Design Calculations. ETSEIB - UPC Josep Mª Mabres Anter TFG

Size: px
Start display at page:

Download "Design Calculations. ETSEIB - UPC Josep Mª Mabres Anter TFG"

Transcription

1

2

3

4 Table of Contents Table of Contents... Codes, Guidelines and Standards Implemented Design Conditions Allowable stresses and safety factors... 6 Shell (comp. 1)... 6 Tube (comp. )... 6 Test Pressure... 7 Tube layout Tube layout report flow section Pass Partition Plate Element(s) of geometry in internal pressure...1 Korbbogen Type Head (30.10) Internal pressure....1 Conical shell (30.4) internal pressure Korbbogen Type Head (5.1) Internal pressure Cylindrical shell under internal pressure Body flange(s) and cover(s)...16 Body Flange and Cover 5.01 in operation Body Flange and Cover in operation Body Flange and Cover 5.01 in test....0 Body Flange and Cover in test....1 Body Flange and Cover 3903 in test.... Tubesheet(s) and Expansion Joint...3 Tubesheet, Loading conditions 1 [corroded normal condition] AD 000-Merkblatt B 5, Tubesheet, Loading conditions [corroded normal condition] AD 000-Merkblatt B 5, Tubesheet, Loading conditions 3 [corroded normal condition] AD 000-Merkblatt B 5, Tubesheet, Loading conditions T0 [test condition] AD 000-Merkblatt B 5, Tubesheet, Loading conditions 0T [test condition] AD 000-Merkblatt B 5, Tubes of the bundle Tube of bundle in internal pressure Tube of bundle in external pressure Vessel under combination loading...34 Model for stress analysis due to supporting Location of dominant stresses and worst cases Case 1 - Operation Int.Max.P. (Corroded Weight) Maximum Allowable Working Pressure...40 Maximum Allowable Working Pressure(Geometry) Maximum Allowable Working Pressure (Nozzles) Maximum Allowable Working Pressure (tubes of bundle) Maximum Allowable Working Pressure (compartment) Isolated Opening(s)...4 Isolated opening S [ in operation Int.P. ] (Shell Outlet)...4 Isolated opening S [ in test Int.P. ] (Shell Outlet)...43 Isolated opening S1 [ in operation Int.P. ] (Shell Outlet)...44 Isolated opening S1 [ in test Int.P. ] (Shell Outlet)...45 Isolated opening T [ in operation Int.P. ] (Channel Outlet)...46 Isolated opening T [ in test Int.P. ] (Channel Outlet)...47 Isolated opening T1 [ in operation Int.P. ] (Channel inlet)...48 Isolated opening T1 [ in test Int.P. ] (Channel inlet)...49 Summary...50 Summary of nozzles [ Location and Dimensions ] AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

5 Summary of nozzles [ Type, Adjacent Openings, Goose and Material ] Summary of nozzles [ Type, Weight and Local Loads ] Summaries of bundle Summary of Forged Items and Relevant Accessories....5 Summary of Geometry Summary of Weights, Capacities and Painting Areas Summary of saddles...55 Summary of Foundation Loads...55 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

6 Codes, Guidelines and Standards Implemented. Pressure vessel design code : AD 000-Merkblätter (07-01) B 0, B 1, B, B 3, B 5, B 6, B 7, B 8, B 9, Design Code of Tubesheets : AD 000-Merkblatt B 5, Manufacturing standard : TEMA 9th Edition - Nov. 007 Type = BKU Local load design method: PD 5500:01 G - (09-01) Standard of flange ratings : DIN 401:1996 Standard of pipes: ASME B36.10M-004/B36.19M-004 Standard of material : DIN17440 September 1996 X CrNiMo Plate DIN17458 July 1985 X CrNiMo Seamless pipe DIN17440 September 1996 X CrNiMo Forging EN10- April 000 P65GH Forging EN1016- December 00 P65GH Seamless pipe EN1008- June 009 P65GH Plate EN March 005 XCrNiMo17-1- Seamless tube ASME II 01 SA193GRB7 Bolting ASME II 01 SA516GR60 Plate Units : SI g = 9,80665 m/s [ Weight (N) = Mass (kg) g ] AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

7 Design Conditions. Shell (comp. 1) Tube (comp. ) / Internal pressure : 0,8 MPa 1, MPa / Requested MAWP : 0,8 MPa 1, MPa / Design Temperature : 104,4 C 60 C / Height of liquid : 0 mm 0 mm / Operating fluid spec. gravity : 1 1 / Corrosion : 0 mm 3,175 mm / External pressure : / Design temp., external : / Test Pressure : / Test fluid spec. gravity : 1 1 / Insulation Thickness : 0 mm 0 mm / Weight/density of insulation : 35 kg/m 3 35 kg/m 3 / Construction Category : / Nominal stress : 1 1 / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

