Noise Compensation for Subspace Gaussian Mixture Models

Size: px
Start display at page:

Download "Noise Compensation for Subspace Gaussian Mixture Models"

Transcription

1 Noise ompensation for ubspace Gaussian Mixture Models Liang Lu University of Edinburgh Joint work with KK hin, A. Ghoshal and. enals Liang Lu, Interspeech, eptember, 2012

2 Outline Motivation ubspace GMM (GMM) works well in matched speech condition [Povey et al., 2011] In mismatched condition (i.e. noise), the gain disappears Goal Noise compensation for GMM Method Model space compensation Joint uncertainty decoding (JUD) [Liao and Gales, 2005] Liang Lu, Interspeech, eptember, 2012

3 HMM-GMM acoustic model j 1 j j +1 Liang Lu, Interspeech, eptember, 2012

4 ubspace Gaussian Mixture Models [Povey et al., 2011] wi Mi Σi i =1,...,I j 1 j j +1 v jk Global M i is the basis for means w i is the basis for weights Σ i is the covariance matrix tate-dependent v jk is low dimensional vectors (e.g. 40dim) Gaussian mean: µ jki = M i v jk Liang Lu, Interspeech, eptember, 2012

5 ubspace Gaussian Mixture Models More intuitively, suppose we have an acoustic space like this Liang Lu, Interspeech, eptember, 2012

6 ubspace Gaussian Mixture Models We then partition the whole acoustic space into I regions. his can be done by learning a GMM using the training data I 2 3 Liang Lu, Interspeech, eptember, 2012

7 ubspace Gaussian Mixture Models We then introduce some parameters to structure each region w i Σ i Mi 3 Σ i - model the covariance of this region M i - span the basis for Gaussian mean w i - span the basis for Gaussian weight Liang Lu, Interspeech, eptember, 2012

8 ubspace Gaussian Mixture Models Given a class with some data, such as an HMM state j 1 j j v jk 3 Liang Lu, Interspeech, eptember, 2012

9 ubspace Gaussian Mixture Models hen we learn a GMM for this class j 1 j j v jk 3 Liang Lu, Interspeech, eptember, 2012

10 Noise compensation Larger modelling power higher recognition accuracy. Our systems on Aurora 4, the #Gaussians is 6.4M (GMM), vs. 50k (GMM). GMM vs. GMM 5.2% vs. 7.7% on clean condition GMM vs. GMM 59.9% vs. 59.3% on noisy condition an we do noise compensation for GMMs? WE GMM clean GMM clean GMM noisy GMM noisy Liang Lu, Interspeech, eptember, 2012

11 Noise compensation here are numerous work on noise compensation for robust A [Deng, 2011] Feature domain pectral subtraction, cmn/cvn epstral mean square error estimation Algonquin plice Feature space vector aylor series (V) Model domain MLL, noise constraint MLL PM, Data-driven PM (DPM), iterative DPM V, joint uncertainty decoding (JUD) Linear spline interpolation (LI) Unscented transform (U) Hybrid Noise adaptive training Liang Lu, Interspeech, eptember, 2012

12 Noise compensation for GMM Model space compensation for GMM Not data-driven but using heuristic knowledge Mismatch function y = f (x, h, n, α) [Acero, 1990] α denotes the phase term between noise and speech [Deng et al., 2004]. lean speech x hanel noise h Noisy speech y Additive noise n Liang Lu, Interspeech, eptember, 2012

13 Noise compensation for GMM Model space compensation for GMM Not data-driven but using heuristic knowledge Mismatch function y = f (x, h, n, α) [Acero, 1990] α denotes the phase term between noise and speech [Deng et al., 2004]. lean speech x hanel noise h Noisy speech y Additive noise n Liang Lu, Interspeech, eptember, 2012

14 Noise compensation for GMM Model space compensation for GMM Not data-driven but using heuristic knowledge Mismatch function y = f (x, h, n, α) [Acero, 1990] α denotes the phase term between noise and speech [Deng et al., 2004]. lean speech x hanel noise h Noisy speech y Additive noise n Liang Lu, Interspeech, eptember, 2012

15 Noise compensation for GMM Model space compensation for GMM Not data-driven but using heuristic knowledge Mismatch function y = f (x, h, n, α) [Acero, 1990] α denotes the phase term between noise and speech [Deng et al., 2004]. lean speech x hanel noise h Noisy speech y Additive noise n Liang Lu, Interspeech, eptember, 2012

16 Noise compensation for GMM he mismatch function is y = f (x, h, n, α) = x + h + log [1 + exp ( 1 (n x h) ) + 2α exp ( 1 (n x h)/2 ) ]. (1) }{{} phase term where be the D matrix. Liang Lu, Interspeech, eptember, 2012

17 Noise compensation Aim: estimate µ y and Σ y for each Gaussian component. Difficulty: y = f (x, h, n, α) is highly nonlinear, no analytic solution! olution: Vector aylor series (V) approximation [Moreno et al., 1996] ost: eal time factor > 100, memory > 10G for (medium size) GMM with 6.4M Gaussian Inelegant: Direct apply V will destroy the compact of structure of GMMs Liang Lu, Interspeech, eptember, 2012

