CRF Word Alignment & Noisy Channel Translation

Size: px
Start display at page:

Download "CRF Word Alignment & Noisy Channel Translation"

Transcription

1 CRF Word Alignment & Noisy Channel Translation January 31, 2013

2 Last Time... X p( Translation)= p(, Translation) Alignment Alignment

3 Last Time... X p( Translation)= p(, Translation) Alignment X Alignment = p( p( Alignment) Translation Alignment) Alignment

4 Last Time... X p( Translation)= p(, Translation) Alignment = X Alignment Alignment p( p( Alignment) Translation Alignment) {z } {z } X my z } { z } { p(e f,m)= a2[0,n] m p(a f,m) i=1 p(e i f ai )

5 MAP alignment IBM Model 4 alignment Our model's alignmen

6 MAP alignment IBM Model 4 alignment Our model's alignmen

7 A few tricks... p(f e) p(e f)

8 A few tricks... p(f e) p(e f)

9 A few tricks... p(f e) p(e f)

10 Another View With this model: X my p(e f,m)= a2[0,n] m p(a f,m) i=1 p(e i f ai ) The problem of word alignment is as: a = arg max p(a e, f,m) a2[0,n] m

11 Another View With this model: X my p(e f,m)= a2[0,n] m p(a f,m) i=1 p(e i f ai ) The problem of word alignment is as: a = arg max p(a e, f,m) a2[0,n] m Can we model this distribution directly?

12 Markov Random Fields (MRFs) A B C X Y Z p(a, B, C, X, Y, Z) = p(a) p(b A) p(c B) p(x A)p(Y B)p(Z C)

13 Markov Random Fields (MRFs) A B C X Y Z p(a, B, C, X, Y, Z) = p(a) p(b A) p(c B) p(x A)p(Y B)p(Z C) A B C X Y Z p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) 4(X) 5(Y ) 6(Z)

14 Markov Random Fields (MRFs) A B C X Y Z p(a, B, C, X, Y, Z) = p(a) p(b A) p(c B) p(x A)p(Y B)p(Z C) A B C X Y Z p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) 4(X) 5(Y ) 6(Z) Factors

15 Computing Z X X Y Z = X x2x 1(x, y) 2(x) 3(y) y2x X = {a, b, c} X 2 X Y 2 X When the graph has certain structures (e.g., chains), you can factor to get polytime DP algorithms. Z = X x2x 2(x) X y2x 1(x, y) 3(y)

16 Log-linear models A B C X Y Z p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) 4(X) 5(Y ) 6(Z) 1,2,3(x, y) =exp X k w k f k (x, y)

17 Log-linear models A B C X Y Z p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) 4(X) 5(Y ) 6(Z) 1,2,3(x, y) =exp X k w k f k (x, y) Weights (learned)

18 1,2,3(x, y) =exp X k Log-linear models A B C p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) X Y Z 4(X) 5(Y ) 6(Z) w k f k (x, y) Weights (learned) Feature functions (specified)

19 Random Fields Benefits Potential functions can be defined with respect to arbitrary features (functions) of the variables Great way to incorporate knowledge Drawbacks Likelihood involves computing Z Maximizing likelihood usually requires computing Z (often over and over again!)

20 Conditional Random Fields Use MRFs to parameterize a conditional distribution. Very easy: let feature functions look at anything they want in the input

21 Conditional Random Fields Use MRFs to parameterize a conditional distribution. Very easy: let feature functions look at anything they want in the input p(y x) = 1 Z w (y) exp X F 2G X k w k f k (F, x)

22 Conditional Random Fields Use MRFs to parameterize a conditional distribution. Very easy: let feature functions look at anything they want in the input p(y x) = 1 Z w (y) exp X F 2G X k w k f k (F, x) All factors in the graph of y

23 Parameter Learning CRFs are trained to maximize conditional likelihood Y ŵ MLE = arg max p(y i x i ; w) w Recall we want to directly model p(a e, f) (x i,y i )2D The likelihood of what alignments?

