3 x 4 18 of 28 p(y x) = p( b x 1 ) p( b x }{{} 2 ) p(ŷ }{{} 3 x 3 ) p(ŷ 4 x 4 ) =1 =1

19 Comparison to CTC <b> <b> ŷ 3 ŷ 4 x 1 x 2 x 3 x 4 p(y x) = p( b x 1 ) p( b x 2 ) p(ŷ 3 x 3 ) p(ŷ 4 x 4 ) 19 of 28

20 Comparison to CTC <b> <b> ŷ 3 ŷ 4 x 1 x 2 x 3 x 4 20 of 28

21 Comparison to CTC <b> <b> ŷ 3 ŷ 4 x 1 x 2 x 3 x 4 CTC loss may do some kind of segmental modelling 21 of 28

22 Experiment TIMIT dataset 3696 training utterances ( 3 hours) core test set (192 testing utterances) trained on 48 phonemes, and mapped to 39 for scoring log filterbank features (FBANK) using LSTM as an implementation of RNN 22 of 28

23 Experiment Limit the lengths of segments Recurrent subsampling networks over 10x speedup x 1 x 2 x 3 x 4 a) concatenate / add 23 of 28 x 1 x 2 x 3 x 4 b) skip

24 Experiment Large model with dropout works the best Table: Results of dropout. Dropout layers hidden PER of 28

25 Experiment Table: Results of three types of acoustic features. Features Deltas d(x t ) PER 24-dim FBANK dim FBANK Kaldi Kaldi features 39 dimensional MFCCs spliced by a context window of 7, followed by LDA and MLLT transform and with feature-space speaker-dependent MLLR 25 of 28

26 Experiment Table: Comparison to related works. LM = language model, SD = speaker dependent feature System LM SD PER HMM-DNN 18.5 CTC [Graves 2013] 18.4 RNN transducer [Graves 2013] 17.7 Attention-based RNN [Chorowski 2015] 17.6 Segmental RNN 18.9 Segmental RNN of 28

27 Conclusion Segmental CRFs with recurrent neural networks Potential for end-to-end training Computational cost is the main bottleneck Need to evaluate on large vocabulary tasks 27 of 28

28 28 of 28 Thank you! Questions?

arxiv: v4 [cs.cl] 5 Jun 2017

arxiv: v4 [cs.cl] 5 Jun 2017 Multitask Learning with CTC and Segmental CRF for Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, and Noah A Smith Toyota Technological Institute at Chicago, USA School of Computer Science, Carnegie

More information

End-to-end Automatic Speech Recognition

End-to-end Automatic Speech Recognition End-to-end Automatic Speech Recognition Markus Nussbaum-Thom IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598, USA Markus Nussbaum-Thom. February 22, 2017 Nussbaum-Thom: IBM Thomas J. Watson

More information

MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING. Liang Lu and Steve Renals

MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING. Liang Lu and Steve Renals MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING Liang Lu and Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK {liang.lu, s.renals}@ed.ac.uk ABSTRACT

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Large Vocabulary Continuous Speech Recognition with Long Short-Term Recurrent Networks

Large Vocabulary Continuous Speech Recognition with Long Short-Term Recurrent Networks Large Vocabulary Continuous Speech Recognition with Long Short-Term Recurrent Networks Haşim Sak, Andrew Senior, Oriol Vinyals, Georg Heigold, Erik McDermott, Rajat Monga, Mark Mao, Françoise Beaufays

More information

Deep Recurrent Neural Networks

Deep Recurrent Neural Networks Deep Recurrent Neural Networks Artem Chernodub e-mail: a.chernodub@gmail.com web: http://zzphoto.me ZZ Photo IMMSP NASU 2 / 28 Neuroscience Biological-inspired models Machine Learning p x y = p y x p(x)/p(y)

More information

Speech recognition. Lecture 14: Neural Networks. Andrew Senior December 12, Google NYC