18 Noise compensation Aim: estimate µ y and Σ y for each Gaussian component. Difficulty: y = f (x, h, n, α) is highly nonlinear, no analytic solution! olution: Vector aylor series (V) approximation [Moreno et al., 1996] ost: eal time factor > 100, memory > 10G for (medium size) GMM with 6.4M Gaussian Inelegant: Direct apply V will destroy the compact of structure of GMMs Liang Lu, Interspeech, eptember, 2012

19 Noise compensation Aim: estimate µ y and Σ y for each Gaussian component. Difficulty: y = f (x, h, n, α) is highly nonlinear, no analytic solution! olution: Vector aylor series (V) approximation [Moreno et al., 1996] ost: eal time factor > 100, memory > 10G for (medium size) GMM with 6.4M Gaussian Inelegant: Direct apply V will destroy the compact of structure of GMMs Liang Lu, Interspeech, eptember, 2012

20 Noise compensation Aim: estimate µ y and Σ y for each Gaussian component. Difficulty: y = f (x, h, n, α) is highly nonlinear, no analytic solution! olution: Vector aylor series (V) approximation [Moreno et al., 1996] ost: eal time factor > 100, memory > 10G for (medium size) GMM with 6.4M Gaussian Inelegant: Direct apply V will destroy the compact of structure of GMMs Liang Lu, Interspeech, eptember, 2012

21 Noise compensation Aim: estimate µ y and Σ y for each Gaussian component. Difficulty: y = f (x, h, n, α) is highly nonlinear, no analytic solution! olution: Vector aylor series (V) approximation [Moreno et al., 1996] ost: eal time factor > 100, memory > 10G for (medium size) GMM with 6.4M Gaussian Inelegant: Direct apply V will destroy the compact of structure of GMMs Liang Lu, Interspeech, eptember, 2012

22 Noise compensation olution: Joint uncertainty decoding (JUD) V JUD V vs. JUD Liang Lu, Interspeech, eptember, 2012

23 Noise compensation Applying JUD to GMM 1... I 2 3 ost: eal time factor 10 for GMM with 6.4M Gaussians Liang Lu, Interspeech, eptember, 2012

24 Experiments Database Aurora 4 dataset lean speech and noisy speech with N [5db - 15db] lose-talking microphone and desk-mounted microphone 15 hour training data 330 testing utterances ystem configuration 39dim MF #triphone states: 3.1k (GMM) vs. 3.9k (GMM) #Gaussians: 50k (GMM) vs. 6.4M (GMM) #regression classes: 112 (GMM) vs. 400 (GMM) Liang Lu, Interspeech, eptember, 2012

25 Noise compensation experiments GMM GMM GMM GMM GMM 10 0 Baseline JUD V Liang Lu, Interspeech, eptember, 2012

26 Experiments esults by tuning the value of phase factors V/GMM system JUD/GMM system JUD/GMM system Word Error ate (\%) he value of phase factor JUD/GMM system achieved 16.8% WE on Aurora 4 database Liang Lu, Interspeech, eptember, 2012

27 emarks he phase term is very effective for noise compensation imilar improvements were also observed in other studies, e.g. [Li et al., 2009] he reasons maybe it can compensate for the linearization bias and performs domain compensation [Li et al., 2009] Our insight is it may helps to avoid the over estimation of the noise model Liang Lu, Interspeech, eptember, 2012

28 emarks he phase term is very effective for noise compensation imilar improvements were also observed in other studies, e.g. [Li et al., 2009] he reasons maybe it can compensate for the linearization bias and performs domain compensation [Li et al., 2009] Our insight is it may helps to avoid the over estimation of the noise model Liang Lu, Interspeech, eptember, 2012

29 emarks he phase term is very effective for noise compensation imilar improvements were also observed in other studies, e.g. [Li et al., 2009] he reasons maybe it can compensate for the linearization bias and performs domain compensation [Li et al., 2009] Our insight is it may helps to avoid the over estimation of the noise model Liang Lu, Interspeech, eptember, 2012

30 emarks he phase term is very effective for noise compensation imilar improvements were also observed in other studies, e.g. [Li et al., 2009] he reasons maybe it can compensate for the linearization bias and performs domain compensation [Li et al., 2009] Our insight is it may helps to avoid the over estimation of the noise model Liang Lu, Interspeech, eptember, 2012

31 onclusion GMM is a promising alternative for acoustic modelling Noise compensation using JUD works well for GMMs he phase term is particular effective for the noise compensation Future works will be on noise adaptive training, compensation in log-spectral domain. Liang Lu, Interspeech, eptember, 2012

32 Liang Lu, Interspeech, eptember, 2012

33 Noise compensation With JUD, the marginal likelihood can be obtained as ( ) p(y m) A (r) N A (r) y + b (r) ; µ m, Σ m + Σ (r) b. (2) he transformation is done in the feature space, applied to each frame omputation is saved since that the #frame #Gaussians he transformation should be diagonalized in GMM systems, but not in GMM system since we used full covariance matrix Liang Lu, Interspeech, eptember, 2012