24 Parameter Learning CRFs are trained to maximize conditional likelihood Y ŵ MLE = arg max p(y i x i ; w) w Recall we want to directly model p(a e, f) (x i,y i )2D The likelihood of what alignments? Gold reference alignments!

25 CRF for Alignment One of many possibilities, due to Blunsom & Cohn (2006) p(a e, f) = 1 Z w (e, f) exp e X i=1 X a has the same form as in the lexical translation models (still make a one-to-many assumption) w k are the model parameters f k are the feature functions k w k f(a i,a i 1,i,e, f)

26 CRF for Alignment One of many possibilities, due to Blunsom & Cohn (2006) p(a e, f) = 1 Z w (e, f) exp e X i=1 X a has the same form as in the lexical translation models (still make a one-to-many assumption) w k are the model parameters f k are the feature functions k w k f(a i,a i 1,i,e, f) O(n 2 m) O(n 3 )

27 Model Labels (one per target word) index source sentence Train model (e,f) and (f,e) [inverting the reference alignments]

28 Experiments

29 pervez musharrafs langer abschied Identical word pervez musharraf s long goodbye Identical word 17

30 pervez musharrafs langer abschied Matching prefix pervez musharraf s long goodbye Identical word Matching prefix 18

31 pervez musharrafs langer abschied Matching suffix pervez musharraf s long goodbye Identical word Matching prefix Matching suffix 19

32 pervez musharrafs langer abschied Orthographic similarity pervez musharraf s long goodbye Identical word Matching prefix Matching suffix Orthographic similarity 20

33 pervez musharrafs langer abschied In dictionary pervez musharraf s long goodbye Identical word Matching prefix Matching suffix Orthographic similarity In dictionary... 21

34 pervez musharrafs langer abschied pervez musharraf s long goodbye Identical word Matching prefix Matching suffix Orthographic similarity In dictionary... 21

35 Lexical Features Word word indicator features Various word word co-occurrence scores IBM Model 1 probabilities (t s, s t) Geometric mean of Model 1 probabilities Dice s coefficient [binned] Products of the above

36 Lexical Features Word class word class indicator NN translates as NN NN does not translate as MD Identical word feature 2010 = 2010 Identical prefix feature Obama ~ Obamu (NN_NN=1) (NN_MD=1) (IdentWord=1 IdentNum=1) (IdentPrefix=1) Orthographic similarity measure [binned] Al-Qaeda ~ Al-Kaida (OrthoSim050_080=1)

37 Other Features Compute features from large amounts of unlabeled text Does the Model 4 alignment contain this alignment point? What is the Model 1 posterior probability of this alignment point?

38 Results

39 Summary

40 Summary Unfortunately, you need gold alignments!

41 Putting the pieces together p(e) p(e f,m) p(e, a f,m) p(a e, f)

42 Putting the pieces together We have seen how to model the following: p(e) p(e f,m) p(e, a f,m) p(a e, f)

43 Putting the pieces together We have seen how to model the following: p(e) p(e f,m) p(e, a f,m) p(a e, f)

44 Putting the pieces together We have seen how to model the following: p(e) p(e f,m) p(e, a f,m) p(a e, f) Goal: a better model of p(e) p(e f,m) that knows about

45 One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode. Warren Weaver to Norbert Wiener, March, 1947

46 M Message Encoder Y X M 0 Sent Noisy channel Received Decoder Recovered message Claude Shannon. A Mathematical Theory of Communication 1948.

47 M Message Encoder Y X M 0 Sent p(y) Noisy channel p(x y) Received p(x) Decoder Recovered message Claude Shannon. A Mathematical Theory of Communication 1948.

48 M Message Encoder Y X M 0 Sent p(y) Noisy channel p(x y) Received p(x) Decoder Recovered message Claude Shannon. A Mathematical Theory of Communication 1948.

49 M Message Encoder Y X M 0 Sent p(y) Noisy channel p(x y) Received Decoder Recovered message Shannon s theory tells us: 1) how much data you can send 2) the limits of compression 3) why your download is so slow 4) how to translate Claude Shannon. A Mathematical Theory of Communication 1948.