Speech recognition. Lecture 14: Neural Networks. Andrew Senior December 12, Google NYC Andrew Senior 1 Speech recognition Lecture 14: Neural Networks Andrew Senior Google NYC December 12, 2013 Andrew Senior 2 1

More information

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks

Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks INTERSPEECH 2014 Boundary Contraction Training for Acoustic Models based on Discrete Deep Neural Networks Ryu Takeda, Naoyuki Kanda, and Nobuo Nukaga Central Research Laboratory, Hitachi Ltd., 1-280, Kokubunji-shi,

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

Deep Learning for Speech Recognition. Hung-yi Lee

Deep Learning for Speech Recognition. Hung-yi Lee Deep Learning for Speech Recognition Hung-yi Lee Outline Conventional Speech Recognition How to use Deep Learning in acoustic modeling? Why Deep Learning? Speaker Adaptation Multi-task Deep Learning New

More information

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recap Standard RNNs Training: Backpropagation Through Time (BPTT) Application to sequence modeling Language modeling Applications: Automatic speech

More information

Unfolded Recurrent Neural Networks for Speech Recognition

Unfolded Recurrent Neural Networks for Speech Recognition INTERSPEECH 2014 Unfolded Recurrent Neural Networks for Speech Recognition George Saon, Hagen Soltau, Ahmad Emami and Michael Picheny IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598 gsaon@us.ibm.com

More information

SPEECH recognition systems based on hidden Markov

SPEECH recognition systems based on hidden Markov IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, 2014 1 Probabilistic Linear Discriminant Analysis for Acoustic Modelling Liang Lu, Member, IEEE and Steve Renals, Fellow, IEEE Abstract In this letter, we

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee New Activation Function Rectified Linear Unit (ReLU) σ z a a = z Reason: 1. Fast to compute 2. Biological reason a = 0 [Xavier Glorot, AISTATS 11] [Andrew L.

More information

Deep Learning for Automatic Speech Recognition Part II

Deep Learning for Automatic Speech Recognition Part II Deep Learning for Automatic Speech Recognition Part II Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief revisit of sampling, pitch/formant and MFCC DNN-HMM

More information

Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models

Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models Liang Lu, Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK {liang.lu,

More information

] Automatic Speech Recognition (CS753)

] Automatic Speech Recognition (CS753) ] Automatic Speech Recognition (CS753) Lecture 17: Discriminative Training for HMMs Instructor: Preethi Jyothi Sep 28, 2017 Discriminative Training Recall: MLE for HMMs Maximum likelihood estimation (MLE)

More information

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS. Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS. Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton SPEECH RECOGITIO WITH DEEP RECURRET EURAL ETWORKS Alex Graves, Abdel-rahman Mohamed and Geoffrey Hinton Department of Computer Science, University of Toronto ABSTRACT Recurrent neural networks (Rs) are

More information

An exploration of dropout with LSTMs

An exploration of dropout with LSTMs An exploration of out with LSTMs Gaofeng Cheng 1,3, Vijayaditya Peddinti 4,5, Daniel Povey 4,5, Vimal Manohar 4,5, Sanjeev Khudanpur 4,5,Yonghong Yan 1,2,3 1 Key Laboratory of Speech Acoustics and Content

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging 10-708: Probabilistic Graphical Models 10-708, Spring 2018 10 : HMM and CRF Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman 1 Case Study: Supervised Part-of-Speech Tagging We will

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

arxiv: v5 [stat.ml] 19 Jun 2017

arxiv: v5 [stat.ml] 19 Jun 2017 Chong Wang 1 Yining Wang 2 Po-Sen Huang 1 Abdelrahman Mohamed 3 Dengyong Zhou 1 Li Deng 4 arxiv:1702.07463v5 [stat.ml] 19 Jun 2017 Abstract Segmental structure is a common pattern in many types of sequences