8 Allowable stresses and safety factors AD B0 / AD B6 f Allowable stress at design temperature. R m tensile strength. R p0. yield strength 0, %. R p1 yield strength 1 %. R Average stress to cause rupture at the end of hours at design temperature. Flanges in operation f = f 1 In test and gasket seating f = f 1 Shell (comp. 1) Allowable stress at design temperature f Materials Normal Conditions Exceptional and test conditions Creep Excluding bolting B0 B6 B0 B6 B0 B6 Carbon steel R p0. / 1,5 R p0. / 1,6 R p0. / 1,05 R p0. / 1,1 R / 1,5 R / 1,6 Stainless steel R p1 / 1,5 R p1 / 1,6 R p1 / 1,05 R p1 / 1,1 R / 1,5 R / 1,6 Copper alloy R m / 3,5 R m / 4 R m /,5 R m /,5 R / 3,5 R / 4 Aluminum Alloy R p1 / 1,5 R p1 / 1,6 R p1 / 1,05 R p1 / 1,1 R / 1,5 R / 1,6 Nickel alloy R p0. / 1,5 R p0. / 1,6 R p0. / 1,05 R p0. / 1,1 R / 1,5 R / 1,6 Titanium and Zirconium R p0. / 1,5 R p0. / 1,6 R p0. / 1,05 R p0. / 1,1 R / 1,5 R / 1,6 Cast Iron R p0. / R p0. / R p0. / 1,4 R p0. / 1,5 R / R / Bolting Standard Neckdown Standard Neckdown Standard Neckdown Carbon steel R p0. / 1,8 R p0. / 1,5 R p0. / 1,3 R p0. / 1,1 R / 1,8 R / 1,5 Stainless steel R p1 / 1,8 R p1 / 1,5 R p1 / 1,3 R p1 / 1,1 R / 1,8 R / 1,5 Tube (comp. ) Allowable stress at design temperature f Materials Normal Conditions Exceptional and test conditions Creep Excluding bolting B0 B6 B0 B6 B0 B6 Carbon steel R p0. / 1,5 R p0. / 1,6 R p0. / 1,05 R p0. / 1,1 R / 1,5 R / 1,6 Stainless steel R p1 / 1,5 R p1 / 1,6 R p1 / 1,05 R p1 / 1,1 R / 1,5 R / 1,6 Copper alloy R m / 3,5 R m / 4 R m /,5 R m /,5 R / 3,5 R / 4 Aluminum Alloy R p1 / 1,5 R p1 / 1,6 R p1 / 1,05 R p1 / 1,1 R / 1,5 R / 1,6 Nickel alloy R p0. / 1,5 R p0. / 1,6 R p0. / 1,05 R p0. / 1,1 R / 1,5 R / 1,6 Titanium and Zirconium R p0. / 1,5 R p0. / 1,6 R p0. / 1,05 R p0. / 1,1 R / 1,5 R / 1,6 Cast Iron R p0. / R p0. / R p0. / 1,4 R p0. / 1,5 R / R / Bolting Standard Neckdown Standard Neckdown Standard Neckdown Carbon steel R p0. / 1,8 R p0. / 1,5 R p0. / 1,3 R p0. / 1,1 R / 1,8 R / 1,5 Stainless steel R p1 / 1,8 R p1 / 1,5 R p1 / 1,3 R p1 / 1,1 R / 1,8 R / 1,5 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

9 Test Pressure AD HP 30 p p = Fp. p F p = max [ 1,43 ; 1,5 (K 0 / K ) min ] p = Design Pressure K 0 = design strength value at test temperature K = design strength value at design temperature For each component p K 0 K s e c p p (MPa) (MPa) (MPa) (MPa) Korbbogen Type Head (01) , ,144 Shell (0) , ,144 Cone (03) , ,144 Shell (04) , ,35 0 1,144 Shell (10) , ,6 7,9 3,175,3717 Korbbogen Type Head (11) 5.1 1, ,1487 Shell (comp. 1) Tube (comp. ) / Test Pressure at the Top P e : 1,144 MPa,1487 MPa / Use PED : P t = MAX [ 1,43 P s ; 1,5 P s ( f a / f t ) min ] P s = maximum allowable pressure P = Design Pressure f a = allowable stress at room temperature, normal condition f t = allowable stress at design temperature For each component P f a f t e c P t (MPa) (MPa) (MPa) (MPa) Korbbogen Type Head (01) , ,144 Shell (0) , ,144 Cone (03) , ,144 Shell (04) , ,35 0 1,144 Shell (10) , ,6 7,9 3,175,3717 Korbbogen Type Head (11) 5.1 1, ,1487 Shell (comp. 1) Tube (comp. ) / maximum allowable pressure : 0,8 MPa 1, MPa / Test Pressure at the Top : 1,144 MPa,1487 MPa / AD HP : for vertical vessel : p p = p p + p p AD HP : Test in vertical position, pressure measured at the top of the vessel in vertical position p p = 0.1 ( F H F P H) 0 AD HP : Test in horizontal position before a test in vertical position, pressure measured at the top of the vessel in horizontal position :p p = 0 AD HP : Test in horizontal position alone, pressure measured at the top of the vessel in horizontal position p p = max [ 0.1 P H ; 0.1 F H F ] H F = liquid level in operation H = liquid level in test F = Specific gravity of the liquid in operation P = Specific gravity of the liquid in test Shell (comp. 1) Tube (comp. ) / Design Pressure p : 0,8 MPa 1, MPa / Test Pressure at the Top p p : 1,144 MPa,1487 MPa / p p AD HP / / / p p AD HP / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

10 Tube layout. A A-A A 1 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

11 Tube layout report. Shell inside diameter : 399,65 mm Outer tube limit diameter 9,14 mm Baffle Outside Diameter : 396,48 mm Tube Pitch : 31,75 mm Tube Diameter : 5,4 mm Number of Tubes : 56 Mean Deviation : 0 % Number of Tie Rods : 0 Variance Factor : 0 % Number of sealing strips : 0 Mean tolerance : 0 % Number of Sealing Rods : 0 Max. pass tolerance : 0 % Number of sliding rails : 0 Actual shell inlet free height : 0 mm Actual shell outlet free height : 65,84 mm Pass number Number of Tubes Adj. Tol. Adj. Tol Tol. 1- : 0,00 % No. of support plates = 0 Type no.. flow section No. of baffles (Support Plate) = 0 / / / Unsupported tube spans (calculated values) : between two Tubesheets (both ends fixed) = / between a Tubesheet and a tube support (one end fixed, the other pinned) = 0 mm between two tube supports (both ends pinned) = 0 mm Unsupported tube spans (fixed value) : between a Tubesheet and a tube support (one end fixed, the other pinned) = / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

