Word Alignment III: Fertility Models & CRFs. February 3, 2015

Size: px
Start display at page:

Download "Word Alignment III: Fertility Models & CRFs. February 3, 2015"

Transcription

1 Word Alignment III: Fertility Models & CRFs February 3, 2015

2 Last Time... X p( Translation)= p(, Translation) Alignment = X Alignment Alignment p( p( Alignment) Translation Alignment) {z } {z } X z } { z } { my p(e f,m)= a2[0,n] m p(a f,m) i=1 p(e i f ai )

3 Fertility Models The models we have considered so far have been efficient This efficiency has come at a modeling cost: What is to stop the model from translating a word 0, 1, 2, or 100 times? We introduce fertility models to deal with this

4 IBM Model 3

5 Fertility Fertility: the number of English words generated by a foreign word Modeled by categorical distribution Examples: n( f) Unabhaengigkeitserklaerung zum = (zu + dem) Haus

6 Fertility X my p(e f,m)= a2[0,n] m p(a f,m) i=1 p(e i f ai ) Fertility models mean that we can no longer exploit conditional independencies to write p(a f,m) as a series of local alignment decisions. How do we compute the statistics required for EM training?

7 EM Recipe reminder If alignment points were visible, training fertility models would be easy We would and n( =3 f = Unabhaenigkeitserklaerung) = count(3, Unabhaenigkeitserklaerung) count(unabhaenigkeitserklaerung) But, alignments are not visible n( =3 f = Unabhaenigkeitserklaerung) = E[count(3, Unabhaenigkeitserklaerung)] E[count(Unabhaenigkeitserklaerung)]

8 Expectation & Fertility We need to compute expected counts under p(a f,e,m) Unfortunately p(a f,e,m) doesn t factorize nicely. :( Can we sum exhaustively? How many different a s are there? What to do?

9 Sample Alignments Monte-Carlo methods Gibbs sampling Importance sampling Particle filtering For historical reasons Use model 2 alignment to start (easy!) Weighted sum over all alignment configurations that are close to this alignment configuration Is this correct? No! Does it work? Sort of.

10

11 Pitfalls of Conditional Models IBM Model 4 alignment Our model's alignmen

12 Lexical Translation IBM Models 1-5 [Brown et al., 1993] Model 3: fertility Model 5: non-deficient model Widely used Giza++ toolkit Model 1: lexical translation, uniform alignment Model 2: absolute position model Model 4: relative position model (jumps in target string) HMM translation model [Vogel et al., 1996] Relative position model (jumps in source string) Latent variables are more useful these days than the translations

13 A few tricks... p(f e) p(e f)

14 A few tricks... p(f e) p(e f)

15 A few tricks... p(f e) p(e f)

16 Alignment Tool: fast_align

17 Another View With this model: X my p(e f,m)= a2[0,n] m p(a f,m) i=1 p(e i f ai ) The problem of word alignment is as: a = arg max p(a e, f,m) a2[0,n] m Can we model this distribution directly?

18 Markov Random Fields (MRFs) A B C X Y Z p(a, B, C, X, Y, Z) = p(a) p(b A) p(c B) p(x A)p(Y B)p(Z C) A B C X Y Z p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) 4(X) 5(Y ) 6(Z) Factors

19 Computing Z X X Y Z = X x2x 1(x, y) 2(x) 3(y) y2x X = {a, b, c} X 2 X Y 2 X When the graph has certain structures (e.g., chains), you can factor to get polytime DP algorithms. Z = X x2x 2(x) X y2x 1(x, y) 3(y)

20 1,2,3(x, y) =exp X k Log-linear models A B C p(a, B, C, X, Y, Z) = 1 Z 1(A, B) 2(B,C) 3(C, D) X Y Z 4(X) 5(Y ) 6(Z) w k f k (x, y) Weights (learned) Feature functions (specified)

21 Random Fields Benefits Potential functions can be defined with respect to arbitrary features (functions) of the variables Great way to incorporate knowledge Drawbacks Likelihood involves computing Z Maximizing likelihood usually requires computing Z (often over and over again!)