50 Y X M 0 Sent p(y) Noisy channel p(x y) Received Decoder Y 0 Recovered message

51 Y X M 0 Sent p(y) Noisy channel p(x y) Received Decoder Y 0 Recovered message

52 Y X M 0 Sent p(y) Noisy channel p(x y) Received Decoder Y 0 Recovered message

53 Y X M 0 Sent p(y) Noisy channel p(x y) Received Decoder Y 0 Recovered message y 0 = arg max y = arg max y = arg max y p(y x) p(x y)p(y) p(x) p(x y)p(y)

54 Y X M 0 Sent p(y) Noisy channel p(x y) Received 6= Decoder Y 0 Recovered message y 0 = arg max y = arg max y = arg max y p(y x) p(x y)p(y) p(x) p(x y)p(y)

55 Y X M 0 Sent p(y) Noisy channel p(x y) Received 6= Decoder Y 0 Recovered message y 0 = arg max y p(y x) = arg max y I can help. p(x y)p(y) p(x) = arg max y p(x y)p(y)

56 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message y 0 = arg max y = arg max y = arg max y p(y x) p(x y)p(y) p(x) p(x y)p(y)

57 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message y 0 = arg max y = arg max y p(y x) p(x y)p(y) p(x) = arg max y p(x y)p(y) Denominator doesn t depend on y.

58 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message y 0 = arg max y = arg max y = arg max y p(y x) p(x y)p(y) p(x) p(x y)p(y)

59 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message y 0 = arg max y p(x y)p(y)

60 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message English French English y 0 = arg max y p(x y)p(y) e 0 = arg max e p(f e)p(e)

61 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message English French English y 0 = arg max y p(x y)p(y) e 0 = arg max e p(f e)p(e) translation model

62 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message English French English y 0 = arg max y p(x y)p(y) e 0 = arg max e p(f e)p(e) translation model language model

63 Y X M 0 Sent Noisy channel Received Decoder Y 0 Recovered message English French English y 0 = arg max y p(x y)p(y) e 0 = arg max e p(f e)p(e) translation model language model Other noisy channel applications: OCR, speech recognition, spelling correction...

64 Division of labor Translation model probability of translation back into the source ensures adequacy of translation Language model is a translation hypothesis good English? ensures fluency of translation

65 p(e) English

66 p(e) English p(f e)

67 p(e) English p(f e) e = arg max e = arg max e p(e f) p(f e) p(e)

68 Announcements Upcoming language-in-10 Tuesday: Jon/Austin - Русский Leaderboard is functional

Word Alignment III: Fertility Models & CRFs. February 3, 2015

Word Alignment III: Fertility Models & CRFs. February 3, 2015 Word Alignment III: Fertility Models & CRFs February 3, 2015 Last Time... X p( Translation)= p(, Translation) Alignment = X Alignment Alignment p( p( Alignment) Translation Alignment) {z } {z } X z } {

More information

IBM Model 1 for Machine Translation

IBM Model 1 for Machine Translation IBM Model 1 for Machine Translation Micha Elsner March 28, 2014 2 Machine translation A key area of computational linguistics Bar-Hillel points out that human-like translation requires understanding of

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Graphical models for part of speech tagging

Graphical models for part of speech tagging Indian Institute of Technology, Bombay and Research Division, India Research Lab Graphical models for part of speech tagging Different Models for POS tagging HMM Maximum Entropy Markov Models Conditional

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Natural Language Processing (CSEP 517): Machine Translation

Natural Language Processing (CSEP 517): Machine Translation Natural Language Processing (CSEP 57): Machine Translation Noah Smith c 207 University of Washington nasmith@cs.washington.edu May 5, 207 / 59 To-Do List Online quiz: due Sunday (Jurafsky and Martin, 2008,

More information

Lexical Translation Models 1I. January 27, 2015

Lexical Translation Models 1I. January 27, 2015 Lexical Translation Models 1I January 27, 2015 Last Time... X p( Translation)= p(, Translation) Alignment = X Alignment Alignment p( p( Alignment) Translation Alignment) {z } {z } X z } { z } { p(e f,m)=

More information

Discriminative Training. March 4, 2014

Discriminative Training. March 4, 2014 Discriminative Training March 4, 2014 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder e =

More information

Probability Review. September 25, 2015

Probability Review. September 25, 2015 Probability Review September 25, 2015 We need a tool to 1) Formulate a model of some phenomenon. 2) Learn an instance of the model from data. 3) Use it to infer outputs from new inputs. Why Probability?