12 flow section. Minimum inside depth of channels. The minimum cross-over area for flow between successive tube passes is at least equal to 1.3 times the flow area through the tubes of one pass. Channel inlet : mm Channel outlet (or rear box) : / (for a floating head, it s the length of flange under the crown) TEMA RGP-RCB-4.6 Shell or Bundle Entrance and Exit Areas. Outer tube limit diameter : OTL = 9,14 mm Factor indicating tube pitch type and orientation : F = 0,866 Impingement plate length : L p = 0 mm Tube Pitch : P t = 31,75 mm Tube outside diameter : D t = 5,4 mm Impingement plate edge length : I p = 0 mm Fluid velocity Inlet Outlet flow section area (nozzle) : V n = 0 Jm 3 0 Jm 3 flow section area (shell cross section) : V s = 0 Jm 3 0 Jm 3 flow section area (bundle) : V b = 0 Jm 3 0 Jm 3 Shell inside diameter : D s = 399,65 mm 399,65 mm Nozzle internal diameter : D n = 0 mm 54,76 mm RGP-RCB Shell entrance or exit area Inlet Outlet Factor indicating presence of impingement plate : F 1 = 1 1 Free height at nozzle centerline : h 1 = 0 mm 65,84 mm Free height at nozzle edge : h = h 1-0.5[D s -(D s -D n ) 0.5 ] = 0 mm 63,95 mm Average free height above tube bundle or impingement plate : h = 0.5(h 1 +h ) = 0 mm 64,89 mm Requested : Dn Vs A s,min = V = 0 mm.355,1 mm 4 n D n Pt Dt calculated : A s = Dnh F 1 4 = 0 mm ,8 mm F Pt Required free height at nozzle centerline : h 1,min = 0 mm 11,47 mm RGP-RCB Bundle entrance or exit area Inlet Outlet Effective chord distance across bundle : K = Area of Impingement Plate : A p = Unrestricted longitudinal flow area : A l = Distance 1st Baffle : B s = Requested : Dn Vb A b,min = = V D OTL B K A P D F P 4 n t t calculated : A b = s s s p l B t A = Required baffle spacing : B s,min = AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

13 Pass Partition Plate. TEMA RCB Material : SA516GR60 Temperature : 60 C Allowable stress : S = 10 MPa Nominal thickness : t n = 9,5 mm Corrosion : RCB Pressure drop across plate : q = 0 MPa RCB-9.13 : t b Factor B Fixing qb Table RCB = Three sides fixed, one side simply supported 1.5S = Long sides fixed, short sides simply supported t min : Table RCB = Short sides fixed, long sides simply supported (Carbon Steel) Roark s Formulas 4 = semicircular plate, all edges fixed RCB : The plate shall be attached with fillet welds on each sides with a minimum leg of t leg = ¾ t. Front Pass Partition Plate. Fixing a b a/b B t min t t leg 1 390,56 41,61 0,93 0,675 9,50 0,00 0,00 t req = max [ max(t) ; max(t min ) ] = 9,5 mm The pass partition plate thickness is adequate. AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

14 Element(s) of geometry in internal pressure Korbbogen Type Head (30.10) Internal pressure. AD 000-Merkblätter (07-01) B3 h h 1 s e = nominal thickness v = Joint efficiency K/S = Allowable stress T = Temperature s = minimum required thickness = circular stress p = internal pressure p max = Max. allowable pressure R = equivalent inside radius p h = Hydrostatic pressure r = inside knuckle radius D a = External Diameter = 7 mm h = outside height = 186,4 mm c 1 +c = corrosion + tolerance h 1 = Knuckle Length = 18 mm Tol % = tolerance for pipes Straight flange = 50,00 mm d i (nozzle : /) s n,min = s/tol % shall be s e X CrNiMo Plate Stainless Steel Schedule : / NPS : / s e = 6,000 mm Tol % = / PWHT : No Radiography : Full Seamless Cor. = 0 mm Tol. = 0 mm TEMA RCB-3.13 = 4,76 mm Operation Horizontal test N X p (MPa) p h (MPa) T ( C) K/S (MPa) v r R 0, ,4 13, , ,600 1,151 0, , , ,600 opening factor : d i /D a design factor : (AD B3 fig 9 ((s e -c 1 -c )/D a )) Da pβ R se p Knuckle thickness : s1 c1 c Head thickness : s c1 c 4 K S v K S v p Da p Cyl. Part thickness : s3 c1 c s = max(s K S v p 1,s,s 3 ) Operation Horizontal test L.T Operation Horizontal test K/S shall be D a N X N X MAWP (104,4 C, Corroded) =, MPa R r d i d i /D a (s e -c 1 -c )/D a s 1 s s 3 0,000 0,00 8, ,989,161 1,759,173 0,000 0,00 8, ,989 1,95 1,567 1,936 s (MPa) p max (MPa) s n,min,173 47,8,,173 1,936 68,77 3,59 1,936 MAWP (0 C, new) =,51 MPa AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

15 Conical shell (30.4) internal pressure. AD 000-Merkblätter (07-01) B s n = nominal thickness = 6,00 mm r = Knuckle radius at large end = 0,00 mm p = internal pressure = Half angle = 30 Flare radius at small end = 0,00 mm K/S = Nominal stress T = Temperature D a1 = Large end diameter = 710,00 mm v = Joint efficiency Cone height = 547,85 mm Small end diameter = 393,70 mm c 1 +c = corrosion + tolerance X CrNiMo Plate PWHT : No Radiography : 10% Scope of application sc 1 c / D a r / D a Required thickness of cone. s g = D K p/( K/S vp) (1 / cos)+c 1 +c D = D (s +r(1cos)+x sin) K a1 l p (MPa) T ( C) K/S (MPa) c 1 +c v D k s g Large end Operation Horizontal test 0,8 1, ,4 0 13,67 14,9 0,00+0,00 0,00+0,00 0,85 0,85 676,66 678,5,78,48 Small end Operation 0,8 104,4 13,67 0,00+0,00 0,85 434,84 1,79 Horizontal test 1, ,9 0,00+0,00 0,85 433,81 1,59 MAWP (104,4 C, Corroded) = 1,81 MPa MAWP (0 C, new) =,05 MPa large end junction without knuckle. x 1 x sl Da1 s l DK s g s l : ( AD B Fig ) x 1 Da1 sl c1 c s c cos x.7 Da1 l 1 c 0 x3 0. 5x1 Operation Horizontal test N X s l D a1 x 1 x x 3 3,57 7,00 50,78 38,0 5,39 3,3 7,00 48,97 36,83 4, Small end junction. D a1 Operation Horizontal test x 1 N X 1.4 x s g s l D K s l : ( AD B Fig. 3.8 ) x 1 Da1 sl c1 c s c cos x.7 Da1 l 1 c 0 x3 0. 5x1 s l D a1 x 1 x x 3,63 405,70 3,67 4,57 16,33,41 405,70 31,8 3,53 15,64 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