More information

Sequence Transduction with Recurrent Neural Networks

Sequence Transduction with Recurrent Neural Networks Alex Graves graves@cs.toronto.edu Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4 Abstract Many machine learning tasks can be expressed as the transformation or transduction

More information

with Local Dependencies

with Local Dependencies CS11-747 Neural Networks for NLP Structured Prediction with Local Dependencies Xuezhe Ma (Max) Site https://phontron.com/class/nn4nlp2017/ An Example Structured Prediction Problem: Sequence Labeling Sequence

More information

arxiv: v1 [cs.ne] 14 Nov 2012

arxiv: v1 [cs.ne] 14 Nov 2012 Alex Graves Department of Computer Science, University of Toronto, Canada graves@cs.toronto.edu arxiv:1211.3711v1 [cs.ne] 14 Nov 2012 Abstract Many machine learning tasks can be expressed as the transformation

More information

Deep Learning for Speech Processing An NST Perspective

Deep Learning for Speech Processing An NST Perspective Deep Learning for Speech Processing An NST Perspective Mark Gales University of Cambridge June 2016 September 2016 Natural Speech Technology (NST) EPSRC (UK Government) Programme Grant: collaboration significantly

More information

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih

Unsupervised Learning of Hierarchical Models. in collaboration with Josh Susskind and Vlad Mnih Unsupervised Learning of Hierarchical Models Marc'Aurelio Ranzato Geoff Hinton in collaboration with Josh Susskind and Vlad Mnih Advanced Machine Learning, 9 March 2011 Example: facial expression recognition

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Speaker recognition by means of Deep Belief Networks

Speaker recognition by means of Deep Belief Networks Speaker recognition by means of Deep Belief Networks Vasileios Vasilakakis, Sandro Cumani, Pietro Laface, Politecnico di Torino, Italy {first.lastname}@polito.it 1. Abstract Most state of the art speaker

More information

Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries

Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries INTERSPEECH 2017 August 20 24, 2017, Stockholm, Sweden Gate Activation Signal Analysis for Gated Recurrent Neural Networks and Its Correlation with Phoneme Boundaries Yu-Hsuan Wang, Cheng-Tao Chung, Hung-yi

More information

Deep Learning for Automatic Speech Recognition Part I

Deep Learning for Automatic Speech Recognition Part I Deep Learning for Automatic Speech Recognition Part I Xiaodong Cui IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Fall, 2018 Outline A brief history of automatic speech recognition Speech

More information

BLSTM-HMM HYBRID SYSTEM COMBINED WITH SOUND ACTIVITY DETECTION NETWORK FOR POLYPHONIC SOUND EVENT DETECTION

BLSTM-HMM HYBRID SYSTEM COMBINED WITH SOUND ACTIVITY DETECTION NETWORK FOR POLYPHONIC SOUND EVENT DETECTION BLSTM-HMM HYBRID SYSTEM COMBINED WITH SOUND ACTIVITY DETECTION NETWORK FOR POLYPHONIC SOUND EVENT DETECTION Tomoki Hayashi 1, Shinji Watanabe 2, Tomoki Toda 1, Takaaki Hori 2, Jonathan Le Roux 2, Kazuya

More information

Feature-Space Structural MAPLR with Regression Tree-based Multiple Transformation Matrices for DNN

Feature-Space Structural MAPLR with Regression Tree-based Multiple Transformation Matrices for DNN MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Feature-Space Structural MAPLR with Regression Tree-based Multiple Transformation Matrices for DNN Kanagawa, H.; Tachioka, Y.; Watanabe, S.;

More information

Deep Neural Networks

Deep Neural Networks Deep Neural Networks DT2118 Speech and Speaker Recognition Giampiero Salvi KTH/CSC/TMH giampi@kth.se VT 2015 1 / 45 Outline State-to-Output Probability Model Artificial Neural Networks Perceptron Multi