34 Experiments able: GMM systems with α = 0. Methods lean Avg lean model M model V JUD able: GMM systems with α = 0. Methods lean Avg lean model M model JUD Liang Lu, Interspeech, eptember, 2012

35 Acero, A. (1990). Acoustic and Enviromental obustness in Automatic peech ecognition. PhD thesis, arnegie Mellon University. Deng, L., Droppo, J., and Acero, A. (2004). Enhancement of log mel power spectra of speech using a phase-sensitive model of the acoustic environment and sequential estimation of the corrupting noise. IEEE ransactions on peech and Audio Processing, 12(2): Droppo, J., Acero, A., and Deng, L. (2002). Uncertainty decoding with PLIE for noise robust speech recognition. In Proc. IAP. IEEE. Gales, M. (1995). Model-based techniques for noise robust speech recognition. PhD thesis, ambridge University. Liang Lu, Interspeech, eptember, 2012

36 Hu, Y. and Huo, Q. (2006). An HMM compensation approach using unscented transformation for noisy speech recognition. hinese poken Language Processing, pages Li, J., Deng, L., Yu, D., Gong, Y., and Acero, A. (2009). A unified framework of HMM adaptation with joint compensation of additive and convolutive distortions. omputer peech & Language, 23(3): Liao, H. and Gales, M. (2005). Joint uncertainty decoding for noise robust speech recognition. In Proc. INEPEEH. iteseer. Moreno, P., aj, B., and tern,. (1996). A vector aylor series approach for environment-independent speech recognition. In Proc. IAP, volume 2, pages IEEE. Liang Lu, Interspeech, eptember, 2012

37 Povey, D., Burget, L., Agarwal, M., Akyazi, P., Kai, F., Ghoshal, A., Glembek, O., Goel, N., Karafiát, M., astrow, A., ose,., chwarz, P., and homas,. (2011). he subspace Gaussian mixture model A structured model for speech recognition. omputer peech & Language, 25(2): Liang Lu, Interspeech, eptember, 2012

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 9, SEPTEMBER

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 9, SEPTEMBER IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 9, SEPTEMBER 2013 1791 Joint Uncertainty Decoding for Noise Robust Subspace Gaussian Mixture Models Liang Lu, Student Member, IEEE,

More information

Full-covariance model compensation for

Full-covariance model compensation for compensation transms Presentation Toshiba, 12 Mar 2008 Outline compensation transms compensation transms Outline compensation transms compensation transms Noise model x clean speech; n additive ; h convolutional

More information

DNN-based uncertainty estimation for weighted DNN-HMM ASR

DNN-based uncertainty estimation for weighted DNN-HMM ASR DNN-based uncertainty estimation for weighted DNN-HMM ASR José Novoa, Josué Fredes, Nestor Becerra Yoma Speech Processing and Transmission Lab., Universidad de Chile nbecerra@ing.uchile.cl Abstract In

More information

MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING. Liang Lu and Steve Renals

MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING. Liang Lu and Steve Renals MULTI-FRAME FACTORISATION FOR LONG-SPAN ACOUSTIC MODELLING Liang Lu and Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK {liang.lu, s.renals}@ed.ac.uk ABSTRACT

More information

Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models

Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models Feature-space Speaker Adaptation for Probabilistic Linear Discriminant Analysis Acoustic Models Liang Lu, Steve Renals Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK {liang.lu,

More information

SPEECH recognition systems based on hidden Markov

SPEECH recognition systems based on hidden Markov IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, 2014 1 Probabilistic Linear Discriminant Analysis for Acoustic Modelling Liang Lu, Member, IEEE and Steve Renals, Fellow, IEEE Abstract In this letter, we

More information

ALGONQUIN - Learning dynamic noise models from noisy speech for robust speech recognition

ALGONQUIN - Learning dynamic noise models from noisy speech for robust speech recognition ALGONQUIN - Learning dynamic noise models from noisy speech for robust speech recognition Brendan J. Freyl, Trausti T. Kristjanssonl, Li Deng 2, Alex Acero 2 1 Probabilistic and Statistical Inference Group,

More information

Model-Based Approaches to Robust Speech Recognition

Model-Based Approaches to Robust Speech Recognition Model-Based Approaches to Robust Speech Recognition Mark Gales with Hank Liao, Rogier van Dalen, Chris Longworth (work partly funded by Toshiba Research Europe Ltd) 11 June 2008 King s College London Seminar

More information

Segmental Recurrent Neural Networks for End-to-end Speech Recognition

Segmental Recurrent Neural Networks for End-to-end Speech Recognition Segmental Recurrent Neural Networks for End-to-end Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, Noah Smith and Steve Renals TTI-Chicago, UoE, CMU and UW 9 September 2016 Background A new wave

More information

Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features

Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Uncertainty training and decoding methods of deep neural networks based on stochastic representation of enhanced features Tachioka, Y.; Watanabe,