More information

EM with Features. Nov. 19, Sunday, November 24, 13

EM with Features. Nov. 19, Sunday, November 24, 13 EM with Features Nov. 19, 2013 Word Alignment das Haus ein Buch das Buch the house a book the book Lexical Translation Goal: a model p(e f,m) where e and f are complete English and Foreign sentences Lexical

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The EM algorithm is used to train models involving latent variables using training data in which the latent variables are not observed (unlabeled data). This is to be contrasted

More information

Probability and Statistics

Probability and Statistics Probability and Statistics January 17, 2013 Last time... 1) Formulate a model of pairs of sentences. 2) Learn an instance of the model from data. 3) Use it to infer translations of new inputs. Why Probability?

More information

Discriminative Training

Discriminative Training Discriminative Training February 19, 2013 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder

More information

Lexical Translation Models 1I

Lexical Translation Models 1I Lexical Translation Models 1I Machine Translation Lecture 5 Instructor: Chris Callison-Burch TAs: Mitchell Stern, Justin Chiu Website: mt-class.org/penn Last Time... X p( Translation)= p(, Translation)

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology 6.867 Machine Learning, Fall 2006 Problem Set 5 Due Date: Thursday, Nov 30, 12:00 noon You may submit your solutions in class or in the box. 1. Wilhelm and Klaus are

More information

A Simple Introduction to Information, Channel Capacity and Entropy

A Simple Introduction to Information, Channel Capacity and Entropy A Simple Introduction to Information, Channel Capacity and Entropy Ulrich Hoensch Rocky Mountain College Billings, MT 59102 hoenschu@rocky.edu Friday, April 21, 2017 Introduction A frequently occurring

More information

Exercise 1: Basics of probability calculus

Exercise 1: Basics of probability calculus : Basics of probability calculus Stig-Arne Grönroos Department of Signal Processing and Acoustics Aalto University, School of Electrical Engineering stig-arne.gronroos@aalto.fi [21.01.2016] Ex 1.1: Conditional

More information

Conditional Random Fields

Conditional Random Fields Conditional Random Fields Micha Elsner February 14, 2013 2 Sums of logs Issue: computing α forward probabilities can undeflow Normally we d fix this using logs But α requires a sum of probabilities Not

More information

with Local Dependencies

with Local Dependencies CS11-747 Neural Networks for NLP Structured Prediction with Local Dependencies Xuezhe Ma (Max) Site https://phontron.com/class/nn4nlp2017/ An Example Structured Prediction Problem: Sequence Labeling Sequence

More information

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information. L65 Dept. of Linguistics, Indiana University Fall 205 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission rate

More information

Machine Translation 1 CS 287

Machine Translation 1 CS 287 Machine Translation 1 CS 287 Review: Conditional Random Field (Lafferty et al, 2001) Model consists of unnormalized weights log ŷ(c i 1 ) ci = feat(x, c i 1 )W + b Out of log space, ŷ(c i 1 ) ci = exp(feat(x,

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 28 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Lecture 2: Probability and Language Models

Lecture 2: Probability and Language Models Lecture 2: Probability and Language Models Intro to NLP, CS585, Fall 2014 Brendan O Connor (http://brenocon.com) 1 Admin Waitlist Moodle access: Email me if you don t have it Did you get an announcement

More information

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013 Machine Translation CL1: Jordan Boyd-Graber University of Maryland November 11, 2013 Adapted from material by Philipp Koehn CL1: Jordan Boyd-Graber (UMD) Machine Translation November 11, 2013 1 / 48 Roadmap

More information

Natural Language Processing (CSE 490U): Language Models

Natural Language Processing (CSE 490U): Language Models Natural Language Processing (CSE 490U): Language Models Noah Smith c 2017 University of Washington nasmith@cs.washington.edu January 6 9, 2017 1 / 67 Very Quick Review of Probability Event space (e.g.,