More information

lecture 6: modeling sequences (final part)

lecture 6: modeling sequences (final part) Natural Language Processing 1 lecture 6: modeling sequences (final part) Ivan Titov Institute for Logic, Language and Computation Outline After a recap: } Few more words about unsupervised estimation of

More information

Probabilistic Models for Sequence Labeling

Probabilistic Models for Sequence Labeling Probabilistic Models for Sequence Labeling Besnik Fetahu June 9, 2011 Besnik Fetahu () Probabilistic Models for Sequence Labeling June 9, 2011 1 / 26 Background & Motivation Problem introduction Generative

More information

8: Hidden Markov Models

8: Hidden Markov Models 8: Hidden Markov Models Machine Learning and Real-world Data Helen Yannakoudakis 1 Computer Laboratory University of Cambridge Lent 2018 1 Based on slides created by Simone Teufel So far we ve looked at

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition

Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition INTERSPEECH 017 August 0 4, 017, Stockholm, Sweden Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition Jaeyoung Kim 1, Mostafa El-Khamy 1, Jungwon Lee 1 1 Samsung Semiconductor,

More information

Very Deep Convolutional Neural Networks for LVCSR

Very Deep Convolutional Neural Networks for LVCSR INTERSPEECH 2015 Very Deep Convolutional Neural Networks for LVCSR Mengxiao Bi, Yanmin Qian, Kai Yu Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering SpeechLab,

More information

Presented By: Omer Shmueli and Sivan Niv

Presented By: Omer Shmueli and Sivan Niv Deep Speaker: an End-to-End Neural Speaker Embedding System Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao Liu, Ying Cao, Ajay Kannan, Zhenyao Zhu Presented By: Omer Shmueli and Sivan

More information

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Heiga ZEN (Byung Ha CHUN) Nagoya Inst. of Tech., Japan Overview. Research backgrounds 2.

More information

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms Recognition of Visual Speech Elements Using Adaptively Boosted Hidden Markov Models. Say Wei Foo, Yong Lian, Liang Dong. IEEE Transactions on Circuits and Systems for Video Technology, May 2004. Shankar

More information

Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks

Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks Daniel Povey 1,2, Gaofeng Cheng 3, Yiming Wang 1, Ke Li 1, Hainan Xu 1, Mahsa Yarmohamadi 1, Sanjeev Khudanpur 1,2 1 Center for Language

More information

Feedforward Neural Networks

Feedforward Neural Networks Feedforward Neural Networks Michael Collins 1 Introduction In the previous notes, we introduced an important class of models, log-linear models. In this note, we describe feedforward neural networks, which

More information

arxiv: v2 [cs.ne] 7 Apr 2015

arxiv: v2 [cs.ne] 7 Apr 2015 A Simple Way to Initialize Recurrent Networks of Rectified Linear Units arxiv:154.941v2 [cs.ne] 7 Apr 215 Quoc V. Le, Navdeep Jaitly, Geoffrey E. Hinton Google Abstract Learning long term dependencies

More information

Detection of Overlapping Acoustic Events Based on NMF with Shared Basis Vectors

Detection of Overlapping Acoustic Events Based on NMF with Shared Basis Vectors Detection of Overlapping Acoustic Events Based on NMF with Shared Basis Vectors Kazumasa Yamamoto Department of Computer Science Chubu University Kasugai, Aichi, Japan Email: yamamoto@cs.chubu.ac.jp Chikara

More information

MASK WEIGHTED STFT RATIOS FOR RELATIVE TRANSFER FUNCTION ESTIMATION AND ITS APPLICATION TO ROBUST ASR

MASK WEIGHTED STFT RATIOS FOR RELATIVE TRANSFER FUNCTION ESTIMATION AND ITS APPLICATION TO ROBUST ASR MASK WEIGHTED STFT RATIOS FOR RELATIVE TRANSFER FUNCTION ESTIMATION AND ITS APPLICATION TO ROBUST ASR Zhong-Qiu Wang, DeLiang Wang, Department of Computer Science and Engineering, The Ohio State University,