More information

Subspace Gaussian Mixture Models for Automatic Speech Recognition. Liang Lu

Subspace Gaussian Mixture Models for Automatic Speech Recognition. Liang Lu Subspace Gaussian Mixture Models for Automatic Speech Recognition Liang Lu Doctor of Philosophy Institute for Language, Cognition and Computation School of Informatics University of Edinburgh 2013 Abstract

More information

Low development cost, high quality speech recognition for new languages and domains. Cheap ASR

Low development cost, high quality speech recognition for new languages and domains. Cheap ASR Low development cost, high quality speech recognition for new languages and domains Cheap ASR Participants: Senior members : Lukas Burget, Nagendra Kumar Goel, Daniel Povey, Richard Rose Graduate students:

More information

Improving Reverberant VTS for Hands-free Robust Speech Recognition

Improving Reverberant VTS for Hands-free Robust Speech Recognition Improving Reverberant VTS for Hands-free Robust Speech Recognition Y.-Q. Wang, M. J. F. Gales Cambridge University Engineering Department Trumpington St., Cambridge CB2 1PZ, U.K. {yw293, mjfg}@eng.cam.ac.uk

More information

Very Deep Convolutional Neural Networks for LVCSR

Very Deep Convolutional Neural Networks for LVCSR INTERSPEECH 2015 Very Deep Convolutional Neural Networks for LVCSR Mengxiao Bi, Yanmin Qian, Kai Yu Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering SpeechLab,

More information

arxiv: v1 [cs.lg] 4 Aug 2016

arxiv: v1 [cs.lg] 4 Aug 2016 An improved uncertainty decoding scheme with weighted samples for DNN-HMM hybrid systems Christian Huemmer 1, Ramón Fernández Astudillo 2, and Walter Kellermann 1 1 Multimedia Communications and Signal

More information

Feature-Space Structural MAPLR with Regression Tree-based Multiple Transformation Matrices for DNN

Feature-Space Structural MAPLR with Regression Tree-based Multiple Transformation Matrices for DNN MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Feature-Space Structural MAPLR with Regression Tree-based Multiple Transformation Matrices for DNN Kanagawa, H.; Tachioka, Y.; Watanabe, S.;

More information

Estimation of Cepstral Coefficients for Robust Speech Recognition

Estimation of Cepstral Coefficients for Robust Speech Recognition Estimation of Cepstral Coefficients for Robust Speech Recognition by Kevin M. Indrebo, B.S., M.S. A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Diagonal Priors for Full Covariance Speech Recognition

Diagonal Priors for Full Covariance Speech Recognition Diagonal Priors for Full Covariance Speech Recognition Peter Bell 1, Simon King 2 Centre for Speech Technology Research, University of Edinburgh Informatics Forum, 10 Crichton St, Edinburgh, EH8 9AB, UK

More information

CEPSTRAL analysis has been widely used in signal processing

CEPSTRAL analysis has been widely used in signal processing 162 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 2, MARCH 1999 On Second-Order Statistics and Linear Estimation of Cepstral Coefficients Yariv Ephraim, Fellow, IEEE, and Mazin Rahim, Senior

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition

Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition Experiments with a Gaussian Merging-Splitting Algorithm for HMM Training for Speech Recognition ABSTRACT It is well known that the expectation-maximization (EM) algorithm, commonly used to estimate hidden

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

Model-Based Margin Estimation for Hidden Markov Model Learning and Generalization

Model-Based Margin Estimation for Hidden Markov Model Learning and Generalization 1 2 3 4 5 6 7 8 Model-Based Margin Estimation for Hidden Markov Model Learning and Generalization Sabato Marco Siniscalchi a,, Jinyu Li b, Chin-Hui Lee c a Faculty of Engineering and Architecture, Kore

More information

MULTISENSORY SPEECH ENHANCEMENT IN NOISY ENVIRONMENTS USING BONE-CONDUCTED AND AIR-CONDUCTED MICROPHONES. Mingzi Li,Israel Cohen and Saman Mousazadeh

MULTISENSORY SPEECH ENHANCEMENT IN NOISY ENVIRONMENTS USING BONE-CONDUCTED AND AIR-CONDUCTED MICROPHONES. Mingzi Li,Israel Cohen and Saman Mousazadeh MULTISENSORY SPEECH ENHANCEMENT IN NOISY ENVIRONMENTS USING BONE-CONDUCTED AND AIR-CONDUCTED MICROPHONES Mingzi Li,Israel Cohen and Saman Mousazadeh Department of Electrical Engineering, Technion - Israel

More information

GMM-based classification from noisy features

GMM-based classification from noisy features GMM-based classification from noisy features Alexey Ozerov, Mathieu Lagrange and Emmanuel Vincent INRIA, Centre de Rennes - Bretagne Atlantique STMS Lab IRCAM - CNRS - UPMC alexey.ozerov@inria.fr, mathieu.lagrange@ircam.fr,

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

"Robust Automatic Speech Recognition through on-line Semi Blind Source Extraction"