More information

Word Alignment. Chris Dyer, Carnegie Mellon University

Word Alignment. Chris Dyer, Carnegie Mellon University Word Alignment Chris Dyer, Carnegie Mellon University John ate an apple John hat einen Apfel gegessen John ate an apple John hat einen Apfel gegessen Outline Modeling translation with probabilistic models

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces Notes on the framework of Ando and Zhang (2005 Karl Stratos 1 Beyond learning good functions: learning good spaces 1.1 A single binary classification problem Let X denote the problem domain. Suppose we

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Outline. Computer Science 418. Number of Keys in the Sum. More on Perfect Secrecy, One-Time Pad, Entropy. Mike Jacobson. Week 3

Outline. Computer Science 418. Number of Keys in the Sum. More on Perfect Secrecy, One-Time Pad, Entropy. Mike Jacobson. Week 3 Outline Computer Science 48 More on Perfect Secrecy, One-Time Pad, Mike Jacobson Department of Computer Science University of Calgary Week 3 2 3 Mike Jacobson (University of Calgary) Computer Science 48

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

Information Theory and Statistics Lecture 2: Source coding

Information Theory and Statistics Lecture 2: Source coding Information Theory and Statistics Lecture 2: Source coding Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Injections and codes Definition (injection) Function f is called an injection

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Generative Learning algorithms

Generative Learning algorithms CS9 Lecture notes Andrew Ng Part IV Generative Learning algorithms So far, we ve mainly been talking about learning algorithms that model p(y x; θ), the conditional distribution of y given x. For instance,

More information

Sequences and Information

Sequences and Information Sequences and Information Rahul Siddharthan The Institute of Mathematical Sciences, Chennai, India http://www.imsc.res.in/ rsidd/ Facets 16, 04/07/2016 This box says something By looking at the symbols

More information

Classification: Naïve Bayes. Nathan Schneider (slides adapted from Chris Dyer, Noah Smith, et al.) ENLP 19 September 2016

Classification: Naïve Bayes. Nathan Schneider (slides adapted from Chris Dyer, Noah Smith, et al.) ENLP 19 September 2016 Classification: Naïve Bayes Nathan Schneider (slides adapted from Chris Dyer, Noah Smith, et al.) ENLP 19 September 2016 1 Sentiment Analysis Recall the task: Filled with horrific dialogue, laughable characters,

More information

Statistical Sequence Recognition and Training: An Introduction to HMMs

Statistical Sequence Recognition and Training: An Introduction to HMMs Statistical Sequence Recognition and Training: An Introduction to HMMs EECS 225D Nikki Mirghafori nikki@icsi.berkeley.edu March 7, 2005 Credit: many of the HMM slides have been borrowed and adapted, with

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Lab 12: Structured Prediction

Lab 12: Structured Prediction December 4, 2014 Lecture plan structured perceptron application: confused messages application: dependency parsing structured SVM Class review: from modelization to classification What does learning mean?

More information

1 Introduction. Sept CS497:Learning and NLP Lec 4: Mathematical and Computational Paradigms Fall Consider the following examples:

1 Introduction. Sept CS497:Learning and NLP Lec 4: Mathematical and Computational Paradigms Fall Consider the following examples: Sept. 20-22 2005 1 CS497:Learning and NLP Lec 4: Mathematical and Computational Paradigms Fall 2005 In this lecture we introduce some of the mathematical tools that are at the base of the technical approaches

More information

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology

Basic Text Analysis. Hidden Markov Models. Joakim Nivre. Uppsala University Department of Linguistics and Philology Basic Text Analysis Hidden Markov Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakimnivre@lingfiluuse Basic Text Analysis 1(33) Hidden Markov Models Markov models are

More information

Information Extraction from Text

Information Extraction from Text Information Extraction from Text Jing Jiang Chapter 2 from Mining Text Data (2012) Presented by Andrew Landgraf, September 13, 2013 1 What is Information Extraction? Goal is to discover structured information