More information

Neural Architectures for Image, Language, and Speech Processing

Neural Architectures for Image, Language, and Speech Processing Neural Architectures for Image, Language, and Speech Processing Karl Stratos June 26, 2018 1 / 31 Overview Feedforward Networks Need for Specialized Architectures Convolutional Neural Networks (CNNs) Recurrent

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 8: Tied state HMMs + DNNs in ASR Instructor: Preethi Jyothi Aug 17, 2017 Final Project Landscape Voice conversion using GANs Musical Note Extraction Keystroke

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 24. Hidden Markov Models & message passing Looking back Representation of joint distributions Conditional/marginal independence

More information

On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System

On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System Fabrice Lefèvre, Claude Montacié and Marie-José Caraty Laboratoire d'informatique de Paris VI 4, place Jussieu 755 PARIS

More information

Towards Maximum Geometric Margin Minimum Error Classification

Towards Maximum Geometric Margin Minimum Error Classification THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 50, NO. 3 October 2009 Towards Maximum Geometric Margin Minimum Error Classification Kouta YAMADA*, Shigeru KATAGIRI*, Erik MCDERMOTT**,

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING

ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING Amit Das, Jinyu Li, Rui Zhao, Yifan Gong Microsoft AI and Research, One Microsoft Way, Redmond, WA 98052 amitdas@illinois.edu,{jinyli,

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Highway-LSTM and Recurrent Highway Networks for Speech Recognition

Highway-LSTM and Recurrent Highway Networks for Speech Recognition Highway-LSTM and Recurrent Highway Networks for Speech Recognition Golan Pundak, Tara N. Sainath Google Inc., New York, NY, USA {golan, tsainath}@google.com Abstract Recently, very deep networks, with

More information

Recurrent Poisson Process Unit for Speech Recognition

Recurrent Poisson Process Unit for Speech Recognition Recurrent Poisson Process Unit for Speech Recognition Hengguan Huang 1, Hao Wang 2, Brian Mak 1 1 The Hong Kong University of Science and Technology 2 Massachusetts Institute of Technology {hhuangaj,mak}@cse.ust.hk,

More information

arxiv: v1 [cs.cl] 31 May 2015

arxiv: v1 [cs.cl] 31 May 2015 Recurrent Neural Networks with External Memory for Language Understanding Baolin Peng 1, Kaisheng Yao 2 1 The Chinese University of Hong Kong 2 Microsoft Research blpeng@se.cuhk.edu.hk, kaisheny@microsoft.com

More information

The THU-SPMI CHiME-4 system : Lightweight design with advanced multi-channel processing, feature enhancement, and language modeling

The THU-SPMI CHiME-4 system : Lightweight design with advanced multi-channel processing, feature enhancement, and language modeling The THU-SPMI CHiME-4 system : Lightweight design with advanced multi-channel processing, feature enhancement, and language modeling Hongyu Xiang, Bin ang, Zhijian Ou Speech Processing and Machine Intelligence

More information

BIDIRECTIONAL LSTM-HMM HYBRID SYSTEM FOR POLYPHONIC SOUND EVENT DETECTION

BIDIRECTIONAL LSTM-HMM HYBRID SYSTEM FOR POLYPHONIC SOUND EVENT DETECTION BIDIRECTIONAL LSTM-HMM HYBRID SYSTEM FOR POLYPHONIC SOUND EVENT DETECTION Tomoki Hayashi 1, Shinji Watanabe 2, Tomoki Toda 1, Takaaki Hori 2, Jonathan Le Roux 2, Kazuya Takeda 1 1 Nagoya University, Furo-cho,