16 Korbbogen Type Head (5.1) Internal pressure. AD 000-Merkblätter (07-01) B3 h h 1 s e = nominal thickness v = Joint efficiency K/S = Allowable stress T = Temperature s = minimum required thickness = circular stress p = internal pressure p max = Max. allowable pressure R = equivalent inside radius p h = Hydrostatic pressure r = inside knuckle radius D a = External Diameter = 406,4 mm h = outside height = 106,54 mm c 1 +c = corrosion + tolerance h 1 = Knuckle Length = 4 mm Tol % = tolerance for pipes Straight flange = 50,00 mm d i (nozzle : /) s n,min = s/tol % shall be s e P65GH Plate Carbon Steel Schedule : / NPS : / s e = 8,000 mm Tol % = / PWHT : No Radiography : Full Seamless Cor. = 0 mm Tol. = 0 mm TEMA RCB-3.13 = 7,938 mm Operation Horizontal test N X p (MPa) p h (MPa) T ( C) K/S (MPa) v r R 1, ,33 1 6,586 35,10,155 0, ,38 1 6,586 35,10 opening factor : d i /D a design factor : (AD B3 fig 9 ((s e -c 1 -c )/D a )) Da pβ R se p Knuckle thickness : s1 c1 c Head thickness : s c1 c 4 K S v K S v p Da p Cyl. Part thickness : s3 c1 c s = max(s K S v p 1,s,s 3 ) Operation Horizontal test L.T Operation Horizontal test K/S shall be D a N X N X MAWP (60 C, Corroded) = 4,95 MPa R r d i d i /D a (s e -c 1 -c )/D a s 1 s s 3 0,000 0,00 1, ,8 1,779 1,617 1,968 0,000 0,00 1, ,8 1,560 1,418 1,76 s (MPa) p max (MPa) s n,min 1,968 9,88 4,95 1,968 1,76 53,6 10,14 1,76 MAWP (0 C, new) = 7,1 MPa AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

17 Cylindrical shell under internal pressure. AD-Merkblatt B1 et B 10 p = internal pressure K/S = Nominal stress T = temperature in operation D a = External Diameter D i = Internal Diameter v = Joint efficiency s e = nominal thickness c = corrosion + tolerance tol = tolerance for pipes = circular stress va = stress on the outer surface vi = stress on the inner surface s = required wall thickness including allowances s e shall be s s = (e c) tol e = minimum required thickness to withstand to pressure K/S shall be e u = (s e tol) c If D a /D i 1, or If Pipe (with D a 00mm) And D a /D i 1,7 e = D a.p / (K/S.vp) = (D a.p / e u p) / ( v) If D a /D i 1,5 e = D a.p / (,3K/Sp) vi = p (D a + e u ) / (,3 e u ) va = p (D a -3.e u ) / (,3 e u ) = max( vi va ) Shell (0) : (Barrel) X CrNiMo Plate Stainless Steel Schedule : / NPS : / s e = 6,000 mm D i = 710,00 mm Tol % = / PWHT : No Radiography : Spot D a = 7,00 mm Cor. = 0 mm Tol. = 0 mm TEMA RCB-3.13 = 4,76 mm p (MPa) p h (MPa) T ( C) Operation N 0, ,4 Horizontal test X 1,151 0,007 0 MAWP (to 104,4 C, corroded) = 1,89 MPa K/S (MPa) 13,67 14,9 v e u (MPa) p a (MPa) e s 0,85 0,85 6,000 6,000 56,16 80,79 1,89 3,05 PMA (to 0 C, new) =,14 MPa,55,74,55,74 Shell (04) : (Barrel) X CrNiMo Seamless pipe Stainless Steel Schedule : 10 NPS : 16 s e = 6,350 mm D i = 393,70 mm Tol % = 7/8 (1.5%) PWHT : No Radiography : Full D a = 406,40 mm Cor. = 0 mm Tol. = 0 mm TEMA RCB-3.13 = 3, mm p (MPa) p h (MPa) T ( C) Operation N 0, ,4 Horizontal test X 1,1509 0, MAWP (to 104,4 C, corroded) = 3,68 MPa K/S (MPa) 13,67 14,9 v e u (MPa) p a (MPa) e s 1 1 5,556 5,556 8,86 41,51 3,68 5,94 PMA (to 0 C, new) = 4,16 MPa 1, 1,088 1,396 1,44 Shell (10) : 5.06 (Barrel) P65GH Seamless pipe Carbon Steel Schedule : 0 NPS : 16 s e = 7,90 mm D i = 390,56 mm Tol % = 7/8 (1.5%) PWHT : No Radiography : Full D a = 406,40 mm Cor. = Tol. = 0 mm TEMA RCB-3.13 = 7,9 mm p (MPa) p h (MPa) T ( C) Operation N 1, 0 Horizontal test X,155 0,0038 MAWP (to 60 C, corroded) =,08 MPa 3,175 mm 60 0 K/S (MPa) 111,73 5,38 v e u (MPa) p a (MPa) e s 1 1 3,755 3,755 64,34 115,4,08 4,71 PMA (to 0 C, new) = 6,13 MPa,171 1,76 6,109 5,601 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