Robust Automatic Speech Recognition through on-line Semi Blind Source Extraction "Robust Automatic Speech Recognition through on-line Semi Blind Source Extraction" Francesco Nesta, Marco Matassoni {nesta, matassoni}@fbk.eu Fondazione Bruno Kessler-Irst, Trento (ITALY) For contacts:

More information

arxiv: v1 [cs.cl] 23 Sep 2013

arxiv: v1 [cs.cl] 23 Sep 2013 Feature Learning with Gaussian Restricted Boltzmann Machine for Robust Speech Recognition Xin Zheng 1,2, Zhiyong Wu 1,2,3, Helen Meng 1,3, Weifeng Li 1, Lianhong Cai 1,2 arxiv:1309.6176v1 [cs.cl] 23 Sep

More information

Session Variability Compensation in Automatic Speaker Recognition

Session Variability Compensation in Automatic Speaker Recognition Session Variability Compensation in Automatic Speaker Recognition Javier González Domínguez VII Jornadas MAVIR Universidad Autónoma de Madrid November 2012 Outline 1. The Inter-session Variability Problem

More information

Multiclass Discriminative Training of i-vector Language Recognition

Multiclass Discriminative Training of i-vector Language Recognition Odyssey 214: The Speaker and Language Recognition Workshop 16-19 June 214, Joensuu, Finland Multiclass Discriminative Training of i-vector Language Recognition Alan McCree Human Language Technology Center

More information

An Evolutionary Programming Based Algorithm for HMM training

An Evolutionary Programming Based Algorithm for HMM training An Evolutionary Programming Based Algorithm for HMM training Ewa Figielska,Wlodzimierz Kasprzak Institute of Control and Computation Engineering, Warsaw University of Technology ul. Nowowiejska 15/19,

More information

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model (most slides from Sharon Goldwater; some adapted from Philipp Koehn) 5 October 2016 Nathan Schneider

More information

A Low-Cost Robust Front-end for Embedded ASR System

A Low-Cost Robust Front-end for Embedded ASR System A Low-Cost Robust Front-end for Embedded ASR System Lihui Guo 1, Xin He 2, Yue Lu 1, and Yaxin Zhang 2 1 Department of Computer Science and Technology, East China Normal University, Shanghai 200062 2 Motorola

More information

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments Andreas Schwarz, Christian Huemmer, Roland Maas, Walter Kellermann Lehrstuhl für Multimediakommunikation

More information

Uncertainty Decoding for Noise Robust Speech Recognition

Uncertainty Decoding for Noise Robust Speech Recognition Uncertainty Decoding for Noise Robust Speech Recognition Hank Liao Sidney Sussex College University of Cambridge September 2007 This dissertation is submitted for the degree of Doctor of Philosophy to

More information

Eigenvoice Speaker Adaptation via Composite Kernel PCA

Eigenvoice Speaker Adaptation via Composite Kernel PCA Eigenvoice Speaker Adaptation via Composite Kernel PCA James T. Kwok, Brian Mak and Simon Ho Department of Computer Science Hong Kong University of Science and Technology Clear Water Bay, Hong Kong [jamesk,mak,csho]@cs.ust.hk

More information

] Automatic Speech Recognition (CS753)

] Automatic Speech Recognition (CS753) ] Automatic Speech Recognition (CS753) Lecture 17: Discriminative Training for HMMs Instructor: Preethi Jyothi Sep 28, 2017 Discriminative Training Recall: MLE for HMMs Maximum likelihood estimation (MLE)

More information

Robust Speech Recognition in the Presence of Additive Noise. Svein Gunnar Storebakken Pettersen

Robust Speech Recognition in the Presence of Additive Noise. Svein Gunnar Storebakken Pettersen Robust Speech Recognition in the Presence of Additive Noise Svein Gunnar Storebakken Pettersen A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of PHILOSOPHIAE DOCTOR

More information

Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition

Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition INTERSPEECH 2014 Beyond Cross-entropy: Towards Better Frame-level Objective Functions For Deep Neural Network Training In Automatic Speech Recognition Zhen Huang 1, Jinyu Li 2, Chao Weng 1, Chin-Hui Lee

More information

SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH RECOGNITION USING SPLIT-VQ. Yongqiang Wang, Jinyu Li and Yifan Gong

SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH RECOGNITION USING SPLIT-VQ. Yongqiang Wang, Jinyu Li and Yifan Gong SMALL-FOOTPRINT HIGH-PERFORMANCE DEEP NEURAL NETWORK-BASED SPEECH RECOGNITION USING SPLIT-VQ Yongqiang Wang, Jinyu Li and Yifan Gong Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 {erw, jinyli,

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1.0 User Guide

Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1.0 User Guide Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1. User Guide Alexey Ozerov 1, Mathieu Lagrange and Emmanuel Vincent 1 1 INRIA, Centre de Rennes - Bretagne Atlantique Campus de Beaulieu, 3

More information

CURRENT state-of-the-art automatic speech recognition

CURRENT state-of-the-art automatic speech recognition 1850 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 6, AUGUST 2007 Switching Linear Dynamical Systems for Noise Robust Speech Recognition Bertrand Mesot and David Barber Abstract