22 Conditional Random Fields Use MRFs to parameterize a conditional distribution. Very easy: let feature functions look at anything they want in the input p(y x) = 1 Z w (x) exp X F 2G y X w k f k (F, x, y) k All factors in the graph of y

23 Parameter Learning CRFs are trained to maximize conditional likelihood Y ŵ MLE = arg max p(y i x i ; w) w Recall we want to directly model p(a e, f) (x i,y i )2D The likelihood of what alignments? Gold reference alignments!

24 CRF for Alignment One of many possibilities, due to Blunsom & Cohn (2006) p(a e, f) = 1 Z w (e, f) exp e X i=1 X a has the same form as in the lexical translation models (still make a one-to-many assumption) w k are the model parameters f k are the feature functions k w k f(a i,a i 1,i,e, f) O(n 2 m) O(n 3 )

25 Model Labels (one per target word) index source sentence Train model (e,f) and (f,e) [inverting the reference alignments]

26 Experiments

27 pervez musharrafs langer abschied Identical word pervez musharraf s long goodbye Identical word 27

28 pervez musharrafs langer abschied Matching prefix pervez musharraf s long goodbye Identical word Matching prefix 28

29 pervez musharrafs langer abschied Matching suffix pervez musharraf s long goodbye Identical word Matching prefix Matching suffix 29

30 pervez musharrafs langer abschied Orthographic similarity pervez musharraf s long goodbye Identical word Matching prefix Matching suffix Orthographic similarity 30

31 pervez musharrafs langer abschied In dictionary pervez musharraf s long goodbye Identical word Matching prefix Matching suffix Orthographic similarity In dictionary... 31

32 Lexical Features Word word indicator features Various word word co-occurrence scores IBM Model 1 probabilities (t s, s t) Geometric mean of Model 1 probabilities Dice s coefficient [binned] Products of the above

33 Lexical Features Word class word class indicator NN translates as NN NN does not translate as MD Identical word feature 2010 = 2010 Identical prefix feature Obama ~ Obamu (NN_NN=1) (NN_MD=1) (IdentWord=1 IdentNum=1) (IdentPrefix=1) Orthographic similarity measure [binned] Al-Qaeda ~ Al-Kaida (OrthoSim050_080=1)

34 Other Features Compute features from large amounts of unlabeled text Does the Model 4 alignment contain this alignment point? What is the Model 1 posterior probability of this alignment point?

35 CRF Results AER P R French English 9% 97% 86% French English 9% 98% 83% French English 7% 96% 90% French English+M4 7% 98% 88% French English+M4 7% 98% 87% French English+M4 5% 98% 91% IBM Model 4 9% 87% 95%

36 Summary Unfortunately, you need gold alignments!

37 CRF Autoencoders X! input! X X i-1!! X i!! X X i+1!! encode Y! latent! Y i-1!! Y i!! Y Y i+1!! X! X! X! i-1! i! i+1! reconstruct reconstruc,on! X! X arg max, x log X y2y(x) p (y x) p (x 0 y) CRF Encoder reconstruction model Ammar, Dyer, Smith. (2014) Conditional Random Field Autoencoders

38 Ammar, Dyer, Smith. (2014) Conditional Random Field Autoencoders CRF Autoencoders X arg max, x log X y2y(x) p (y x) p (x 0 y) arg max, X (e,f) log X a2a(e,f) p (a e, f) CRF Aligner my i=1 p (e i f aj ) lexical translation probabilities

39 Ammar, Dyer, Smith. (2014) Conditional Random Field Autoencoders CRF Autoencoders AER P R Czech English 28% 71% 73% Czech English 21% 80% 77% Czech English 19% 81% 81% IBM Model 4 22% 75% 80%

40 Summary This is it for word alignment- questions? Next time: evaluation Keep working on HW1

CRF Word Alignment & Noisy Channel Translation

CRF Word Alignment & Noisy Channel Translation CRF Word Alignment & Noisy Channel Translation January 31, 2013 Last Time... X p( Translation)= p(, Translation) Alignment Alignment Last Time... X p( Translation)= p(, Translation) Alignment X Alignment

More information

Lexical Translation Models 1I. January 27, 2015

Lexical Translation Models 1I. January 27, 2015 Lexical Translation Models 1I January 27, 2015 Last Time... X p( Translation)= p(, Translation) Alignment = X Alignment Alignment p( p( Alignment) Translation Alignment) {z } {z } X z } { z } { p(e f,m)=