18 Body flange(s) and cover(s) Body Flange and Cover 5.01 in operation. AD 000-Merkblätter (07-01) B8 Integral with hub Design Pressure p = 1, MPa Corrosion : 3,17 mm Design Temperature T = 60 C Tolerance : 1,6 mm Flange K/S = 104 MPa K 0 /S = 04,76 MPa Material : P65GH E = MPa E 0 = MPa d i = 390,56 mm d a = 515 mm h = 3 mm s F = 1 mm h 1 = 35 mm d 4 = / Raised face (female) height : 5 mm Bolt Material : SA193GRB7 K B /S B = 338,89 MPa K B0 /S B = 556,9 MPa n = 0 = 1 d t = 473 mm d L = 17,5 mm d = 16 mm d K = 14,13 mm S D = 1, Shell K v /S v = 111,73 MPa K V0 /S V = 176,67 MPa d i = 390,56 mm s 1 = 7,9 mm d D = 406,91 mm b = 10 mm h D = 3 mm d Dext = 416,91 mm Gasket b D0 = 10 mm b D = 10 mm k 0 = / k 1 = 5 mm K D0 = / K D = / k 0 K D = 10 N/mm X = / Corroded dimensions h F = 5,4 mm h A = 60,4 mm d i = 396,91 mm s 1 = 4,74 mm s F = 8,8 mm FRB pd i 4 = ,6 dan FFB pd D di 4 = 757,6 dan FDB pd DSDk1 = 90,4 dan FSB FRB FFB FDB = 16.55,6 dan F D = πd D k 0 K D = / FDV d Dk0KD = 1.78,3 dan F * : F F = / FDV FSB : FDV FDV= 1.78,3 dan * DV FSB FDV 0.FDV 0. 8 SBX F SB max DV SB * F = 16.55,6 dan DVX F DV max Bolting F = 1.78,3 dan Actual bolt cross-section : S n 4 = mm Z 4 S Required area : F K / S BN d a a D BN D c 4 req d t d D SB B B B d K S = 487,64 mm D S πn = 5,57 mm c 5 = 3 mm (Z(F SB /(Kn)) 0.5 0) S n = 1.154,13 mm S BNE FDV K B0 / SB0 =,95 mm 5 h h F h A A-A s F d L h 1 B-B a d i s 1 B SR =d t /n = 74,3 mm B SX = 5d L = 87,5 mm B S min = 45 mm F SO = F DVX = 1.78,3 dan F SOmax = VO b D d D = 1.783,5 dan DIN 8090: VO = 10 MPa Fs max = BO b D d D = 1.783,5 dan DIN 8090: BO = 10 MPa F S = F SO (F RB +F FB ) = ,8 dan Bolt Load : F SO /n = 63,9 dan Real bolt stresses : F SBX /S B = 5,7 MPa F SO /S B = 4,1 MPa Design parameters v = 0,6 d L = vd L = 10,55 mm b = d a d i d L = 96,98 mm s F = min(s F,h F /3) = 8,47 mm s m = (s F +s 1 )/ = 6,78 mm B 1 = (h A h F )/h F = 1,378 > 1 (s F +s 1 )/b = 0,14 Configuration out of the scope B = (1+B 1 s m /b)/(1+s m (B 1 + B 1 )/b) = / Z = (d i +s F )s F = 9.059, mm 3 Z 1 = 0.75 (d i +s 1 )s 1 = 6.78,45 mm 3 a A = (d t d i s F )/ = 33,81 mm a D = (d t d D )/ =33,04 mm a B = (d t d i s 1 )/ = 35,67 mm req 4 BN AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

19 Design for bolting-up condition K/S = K 0 /S' F = F DV Section A-A Section B-B FS W a D =.063,03 mm 3 FS W a D =.063,03 mm 3 K K 1.7W Z 1.7W Z hf = 0 mm 1 hf B b b = / DIN 505 (14a) W 505 = / DIN 505 (14b) W 505 = ,4 mm 3 W DIN Flange deflection in the bolt circle F = 0,01 mm tan -1 ( F /a D ) = 0,0 Design for service condition K/S = K/S F = F SB Section A-A Section B-B FS W a A = 53.76,6 mm 3 FS W a B = ,45 mm 3 K K 1.7W Z 1.7W Z1 hf = 0,1 mm hf B b b = / DIN 505 (14a) W 505 = / DIN 505 (14b) W 505 = ,55 mm 3 W DIN Flange deflection in the bolt circle F = 0,15 mm tan -1 ( F /a D ) = 0,7 h Fmin = (h F ) max + tol = 1,7 mm AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

20 Body Flange and Cover in operation. AD 000-Merkblätter (07-01) B8 Integral with hub Design Pressure p = 0,8 MPa Corrosion : 0 mm Design Temperature T = 104,4 C Tolerance : 1,6 mm Flange K/S = 13,67 MPa K 0 /S = 14,9 MPa Material : X CrNiMo E = MPa E 0 = MPa d i = 393,7 mm d a = 515 mm h = 3 mm s F = 10 mm h 1 = 35 mm d 4 = / Raised face (female) height : 5 mm Material : SA193GRB7 K Bolt B /S B = 338,89 MPa K B0 /S B = 556,9 MPa n = 0 = 1 d t = 473 mm d L = 17,5 mm d = 16 mm d K = 14,13 mm S D = 1, Shell K v /S v = 13,67 MPa K V0 /S V = 150 MPa d i = 393,7 mm s 1 = 6,35 mm d D = 406,91 mm b = 10 mm h D = 3 mm d Dext = 416,91 mm Gasket b D0 = 10 mm b D = 10 mm k 0 = / k 1 = 5 mm K D0 = / K D = / k 0 K D = 10 N/mm X = / Corroded dimensions h F = 5,4 mm h A = 60,4 mm d i = 393,7 mm s 1 = 6,35 mm s F = 10 mm FRB pd i 4 = 9.738,9 dan FFB pd D di 4 = 664,5 dan FDB pd DSDk1 = 613,6 dan FSB FRB FFB FDB = dan F D = πd D k 0 K D = / FDV d Dk0KD = 1.78,3 dan F * : F F = / FDV FSB : FDV FDV= 1.78,3 dan * DV FSB FDV 0.FDV 0. 8 SBX F SB max DV SB * F = 16.55,6 dan DVX F DV max Bolting F = 1.78,3 dan Actual bolt cross-section : S n 4 = mm Z 4 S Required area : F K / S BN d a a D BN D c 4 req d t d D SB B B B d K S = 35,09 mm D S πn = 4,55 mm c 5 = 3 mm (Z(F SB /(Kn)) 0.5 0) S n = 895,3 mm S BNE FDV K B0 / SB0 =,95 mm 5 h h F h A A-A s F d L h 1 B-B a d i s 1 B SR =d t /n = 74,3 mm B SX = 5d L = 87,5 mm B S min = 45 mm F SO = F DVX = 1.78,3 dan F SOmax = VO b D d D = 1.783,5 dan DIN 8090: VO = 10 MPa Fs max = BO b D d D = 1.783,5 dan DIN 8090: BO = 10 MPa F S = F SO (F RB +F FB ) = -9.15,1 dan Bolt Load : F SO /n = 63,9 dan Real bolt stresses : F SBX /S B = 5,7 MPa F SO /S B = 4,1 MPa Design parameters v = 0,61 d L = vd L = 10,61 mm b = d a d i d L = 100,08 mm s F = min(s F,h F /3) = 8,47 mm s m = (s F +s 1 )/ = 8,18 mm B 1 = (h A h F )/h F = 1,378 > 1 (s F +s 1 )/b = 0,163 Configuration out of the scope B = (1+B 1 s m /b)/(1+s m (B 1 + B 1 )/b) = / Z = (d i +s F )s F = 8.89,09 mm 3 Z 1 = 0.75 (d i +s 1 )s 1 = 1.098,6 mm 3 a A = (d t d i s F )/ = 35,4 mm a D = (d t d D )/ =33,04 mm a B = (d t d i s 1 )/ = 36,48 mm req 4 BN AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