More information

Noise Compensation for Subspace Gaussian Mixture Models

Noise Compensation for Subspace Gaussian Mixture Models Noise ompensation for ubspace Gaussian Mixture Models Liang Lu University of Edinburgh Joint work with KK hin, A. Ghoshal and. enals Liang Lu, Interspeech, eptember, 2012 Outline Motivation ubspace GMM

More information

DNN-based uncertainty estimation for weighted DNN-HMM ASR

DNN-based uncertainty estimation for weighted DNN-HMM ASR DNN-based uncertainty estimation for weighted DNN-HMM ASR José Novoa, Josué Fredes, Nestor Becerra Yoma Speech Processing and Transmission Lab., Universidad de Chile nbecerra@ing.uchile.cl Abstract In

More information

Augmented Statistical Models for Classifying Sequence Data

Augmented Statistical Models for Classifying Sequence Data Augmented Statistical Models for Classifying Sequence Data Martin Layton Corpus Christi College University of Cambridge September 2006 Dissertation submitted to the University of Cambridge for the degree

More information

arxiv: v1 [cs.cl] 21 May 2017

arxiv: v1 [cs.cl] 21 May 2017 Spelling Correction as a Foreign Language Yingbo Zhou yingbzhou@ebay.com Utkarsh Porwal uporwal@ebay.com Roberto Konow rkonow@ebay.com arxiv:1705.07371v1 [cs.cl] 21 May 2017 Abstract In this paper, we

More information

Graphical models for part of speech tagging

Graphical models for part of speech tagging Indian Institute of Technology, Bombay and Research Division, India Research Lab Graphical models for part of speech tagging Different Models for POS tagging HMM Maximum Entropy Markov Models Conditional

More information

CS230: Lecture 10 Sequence models II

CS230: Lecture 10 Sequence models II CS23: Lecture 1 Sequence models II Today s outline We will learn how to: - Automatically score an NLP model I. BLEU score - Improve Machine II. Beam Search Translation results with Beam search III. Speech

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data Statistical Machine Learning from Data Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL),

More information

Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features

Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features Tachioka, Y.; Watanabe,

More information

Unsupervised Model Adaptation using Information-Theoretic Criterion

Unsupervised Model Adaptation using Information-Theoretic Criterion Unsupervised Model Adaptation using Information-Theoretic Criterion Ariya Rastrow 1, Frederick Jelinek 1, Abhinav Sethy 2 and Bhuvana Ramabhadran 2 1 Human Language Technology Center of Excellence, and

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Recurrent Neural Network

Recurrent Neural Network Recurrent Neural Network Xiaogang Wang xgwang@ee..edu.hk March 2, 2017 Xiaogang Wang (linux) Recurrent Neural Network March 2, 2017 1 / 48 Outline 1 Recurrent neural networks Recurrent neural networks

More information

Geoffrey Zweig May 7, 2009

Geoffrey Zweig May 7, 2009 Geoffrey Zweig May 7, 2009 Taxonomy of LID Techniques LID Acoustic Scores Derived LM Vector space model GMM GMM Tokenization Parallel Phone Rec + LM Vectors of phone LM stats [Carrasquillo et. al. 02],

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018

Deep Learning Sequence to Sequence models: Attention Models. 17 March 2018 Deep Learning Sequence to Sequence models: Attention Models 17 March 2018 1 Sequence-to-sequence modelling Problem: E.g. A sequence X 1 X N goes in A different sequence Y 1 Y M comes out Speech recognition:

More information

Sparse Forward-Backward for Fast Training of Conditional Random Fields

Sparse Forward-Backward for Fast Training of Conditional Random Fields Sparse Forward-Backward for Fast Training of Conditional Random Fields Charles Sutton, Chris Pal and Andrew McCallum University of Massachusetts Amherst Dept. Computer Science Amherst, MA 01003 {casutton,

More information

Deep Structured Prediction in Handwriting Recognition Juan José Murillo Fuentes, P. M. Olmos (Univ. Carlos III) and J.C. Jaramillo (Univ.