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Steve Renals Automatic Speech Recognition ASR Lecture 10 24 February 2014 ASR Lecture 10 Introduction to Neural Networks 1 Neural networks for speech recognition Introduction

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 23&27 January 2014 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I

University of Cambridge. MPhil in Computer Speech Text & Internet Technology. Module: Speech Processing II. Lecture 2: Hidden Markov Models I University of Cambridge MPhil in Computer Speech Text & Internet Technology Module: Speech Processing II Lecture 2: Hidden Markov Models I o o o o o 1 2 3 4 T 1 b 2 () a 12 2 a 3 a 4 5 34 a 23 b () b ()

More information

TinySR. Peter Schmidt-Nielsen. August 27, 2014

TinySR. Peter Schmidt-Nielsen. August 27, 2014 TinySR Peter Schmidt-Nielsen August 27, 2014 Abstract TinySR is a light weight real-time small vocabulary speech recognizer written entirely in portable C. The library fits in a single file (plus header),

More information

Making Machines Understand Us in Reverberant Rooms [Robustness against reverberation for automatic speech recognition]

Making Machines Understand Us in Reverberant Rooms [Robustness against reverberation for automatic speech recognition] Making Machines Understand Us in Reverberant Rooms [Robustness against reverberation for automatic speech recognition] Yoshioka, T., Sehr A., Delcroix M., Kinoshita K., Maas R., Nakatani T., Kellermann

More information

Speaker recognition by means of Deep Belief Networks

Speaker recognition by means of Deep Belief Networks Speaker recognition by means of Deep Belief Networks Vasileios Vasilakakis, Sandro Cumani, Pietro Laface, Politecnico di Torino, Italy {first.lastname}@polito.it 1. Abstract Most state of the art speaker

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Heikki Kallasjoki,

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Joint Factor Analysis for Speaker Verification

Joint Factor Analysis for Speaker Verification Joint Factor Analysis for Speaker Verification Mengke HU ASPITRG Group, ECE Department Drexel University mengke.hu@gmail.com October 12, 2012 1/37 Outline 1 Speaker Verification Baseline System Session

More information

An Autoregressive Recurrent Mixture Density Network for Parametric Speech Synthesis

An Autoregressive Recurrent Mixture Density Network for Parametric Speech Synthesis ICASSP 07 New Orleans, USA An Autoregressive Recurrent Mixture Density Network for Parametric Speech Synthesis Xin WANG, Shinji TAKAKI, Junichi YAMAGISHI National Institute of Informatics, Japan 07-03-07

More information

Autoregressive Neural Models for Statistical Parametric Speech Synthesis

Autoregressive Neural Models for Statistical Parametric Speech Synthesis Autoregressive Neural Models for Statistical Parametric Speech Synthesis シンワン Xin WANG 2018-01-11 contact: wangxin@nii.ac.jp we welcome critical comments, suggestions, and discussion 1 https://www.slideshare.net/kotarotanahashi/deep-learning-library-coyotecnn

More information

Uncertainty Modeling without Subspace Methods for Text-Dependent Speaker Recognition

Uncertainty Modeling without Subspace Methods for Text-Dependent Speaker Recognition Uncertainty Modeling without Subspace Methods for Text-Dependent Speaker Recognition Patrick Kenny, Themos Stafylakis, Md. Jahangir Alam and Marcel Kockmann Odyssey Speaker and Language Recognition Workshop

More information

SNR Features for Automatic Speech Recognition

SNR Features for Automatic Speech Recognition SNR Features for Automatic Speech Recognition Philip N. Garner Idiap Research Institute Martigny, Switzerland pgarner@idiap.ch Abstract When combined with cepstral normalisation techniques, the features

More information

Environmental Sound Classification in Realistic Situations

Environmental Sound Classification in Realistic Situations Environmental Sound Classification in Realistic Situations K. Haddad, W. Song Brüel & Kjær Sound and Vibration Measurement A/S, Skodsborgvej 307, 2850 Nærum, Denmark. X. Valero La Salle, Universistat Ramon

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement Simon Leglaive 1 Laurent Girin 1,2 Radu Horaud 1 1: Inria Grenoble Rhône-Alpes 2: Univ. Grenoble Alpes, Grenoble INP,

More information

Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition

Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition INTERSPEECH 017 August 0 4, 017, Stockholm, Sweden Residual LSTM: Design of a Deep Recurrent Architecture for Distant Speech Recognition Jaeyoung Kim 1, Mostafa El-Khamy 1, Jungwon Lee 1 1 Samsung Semiconductor,

More information

Support Vector Machines using GMM Supervectors for Speaker Verification

Support Vector Machines using GMM Supervectors for Speaker Verification 1 Support Vector Machines using GMM Supervectors for Speaker Verification W. M. Campbell, D. E. Sturim, D. A. Reynolds MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 Corresponding author e-mail:

More information

Chapter 1 Gaussian Mixture Models

Chapter 1 Gaussian Mixture Models Chapter 1 Gaussian Mixture Models Abstract In this chapter we rst introduce the basic concepts of random variables and the associated distributions. These concepts are then applied to Gaussian random variables

More information

Sparse Models for Speech Recognition

Sparse Models for Speech Recognition Sparse Models for Speech Recognition Weibin Zhang and Pascale Fung Human Language Technology Center Hong Kong University of Science and Technology Outline Introduction to speech recognition Motivations

More information

An exploration of dropout with LSTMs

An exploration of dropout with LSTMs An exploration of out with LSTMs Gaofeng Cheng 1,3, Vijayaditya Peddinti 4,5, Daniel Povey 4,5, Vimal Manohar 4,5, Sanjeev Khudanpur 4,5,Yonghong Yan 1,2,3 1 Key Laboratory of Speech Acoustics and Content

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

Speaker Verification Using Accumulative Vectors with Support Vector Machines

Speaker Verification Using Accumulative Vectors with Support Vector Machines Speaker Verification Using Accumulative Vectors with Support Vector Machines Manuel Aguado Martínez, Gabriel Hernández-Sierra, and José Ramón Calvo de Lara Advanced Technologies Application Center, Havana,

More information

Comparing linear and non-linear transformation of speech

Comparing linear and non-linear transformation of speech Comparing linear and non-linear transformation of speech Larbi Mesbahi, Vincent Barreaud and Olivier Boeffard IRISA / ENSSAT - University of Rennes 1 6, rue de Kerampont, Lannion, France {lmesbahi, vincent.barreaud,

More information

Monaural speech separation using source-adapted models

Monaural speech separation using source-adapted models Monaural speech separation using source-adapted models Ron Weiss, Dan Ellis {ronw,dpwe}@ee.columbia.edu LabROSA Department of Electrical Enginering Columbia University 007 IEEE Workshop on Applications

More information

LOW COMPLEXITY WIDEBAND LSF QUANTIZATION USING GMM OF UNCORRELATED GAUSSIAN MIXTURES

LOW COMPLEXITY WIDEBAND LSF QUANTIZATION USING GMM OF UNCORRELATED GAUSSIAN MIXTURES LOW COMPLEXITY WIDEBAND LSF QUANTIZATION USING GMM OF UNCORRELATED GAUSSIAN MIXTURES Saikat Chatterjee and T.V. Sreenivas Department of Electrical Communication Engineering Indian Institute of Science,

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

A Direct Criterion Minimization based fmllr via Gradient Descend

A Direct Criterion Minimization based fmllr via Gradient Descend A Direct Criterion Minimization based fmllr via Gradient Descend Jan Vaněk and Zbyněk Zajíc University of West Bohemia in Pilsen, Univerzitní 22, 306 14 Pilsen Faculty of Applied Sciences, Department of

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Robust Speaker Identification

Robust Speaker Identification Robust Speaker Identification by Smarajit Bose Interdisciplinary Statistical Research Unit Indian Statistical Institute, Kolkata Joint work with Amita Pal and Ayanendranath Basu Overview } } } } } } }

More information

Cepstral normalisation and the signal to noise ratio spectrum in automatic speech recognition.

Cepstral normalisation and the signal to noise ratio spectrum in automatic speech recognition. Cepstral normalisation and the signal to noise ratio spectrum in automatic speech recognition. Philip N. Garner Idiap Research Institute, Centre du Parc, Rue Marconi 9, PO Box 592, 92 Martigny, Switzerland

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

A Small Footprint i-vector Extractor

A Small Footprint i-vector Extractor A Small Footprint i-vector Extractor Patrick Kenny Odyssey Speaker and Language Recognition Workshop June 25, 2012 1 / 25 Patrick Kenny A Small Footprint i-vector Extractor Outline Introduction Review

More information

arxiv: v4 [cs.cl] 5 Jun 2017

arxiv: v4 [cs.cl] 5 Jun 2017 Multitask Learning with CTC and Segmental CRF for Speech Recognition Liang Lu, Lingpeng Kong, Chris Dyer, and Noah A Smith Toyota Technological Institute at Chicago, USA School of Computer Science, Carnegie

More information

Harmonic Structure Transform for Speaker Recognition

Harmonic Structure Transform for Speaker Recognition Harmonic Structure Transform for Speaker Recognition Kornel Laskowski & Qin Jin Carnegie Mellon University, Pittsburgh PA, USA KTH Speech Music & Hearing, Stockholm, Sweden 29 August, 2011 Laskowski &

More information

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Heiga ZEN (Byung Ha CHUN) Nagoya Inst. of Tech., Japan Overview. Research backgrounds 2.