21 Design for bolting-up condition K/S = K 0 /S' F = F DV Section A-A Section B-B FS W a D = 1.971,33 mm 3 FS W a D = 1.971,33 mm 3 K K 1.7W Z 1.7W Z hf = 0 mm 1 hf B b b = / DIN 505 (14a) W 505 = / DIN 505 (14b) W 505 = ,8 mm 3 W DIN Flange deflection in the bolt circle F = 0,01 mm tan -1 ( F /a D ) = 0,0 Design for service condition K/S = K/S F = F SB Section A-A Section B-B FS W a A = ,49 mm 3 FS W a B = ,8 mm 3 K K 1.7W Z 1.7W Z1 hf = 16,49 mm hf B b b = / DIN 505 (14a) W 505 = / DIN 505 (14b) W 505 = ,6 mm 3 W DIN Flange deflection in the bolt circle F = 0,17 mm tan -1 ( F /a D ) = 0,9 h Fmin = (h F ) max + tol = 18,09 mm AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

22 Body Flange and Cover 5.01 in test. AD 000-Merkblätter (07-01) B8 Integral with hub Design Pressure p =,15 MPa Corrosion : 3,17 mm Design Temperature T = 0 C Tolerance : 1,6 mm Flange K/S = 04,76 MPa K 0 /S = 04,76 MPa Material : P65GH E = MPa E 0 = MPa d i = 390,56 mm d a = 515 mm h = 3 mm s F = 1 mm h 1 = 35 mm d 4 = / Raised face (female) height : 5 mm Bolt Material : SA193GRB7 K B /S B = 556,9 MPa K B0 /S B = 556,9 MPa n = 0 = 1 d t = 473 mm d L = 17,5 mm d = 16 mm d K = 14,13 mm S D = 1, Shell K v /S v = 5,38 MPa K V0 /S V = 176,67 MPa d i = 390,56 mm s 1 = 7,9 mm d D = 406,91 mm b = 10 mm h D = 3 mm d Dext = 416,91 mm Gasket b D0 = 10 mm b D = 10 mm k 0 = / k 1 = 5 mm K D0 = / K D = / k 0 K D = 10 N/mm X = / Corroded dimensions h F = 5,4 mm h A = 60,4 mm d i = 396,91 mm s 1 = 4,74 mm s F = 8,8 mm FRB pd i 4 = 6.63,7 dan FFB pd D di 4 = 1.358,9 dan FDB pd DSDk1 = dan FSB FRB FFB FDB = 9.64,6 dan F D = πd D k 0 K D = / FDV d Dk0KD = 1.78,3 dan F * : F F = / FDV FSB : FDV FDV = 1.78,3 dan * DV FSB FDV 0.FDV 0. 8 SBX F SB max F = 9.64,6 dan Actual bolt cross-section : S n 4 = mm DV SB B d K Required area : F K / K B0 S = 53,6 mm BN SB B0 B SR =d t /n = 74,3 mm B SX = 5d L = 87,5 mm B Smin = 45 mm F SOmax = VO b D d D = 1.783,5 dan F S = F SO (F RB +F FB ) = , dan Real bolt stresses : F SBX /S B = 94,6 MPa DIN 8090: VO = 10 MPa Design parameters v = 0,6 d L = vd L = 10,55 mm b = d a d i d L = 96,98 mm s F = min(s F,h F /3) = 8,47 mm s m = (s F +s 1 )/ = 6,78 mm B 1 = (h A h F )/h F = 1,378 > 1 (s F +s 1 )/b = 0,14 Configuration out of the scope B = (1+B 1 s m /b)/(1+s m (B 1 + B 1 )/b) = / Z = (d i +s F )s F = 9.059, mm 3 Z 1 = 0.75 (d i +s 1 )s 1 = 6.78,45 mm 3 a A = (d t d i s F )/ = 33,81 mm a D = (d t d D )/ =33,04 mm a B = (d t d i s 1 )/ = 35,67 mm Design for service condition K/S = K/S F = F SB Section A-A Section B-B FS W a A = ,77 mm 3 FS W a B = ,6 mm 3 K K h F d a a D d t d D 1.7W Z = 18,48 mm b h h F h A A-A s F d L h 1 B-B a d i s 1 1.7W Z B = / b 1 hf DIN 505 (14a) W 505 = / DIN 505 (14b) W 505 = ,77 mm 3 W DIN Flange deflection in the bolt circle F = 0,5 mm tan -1 ( F /a D ) = 0,44 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