More information

Lexical Translation Models 1I

Lexical Translation Models 1I Lexical Translation Models 1I Machine Translation Lecture 5 Instructor: Chris Callison-Burch TAs: Mitchell Stern, Justin Chiu Website: mt-class.org/penn Last Time... X p( Translation)= p(, Translation)

More information

EM with Features. Nov. 19, Sunday, November 24, 13

EM with Features. Nov. 19, Sunday, November 24, 13 EM with Features Nov. 19, 2013 Word Alignment das Haus ein Buch das Buch the house a book the book Lexical Translation Goal: a model p(e f,m) where e and f are complete English and Foreign sentences Lexical

More information

Word Alignment. Chris Dyer, Carnegie Mellon University

Word Alignment. Chris Dyer, Carnegie Mellon University Word Alignment Chris Dyer, Carnegie Mellon University John ate an apple John hat einen Apfel gegessen John ate an apple John hat einen Apfel gegessen Outline Modeling translation with probabilistic models

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013 Machine Translation CL1: Jordan Boyd-Graber University of Maryland November 11, 2013 Adapted from material by Philipp Koehn CL1: Jordan Boyd-Graber (UMD) Machine Translation November 11, 2013 1 / 48 Roadmap

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The EM algorithm is used to train models involving latent variables using training data in which the latent variables are not observed (unlabeled data). This is to be contrasted

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Conditional Random Fields

Conditional Random Fields Conditional Random Fields Micha Elsner February 14, 2013 2 Sums of logs Issue: computing α forward probabilities can undeflow Normally we d fix this using logs But α requires a sum of probabilities Not

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Discrimina)ve Latent Variable Models. SPFLODD November 15, 2011

Discrimina)ve Latent Variable Models. SPFLODD November 15, 2011 Discrimina)ve Latent Variable Models SPFLODD November 15, 2011 Lecture Plan 1. Latent variables in genera)ve models (review) 2. Latent variables in condi)onal models 3. Latent variables in structural SVMs

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

Probability Review. September 25, 2015

Probability Review. September 25, 2015 Probability Review September 25, 2015 We need a tool to 1) Formulate a model of some phenomenon. 2) Learn an instance of the model from data. 3) Use it to infer outputs from new inputs. Why Probability?

More information

Word Alignment for Statistical Machine Translation Using Hidden Markov Models

Word Alignment for Statistical Machine Translation Using Hidden Markov Models Word Alignment for Statistical Machine Translation Using Hidden Markov Models by Anahita Mansouri Bigvand A Depth Report Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of

More information

Markov Networks.

Markov Networks. Markov Networks www.biostat.wisc.edu/~dpage/cs760/ Goals for the lecture you should understand the following concepts Markov network syntax Markov network semantics Potential functions Partition function

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Out of GIZA Efficient Word Alignment Models for SMT

Out of GIZA Efficient Word Alignment Models for SMT Out of GIZA Efficient Word Alignment Models for SMT Yanjun Ma National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Series March 4, 2009 Y. Ma (DCU) Out of Giza

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Graphical models for part of speech tagging

Graphical models for part of speech tagging Indian Institute of Technology, Bombay and Research Division, India Research Lab Graphical models for part of speech tagging Different Models for POS tagging HMM Maximum Entropy Markov Models Conditional

More information

Bayes Nets: Sampling

Bayes Nets: Sampling Bayes Nets: Sampling [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Approximate Inference:

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Probability and Statistics

Probability and Statistics Probability and Statistics January 17, 2013 Last time... 1) Formulate a model of pairs of sentences. 2) Learn an instance of the model from data. 3) Use it to infer translations of new inputs. Why Probability?