More information

Exemplar-based voice conversion using non-negative spectrogram deconvolution

Exemplar-based voice conversion using non-negative spectrogram deconvolution Exemplar-based voice conversion using non-negative spectrogram deconvolution Zhizheng Wu 1, Tuomas Virtanen 2, Tomi Kinnunen 3, Eng Siong Chng 1, Haizhou Li 1,4 1 Nanyang Technological University, Singapore

More information

Modified-prior PLDA and Score Calibration for Duration Mismatch Compensation in Speaker Recognition System

Modified-prior PLDA and Score Calibration for Duration Mismatch Compensation in Speaker Recognition System INERSPEECH 2015 Modified-prior PLDA and Score Calibration for Duration Mismatch Compensation in Speaker Recognition System QingYang Hong 1, Lin Li 1, Ming Li 2, Ling Huang 1, Lihong Wan 1, Jun Zhang 1

More information

FEATURE PRUNING IN LIKELIHOOD EVALUATION OF HMM-BASED SPEECH RECOGNITION. Xiao Li and Jeff Bilmes

FEATURE PRUNING IN LIKELIHOOD EVALUATION OF HMM-BASED SPEECH RECOGNITION. Xiao Li and Jeff Bilmes FEATURE PRUNING IN LIKELIHOOD EVALUATION OF HMM-BASED SPEECH RECOGNITION Xiao Li and Jeff Bilmes Department of Electrical Engineering University. of Washington, Seattle {lixiao, bilmes}@ee.washington.edu

More information

A Comparative Study of Histogram Equalization (HEQ) for Robust Speech Recognition

A Comparative Study of Histogram Equalization (HEQ) for Robust Speech Recognition Computational Linguistics and Chinese Language Processing Vol. 12, No. 2, June 2007, pp. 217-238 217 The Association for Computational Linguistics and Chinese Language Processing A Comparative Study of

More information

i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU

i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU i-vector and GMM-UBM Bie Fanhu CSLT, RIIT, THU 2013-11-18 Framework 1. GMM-UBM Feature is extracted by frame. Number of features are unfixed. Gaussian Mixtures are used to fit all the features. The mixtures

More information

REGULARIZING DNN ACOUSTIC MODELS WITH GAUSSIAN STOCHASTIC NEURONS. Hao Zhang, Yajie Miao, Florian Metze

REGULARIZING DNN ACOUSTIC MODELS WITH GAUSSIAN STOCHASTIC NEURONS. Hao Zhang, Yajie Miao, Florian Metze REGULARIZING DNN ACOUSTIC MODELS WITH GAUSSIAN STOCHASTIC NEURONS Hao Zhang, Yajie Miao, Florian Metze Language Technologies Institute, School of Computer Science, Carnegie Mellon University Pittsburgh,

More information

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme

A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY. MengSun,HugoVanhamme A TWO-LAYER NON-NEGATIVE MATRIX FACTORIZATION MODEL FOR VOCABULARY DISCOVERY MengSun,HugoVanhamme Department of Electrical Engineering-ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Bus

More information

Model-based Approaches to Robust Speech Recognition in Diverse Environments

Model-based Approaches to Robust Speech Recognition in Diverse Environments Model-based Approaches to Robust Speech Recognition in Diverse Environments Yongqiang Wang Darwin College Engineering Department Cambridge University October 2015 This dissertation is submitted to the

More information

MVA Processing of Speech Features. Chia-Ping Chen, Jeff Bilmes

MVA Processing of Speech Features. Chia-Ping Chen, Jeff Bilmes MVA Processing of Speech Features Chia-Ping Chen, Jeff Bilmes {chiaping,bilmes}@ee.washington.edu SSLI Lab Dept of EE, University of Washington Seattle, WA - UW Electrical Engineering UWEE Technical Report

More information

Introduction to SVM and RVM

Introduction to SVM and RVM Introduction to SVM and RVM Machine Learning Seminar HUS HVL UIB Yushu Li, UIB Overview Support vector machine SVM First introduced by Vapnik, et al. 1992 Several literature and wide applications Relevance

More information

Front-End Factor Analysis For Speaker Verification

Front-End Factor Analysis For Speaker Verification IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING Front-End Factor Analysis For Speaker Verification Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet, Abstract This

More information

2D Spectrogram Filter for Single Channel Speech Enhancement

2D Spectrogram Filter for Single Channel Speech Enhancement Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, September 15-17, 007 89 D Spectrogram Filter for Single Channel Speech Enhancement HUIJUN DING,

More information

Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks

Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks Interspeech 2018 2-6 September 2018, Hyderabad Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks Rohith Aralikatti, Dilip Kumar Margam, Tanay Sharma,

More information

Towards Maximum Geometric Margin Minimum Error Classification

Towards Maximum Geometric Margin Minimum Error Classification THE SCIENCE AND ENGINEERING REVIEW OF DOSHISHA UNIVERSITY, VOL. 50, NO. 3 October 2009 Towards Maximum Geometric Margin Minimum Error Classification Kouta YAMADA*, Shigeru KATAGIRI*, Erik MCDERMOTT**,

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Hidden Markov Models and Gaussian Mixture Models

Hidden Markov Models and Gaussian Mixture Models Hidden Markov Models and Gaussian Mixture Models Hiroshi Shimodaira and Steve Renals Automatic Speech Recognition ASR Lectures 4&5 25&29 January 2018 ASR Lectures 4&5 Hidden Markov Models and Gaussian

More information