More information

Ngram Review. CS 136 Lecture 10 Language Modeling. Thanks to Dan Jurafsky for these slides. October13, 2017 Professor Meteer

Ngram Review. CS 136 Lecture 10 Language Modeling. Thanks to Dan Jurafsky for these slides. October13, 2017 Professor Meteer + Ngram Review October13, 2017 Professor Meteer CS 136 Lecture 10 Language Modeling Thanks to Dan Jurafsky for these slides + ASR components n Feature Extraction, MFCCs, start of Acoustic n HMMs, the Forward

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model Alex Lascarides (Slides based on those from Alex Lascarides, Sharon Goldwater and Philipop Koehn) 30 January

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Hidden Markov Models

Hidden Markov Models CS769 Spring 2010 Advanced Natural Language Processing Hidden Markov Models Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu 1 Part-of-Speech Tagging The goal of Part-of-Speech (POS) tagging is to label each

More information

Classification & Information Theory Lecture #8

Classification & Information Theory Lecture #8 Classification & Information Theory Lecture #8 Introduction to Natural Language Processing CMPSCI 585, Fall 2007 University of Massachusetts Amherst Andrew McCallum Today s Main Points Automatically categorizing

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Bioinformatics: Biology X

Bioinformatics: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA Model Building/Checking, Reverse Engineering, Causality Outline 1 Bayesian Interpretation of Probabilities 2 Where (or of what)

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

CSE 490 U Natural Language Processing Spring 2016

CSE 490 U Natural Language Processing Spring 2016 CSE 490 U Natural Language Processing Spring 2016 Feature Rich Models Yejin Choi - University of Washington [Many slides from Dan Klein, Luke Zettlemoyer] Structure in the output variable(s)? What is the

More information

Bayes Decision Theory

Bayes Decision Theory Bayes Decision Theory Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 16

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

order is number of previous outputs

order is number of previous outputs Markov Models Lecture : Markov and Hidden Markov Models PSfrag Use past replacements as state. Next output depends on previous output(s): y t = f[y t, y t,...] order is number of previous outputs y t y

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 22: Greedy Algorithms: Huffman Codes Data Compression and Entropy Apr 5, 2018 Data Compression How do we store strings of text compactly? A (binary) code

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Information Extraction, Hidden Markov Models Sameer Maskey Week 5, Oct 3, 2012 *many slides provided by Bhuvana Ramabhadran, Stanley Chen, Michael Picheny Speech Recognition

More information

Text Mining. March 3, March 3, / 49

Text Mining. March 3, March 3, / 49 Text Mining March 3, 2017 March 3, 2017 1 / 49 Outline Language Identification Tokenisation Part-Of-Speech (POS) tagging Hidden Markov Models - Sequential Taggers Viterbi Algorithm March 3, 2017 2 / 49

More information

Conditional Random Fields for Sequential Supervised Learning

Conditional Random Fields for Sequential Supervised Learning Conditional Random Fields for Sequential Supervised Learning Thomas G. Dietterich Adam Ashenfelter Department of Computer Science Oregon State University Corvallis, Oregon 97331 http://www.eecs.oregonstate.edu/~tgd

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 3. Instance Based Learning Alex Smola Carnegie Mellon University http://alex.smola.org/teaching/cmu2013-10-701 10-701 Outline Parzen Windows Kernels, algorithm Model selection

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 8 I

More information

Lecture 6 I. CHANNEL CODING. X n (m) P Y X

Lecture 6 I. CHANNEL CODING. X n (m) P Y X 6- Introduction to Information Theory Lecture 6 Lecturer: Haim Permuter Scribe: Yoav Eisenberg and Yakov Miron I. CHANNEL CODING We consider the following channel coding problem: m = {,2,..,2 nr} Encoder

More information

Partially Directed Graphs and Conditional Random Fields. Sargur Srihari

Partially Directed Graphs and Conditional Random Fields. Sargur Srihari Partially Directed Graphs and Conditional Random Fields Sargur srihari@cedar.buffalo.edu 1 Topics Conditional Random Fields Gibbs distribution and CRF Directed and Undirected Independencies View as combination

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information