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

Integrating Morphology in Probabilistic Translation Models

Integrating Morphology in Probabilistic Translation Models Integrating Morphology in Probabilistic Translation Models Chris Dyer joint work with Jon Clark, Alon Lavie, and Noah Smith January 24, 2011 lti das alte Haus the old house mach das do that 2 das alte

More information

Discriminative Training

Discriminative Training Discriminative Training February 19, 2013 Noisy Channels Again p(e) source English Noisy Channels Again p(e) p(g e) source English German Noisy Channels Again p(e) p(g e) source English German decoder

More information

MIA - Master on Artificial Intelligence

MIA - Master on Artificial Intelligence MIA - Master on Artificial Intelligence 1 Introduction Unsupervised & semi-supervised approaches Supervised Algorithms Maximum Likelihood Estimation Maximum Entropy Modeling Introduction 1 Introduction

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

Midterm sample questions

Midterm sample questions Midterm sample questions CS 585, Brendan O Connor and David Belanger October 12, 2014 1 Topics on the midterm Language concepts Translation issues: word order, multiword translations Human evaluation Parts

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 1 Learning Objectives At the end of the class you should be able to: identify a supervised learning problem characterize how the prediction is a function of the error measure avoid mixing the training and

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas Forward Algorithm For Markov chains we calculate the probability of a sequence, P(x) How

More information

Algorithms for NLP. Machine Translation II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Machine Translation II. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Machine Translation II Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Project 4: Word Alignment! Will be released soon! (~Monday) Phrase-Based System Overview

More information

Log-Linear Models, MEMMs, and CRFs

Log-Linear Models, MEMMs, and CRFs Log-Linear Models, MEMMs, and CRFs Michael Collins 1 Notation Throughout this note I ll use underline to denote vectors. For example, w R d will be a vector with components w 1, w 2,... w d. We use expx

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

COMS 4705, Fall Machine Translation Part III

COMS 4705, Fall Machine Translation Part III COMS 4705, Fall 2011 Machine Translation Part III 1 Roadmap for the Next Few Lectures Lecture 1 (last time): IBM Models 1 and 2 Lecture 2 (today): phrase-based models Lecture 3: Syntax in statistical machine

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G.

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 10-708: Probabilistic Graphical Models, Spring 2015 26 : Spectral GMs Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 1 Introduction A common task in machine learning is to work with

More information

Lab 12: Structured Prediction

Lab 12: Structured Prediction December 4, 2014 Lecture plan structured perceptron application: confused messages application: dependency parsing structured SVM Class review: from modelization to classification What does learning mean?

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

A minimalist s exposition of EM

A minimalist s exposition of EM A minimalist s exposition of EM Karl Stratos 1 What EM optimizes Let O, H be a random variables representing the space of samples. Let be the parameter of a generative model with an associated probability

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Word Alignment via Submodular Maximization over Matroids

Word Alignment via Submodular Maximization over Matroids Word Alignment via Submodular Maximization over Matroids Hui Lin, Jeff Bilmes University of Washington, Seattle Dept. of Electrical Engineering June 21, 2011 Lin and Bilmes Submodular Word Alignment June

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Bayesian Networks Structure Learning (cont.)

Bayesian Networks Structure Learning (cont.) Koller & Friedman Chapters (handed out): Chapter 11 (short) Chapter 1: 1.1, 1., 1.3 (covered in the beginning of semester) 1.4 (Learning parameters for BNs) Chapter 13: 13.1, 13.3.1, 13.4.1, 13.4.3 (basic

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

Phrase-Based Statistical Machine Translation with Pivot Languages

Phrase-Based Statistical Machine Translation with Pivot Languages Phrase-Based Statistical Machine Translation with Pivot Languages N. Bertoldi, M. Barbaiani, M. Federico, R. Cattoni FBK, Trento - Italy Rovira i Virgili University, Tarragona - Spain October 21st, 2008

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

CS221 / Autumn 2017 / Liang & Ermon. Lecture 15: Bayesian networks III

CS221 / Autumn 2017 / Liang & Ermon. Lecture 15: Bayesian networks III CS221 / Autumn 2017 / Liang & Ermon Lecture 15: Bayesian networks III cs221.stanford.edu/q Question Which is computationally more expensive for Bayesian networks? probabilistic inference given the parameters

More information

IBM Model 1 for Machine Translation

IBM Model 1 for Machine Translation IBM Model 1 for Machine Translation Micha Elsner March 28, 2014 2 Machine translation A key area of computational linguistics Bar-Hillel points out that human-like translation requires understanding of

More information

K-means. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. November 19 th, Carlos Guestrin 1