Deep Structured Prediction in Handwriting Recognition Juan José Murillo Fuentes, P. M. Olmos (Univ. Carlos III) and J.C. Jaramillo (Univ. Deep Structured Prediction in Handwriting Recognition Juan José Murillo Fuentes, P. M. Olmos (Univ. Carlos III) and J.C. Jaramillo (Univ. Sevilla) Computational and Biological Learning Lab Dep. of Engineering

More information

Random Coattention Forest for Question Answering

Random Coattention Forest for Question Answering Random Coattention Forest for Question Answering Jheng-Hao Chen Stanford University jhenghao@stanford.edu Ting-Po Lee Stanford University tingpo@stanford.edu Yi-Chun Chen Stanford University yichunc@stanford.edu

More information

Task-Oriented Dialogue System (Young, 2000)

Task-Oriented Dialogue System (Young, 2000) 2 Review Task-Oriented Dialogue System (Young, 2000) 3 http://rsta.royalsocietypublishing.org/content/358/1769/1389.short Speech Signal Speech Recognition Hypothesis are there any action movies to see

More information

attention mechanisms and generative models

attention mechanisms and generative models attention mechanisms and generative models Master's Deep Learning Sergey Nikolenko Harbour Space University, Barcelona, Spain November 20, 2017 attention in neural networks attention You re paying attention

More information

Research Article Deep Neural Networks with Multistate Activation Functions

Research Article Deep Neural Networks with Multistate Activation Functions Computational Intelligence and Neuroscience Volume 5, Article ID 767, pages http://dx.doi.org/.55/5/767 Research Article Deep Neural Networks with Multistate Activation Functions Chenghao Cai, Yanyan u,

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Discriminative Models for Speech Recognition

Discriminative Models for Speech Recognition Discriminative Models for Speech Recognition MJF Gales Cambridge University Engineering Department Trumpington Street, Cambridge, CB2 PZ, UK Email: mjfg@engcamacuk Abstract The vast majority of automatic

More information

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017 Modelling Time Series with Neural Networks Volker Tresp Summer 2017 1 Modelling of Time Series The next figure shows a time series (DAX) Other interesting time-series: energy prize, energy consumption,

More information

Autoregressive Neural Models for Statistical Parametric Speech Synthesis

Autoregressive Neural Models for Statistical Parametric Speech Synthesis Autoregressive Neural Models for Statistical Parametric Speech Synthesis シンワン Xin WANG 2018-01-11 contact: wangxin@nii.ac.jp we welcome critical comments, suggestions, and discussion 1 https://www.slideshare.net/kotarotanahashi/deep-learning-library-coyotecnn

More information

CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss

CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss Jeffrey Flanigan Chris Dyer Noah A. Smith Jaime Carbonell School of Computer Science, Carnegie Mellon University, Pittsburgh,

More information

A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property

A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property A Primal-Dual Method for Training Recurrent Neural Networks Constrained by the Echo-State Property Jianshu Chen Department of Electrical Engineering University of California Los Angeles, CA 90034, USA

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 25&29 January 2018 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization

Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization Adapting n-gram Maximum Entropy Language Models with Conditional Entropy Regularization Ariya Rastrow, Mark Dredze, Sanjeev Khudanpur Human Language Technology Center of Excellence Center for Language

More information

Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition

Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition INTERSPEECH 2014 Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition Zhen Huang 1, Jinyu Li 2, Chao Weng 1, Chin-Hui Lee

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 21: Speaker Adaptation Instructor: Preethi Jyothi Oct 23, 2017 Speaker variations Major cause of variability in speech is the differences between speakers Speaking

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

Support Vector Machines using GMM Supervectors for Speaker Verification

Support Vector Machines using GMM Supervectors for Speaker Verification 1 Support Vector Machines using GMM Supervectors for Speaker Verification W. M. Campbell, D. E. Sturim, D. A. Reynolds MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 Corresponding author e-mail:

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information