23 Body Flange and Cover in test. AD 000-Merkblätter (07-01) B8 Integral with hub Design Pressure p = 1,15 MPa Corrosion : 0 mm Design Temperature T = 0 C Tolerance : 1,6 mm Flange K/S = 14,9 MPa K 0 /S = 14,9 MPa Material : X CrNiMo E = MPa E 0 = MPa d i = 393,7 mm d a = 515 mm h = 3 mm s F = 10 mm h 1 = 35 mm d 4 = / Raised face (female) height : 5 mm Material : SA193GRB7 K Bolt B /S B = 556,9 MPa K B0 /S B = 556,9 MPa n = 0 = 1 d t = 473 mm d L = 17,5 mm d = 16 mm d K = 14,13 mm S D = 1, Shell K v /S v = 14,9 MPa K V0 /S V = 150 MPa d i = 393,7 mm s 1 = 6,35 mm d D = 406,91 mm b = 10 mm h D = 3 mm d Dext = 416,91 mm Gasket b D0 = 10 mm b D = 10 mm k 0 = / k 1 = 5 mm K D0 = / K D = / k 0 K D = 10 N/mm X = / Corroded dimensions h F = 5,4 mm h A = 60,4 mm d i = 393,7 mm s 1 = 6,35 mm s F = 10 mm FRB pd i 4 = ,7 dan FFB pd D di 4 = 956 dan FDB pd DSDk1 = 88,7 dan FSB FRB FFB FDB = ,4 dan F D = πd D k 0 K D = / FDV d Dk0KD = 1.78,3 dan * F : FDVFSB = / FDV FSB : FDV FDV = 1.78,3 dan F = 9.64,6 dan * DV FSB FDV 0.FDV 0. 8 SBX F SB max Actual bolt cross-section : S n 4 = mm B d K Required area : F K / K B0 S = 84,59 mm BN SB B0 B SR =d t /n = 74,3 mm B SX = 5d L = 87,5 mm B Smin = 45 mm F SOmax = VO b D d D = 1.783,5 dan F S = F SO (F RB +F FB ) = ,3 dan Real bolt stresses : F SBX /S B = 94,6 MPa DIN 8090: VO = 10 MPa Design parameters v = 0,61 d L = vd L = 10,61 mm b = d a d i d L = 100,08 mm s F = min(s F,h F /3) = 8,47 mm s m = (s F +s 1 )/ = 8,18 mm B 1 = (h A h F )/h F = 1,378 > 1 (s F +s 1 )/b = 0,163 Configuration out of the scope B = (1+B 1 s m /b)/(1+s m (B 1 + B 1 )/b) = / Z = (d i +s F )s F = 8.89,09 mm 3 Z 1 = 0.75 (d i +s 1 )s 1 = 1.098,6 mm 3 a A = (d t d i s F )/ = 35,4 mm a D = (d t d D )/ =33,04 mm a B = (d t d i s 1 )/ = 36,48 mm Design for service condition K/S = K/S F = F SB Section A-A Section B-B FS W a A = 48.99,51 mm 3 FS W a B = ,5 mm 3 K K h F d a a D d t d D 1.7W Z = 18,7 mm b h h F h A A-A s F d L h 1 B-B a d i s 1 1.7W Z B = / b 1 hf DIN 505 (14a) W 505 = / DIN 505 (14b) W 505 = ,8 mm 3 W DIN Flange deflection in the bolt circle F = 0,9 mm tan -1 ( F /a D ) = 0,51 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

24 Body Flange and Cover 3903 in test. AD 000-Merkblätter (07-01) B8 Backing Flange Design Pressure p =,15 MPa Corrosion : 0 mm Design Temperature T = 0 C Tolerance : 1,6 mm Flange K/S = 33,33 MPa K 0 /S = 33,33 MPa Material : P65GH E = MPa E 0 = MPa d i = 393,7 mm d a = 515 mm h = 3 mm s F = / h 1 = / d 4 = 416,91 mm Flat face Bolt Material : SA193GRB7 K B /S B = 556,9 MPa K B0 /S B = 556,9 MPa n = 0 = 1 d t = 473 mm d L = 17,5 mm d = 16 mm d K = 14,13 mm S D = 1, Shell K v /S v = 14,9 MPa K V0 /S V = 150 MPa d i = 0 mm s 1 = 0 mm d D = 406,91 mm b = 10 mm h D = 3 mm d Dext = 416,91 mm Gasket b D0 = 10 mm b D = 10 mm k 0 = / k 1 = 5 mm K D0 = / K D = / k 0 K D = 10 N/mm X = / Corroded dimensions h F = 30,4 mm h A = / d = / s 1 = / s F = / FRB pd i 4 = 6.03,6 dan FFB pd D di 4 = 1.787,9 dan FDB pd DSDk1 = dan FSB FRB FFB FDB = 9.64,6 dan F D = πd D k 0 K D = / FDV d Dk0KD = 1.78,3 dan F * : F F = / FDV FSB : FDV FDV= 1.78,3 dan * DV FSB FDV 0.FDV 0. 8 SBX F SB max DV SB * F = 9.64,6 dan DVX F DV max Bolting F = 1.78,3 dan Actual bolt cross-section : S n 4 = mm Z 4 S Required area : F K / S BN d a d t BN D c 4 req a SB B B B d K S = 53,6 mm D S πn = 5,8 mm c 5 = 3 mm (Z(F SB /(Kn)) 0.5 0) S n = 53,6 mm S BNE FDV K B0 / SB0 =,95 mm 5 h F d i d L B SR =d t /n = 74,3 mm B SX = 5d L = 87,5 mm B S min = 45 mm F SO = User Defined = 1.78,3 dan > F DV F SOmax = VO b D d D = 1.783,5 dan DIN 8090: VO = 10 MPa Fs max = BO b D d D = 1.783,5 dan DIN 8090: BO = 10 MPa F S = F SO (F RB +F FB ) = , dan Bolt Load : F SO /n = 63,9 dan Real bolt stresses : F SBX /S B = 94,6 MPa F SO /S B = 4,1 MPa Design parameters v = 0,61 d L = vd L = 10,61 mm b = d a d i d L = 100,08 mm a = (d t d 4 )/ = 8,04 mm a = (d t d i s 1 )/ = / a D = (d t d 4 )/ = 8,04 mm req 4 BN Design for bolting-up condition K/S = K 0 /S' F = F DV W FS a K D = 1.536,48 mm 3 1.7W hf b Design for service condition K/S = K/S F = F SB W FS a K = 35.68,9 mm 3 1.7W hf b = 4,4 mm = 1,6 mm F pf 1. 7 d SB 4 di = 0,01 MPa 5 MPa AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