K-means. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. November 19 th, Carlos Guestrin 1 EM Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University November 19 th, 2007 2005-2007 Carlos Guestrin 1 K-means 1. Ask user how many clusters they d like. e.g. k=5 2. Randomly guess

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister A Syntax-based Statistical Machine Translation Model Alexander Friedl, Georg Teichtmeister 4.12.2006 Introduction The model Experiment Conclusion Statistical Translation Model (STM): - mathematical model

More information

IBM Model 1 and the EM Algorithm

IBM Model 1 and the EM Algorithm IBM Model 1 and the EM Algorithm Philipp Koehn 14 September 2017 Lexical Translation 1 How to translate a word look up in dictionary Haus house, building, home, household, shell. Multiple translations

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

Lecture 13: Structured Prediction

Lecture 13: Structured Prediction Lecture 13: Structured Prediction Kai-Wei Chang CS @ University of Virginia kw@kwchang.net Couse webpage: http://kwchang.net/teaching/nlp16 CS6501: NLP 1 Quiz 2 v Lectures 9-13 v Lecture 12: before page

More information

Information Extraction from Text

Information Extraction from Text Information Extraction from Text Jing Jiang Chapter 2 from Mining Text Data (2012) Presented by Andrew Landgraf, September 13, 2013 1 What is Information Extraction? Goal is to discover structured information

More information

Conditional Language Modeling. Chris Dyer

Conditional Language Modeling. Chris Dyer Conditional Language Modeling Chris Dyer Unconditional LMs A language model assigns probabilities to sequences of words,. w =(w 1,w 2,...,w`) It is convenient to decompose this probability using the chain

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Linear Dynamical Systems (Kalman filter)

Linear Dynamical Systems (Kalman filter) Linear Dynamical Systems (Kalman filter) (a) Overview of HMMs (b) From HMMs to Linear Dynamical Systems (LDS) 1 Markov Chains with Discrete Random Variables x 1 x 2 x 3 x T Let s assume we have discrete

More information

Unsupervised Learning

Unsupervised Learning CS 3750 Advanced Machine Learning hkc6@pitt.edu Unsupervised Learning Data: Just data, no labels Goal: Learn some underlying hidden structure of the data P(, ) P( ) Principle Component Analysis (Dimensionality

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization: f 0 (0) = 1 f k (0)

More information

CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 18 Alignment in SMT and Tutorial on Giza++ and Moses)

CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 18 Alignment in SMT and Tutorial on Giza++ and Moses) CS460/626 : Natural Language Processing/Speech, NLP and the Web (Lecture 18 Alignment in SMT and Tutorial on Giza++ and Moses) Pushpak Bhattacharyya CSE Dept., IIT Bombay 15 th Feb, 2011 Going forward

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Natural Language Processing (CSEP 517): Machine Translation

Natural Language Processing (CSEP 517): Machine Translation Natural Language Processing (CSEP 57): Machine Translation Noah Smith c 207 University of Washington nasmith@cs.washington.edu May 5, 207 / 59 To-Do List Online quiz: due Sunday (Jurafsky and Martin, 2008,

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Foundations of Natural Language Processing Lecture 6 Spelling correction, edit distance, and EM

Foundations of Natural Language Processing Lecture 6 Spelling correction, edit distance, and EM Foundations of Natural Language Processing Lecture 6 Spelling correction, edit distance, and EM Alex Lascarides (Slides from Alex Lascarides and Sharon Goldwater) 2 February 2019 Alex Lascarides FNLP Lecture

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Variational Decoding for Statistical Machine Translation

Variational Decoding for Statistical Machine Translation Variational Decoding for Statistical Machine Translation Zhifei Li, Jason Eisner, and Sanjeev Khudanpur Center for Language and Speech Processing Computer Science Department Johns Hopkins University 1

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Oct, 21, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models CPSC

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013

Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Conditional Random Fields and beyond DANIEL KHASHABI CS 546 UIUC, 2013 Outline Modeling Inference Training Applications Outline Modeling Problem definition Discriminative vs. Generative Chain CRF General

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Mixtures of Gaussians continued

Mixtures of Gaussians continued Mixtures of Gaussians continued Machine Learning CSE446 Carlos Guestrin University of Washington May 17, 2013 1 One) bad case for k-means n Clusters may overlap n Some clusters may be wider than others

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information