25 Tubesheet(s) and Expansion Joint Tubesheet, Loading conditions 1 [corroded normal condition] AD 000-Merkblatt B 5, AD B5 ch 6.7. Plate Tubeside Shellside Tubes Tubeside Shellside Pressure p i = 1, MPa p u = 0,8 MPa Corrosion c i = 3,17 mm c u = 0 mm Material X CrNiMo XCrNiMo17-1- Design Temperature 60 C 60 C / / Nominal stress K/S = 103,1 MPa K 0 /S 0 = / K t /S t = 100,9 MPa / / Modulus of elasticity E = MPa E t = MPa / / Nominal thicknesses s a = 43 mm s t =,11 mm 3,76 mm 5,56 mm Diameter D a = 416,91 mm d a =5,4 mm d i =1,18 m m D It = 398,89 mm D Ic = 395,9 mm Tolerance c 1 = 1,6 mm Pattern Rotated Triangular n = 56 A ro = / t = 31,75 mm l A = / d t D It s R d Dt s a D Ic d Dc Tubeside Shellside Design Diameter : D 1t = 406,91 mm D 1c = 406,91 mm Partition groove depth : 0 mm 5 mm d t = 473 mm d Dc = 406,91 mm Peripheral extra thicknesses : 10 mm Central extra thicknesses xx: 5 mm Design parameters Exp. Length : l * w * d a max d a Et st E * t da Ligament efficiency v Tube cross-section : At t Kt K da di 4 * l w s d a ; 1. l * w d * a v A t stationary Tubesheet 1 mm 4,5 mm 0, ,5 mm Calculation of tube loads di πpi di πp Tensile load / inner tube : Fti Compressive load / inner tube : F i ci 4 4 Maximum load / tube F R = max (F ti, F ci ) F ti F ci F R 43 N 0 N 43 N Calculation of admissible loads per tube In tensile/compressive case : FTX At Kt St = N F R F TX Tube-to-Tubesheet Joint Minimum expanded length : -Even l w1 = F R / [150 min(d a d i, 0.1d a )] -With groove l w = F R / [300 min(d a d i, 0.1d a )] -With flange l w3 = F R / [400 min(d a d i, 0.1d a )] Welded tubes : -Minimum thickness of welded joints g = 0.4(F R S)/(d a K) l w1 l w l w3 g 1,11 mm 0,56 mm 0,4 mm / Connection-manufacturing must respect code rules (AD B : l w mini = 1 mm) AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

26 Theoretical thickness at center of tubesheet TABLE 1 fig g 1 4 k 1 s D CD ps Kv s 1 1 Shellside Tubeside C d t /d D C 1 s 1 s = (s 1 ) max 0,4 / / / 9,5 mm 36,13 mm 0,4 / / / 36,13 mm Required thickness at peripheral part of tubesheet At the level of the stress-relieving grooves D1c 1.3S D1t 1.3S sr1 p rc s p rt K K R s 0. s xx c R 7 s R1 s R s R / / 9,91 mm 1 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

27 Tubesheet, Loading conditions [corroded normal condition] AD 000-Merkblatt B 5, AD B5 ch 6.7. Plate Tubeside Shellside Tubes Tubeside Shellside Pressure p i = 1, MPa p u = 0 MPa Corrosion c i = 3,17 mm c u = 0 mm Material X CrNiMo XCrNiMo17-1- Design Temperature 60 C 60 C / / Nominal stress K/S = 103,1 MPa K 0 /S 0 = / K t /S t = 100,9 MPa / / Modulus of elasticity E = MPa E t = MPa / / Nominal thicknesses s a = 43 mm s t =,11 mm 3,76 mm 5,56 mm Diameter D a = 416,91 mm d a =5,4 mm d i =1,18 m m D It = 398,89 mm D Ic = 395,9 mm Tolerance c 1 = 1,6 mm Pattern Rotated Triangular n = 56 A ro = / t = 31,75 mm l A = / d t D It s R d Dt s a D Ic d Dc Tubeside Shellside Design Diameter : D 1t = 406,91 mm D 1c = 406,91 mm Partition groove depth : 0 mm 5 mm d t = 473 mm d Dc = 406,91 mm Peripheral extra thicknesses : 10 mm Central extra thicknesses xx: 5 mm Design parameters Exp. Length : l * w * d a max d a Et st E * t da Ligament efficiency v Tube cross-section : At t Kt K da di 4 * l w s d a ; 1. l * w d * a v A t stationary Tubesheet 1 mm 4,5 mm 0, ,5 mm Calculation of tube loads di πpi di πp Tensile load / inner tube : Fti Compressive load / inner tube : F i ci 4 4 Maximum load / tube F R = max (F ti, F ci ) F ti F ci F R 43 N 0 N 43 N Calculation of admissible loads per tube In tensile/compressive case : FTX At Kt St = N F R F TX Tube-to-Tubesheet Joint Minimum expanded length : -Even l w1 = F R / [150 min(d a d i, 0.1d a )] -With groove l w = F R / [300 min(d a d i, 0.1d a )] -With flange l w3 = F R / [400 min(d a d i, 0.1d a )] Welded tubes : -Minimum thickness of welded joints g = 0.4(F R S)/(d a K) l w1 l w l w3 g 1,11 mm 0,56 mm 0,4 mm / Connection-manufacturing must respect code rules (AD B : l w mini = 1 mm) AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

28 Theoretical thickness at center of tubesheet TABLE 1 fig g 1 4 k 1 s D CD ps Kv s 1 1 C d t /d D C 1 s 1 s = (s 1 ) max Tubeside 0,4 / / / 36,13 mm 36,13 mm Required thickness at peripheral part of tubesheet At the level of the stress-relieving grooves D1c 1.3S D1t 1.3S sr1 p rc s p rt K K R sr 0. 7s xx c1 s R1 s R s R / / 9,91 mm AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

29 Tubesheet, Loading conditions 3 [corroded normal condition] AD 000-Merkblatt B 5, AD B5 ch 6.7. Plate Tubeside Shellside Tubes Tubeside Shellside Pressure p i = 0 MPa p u = 0,8 MPa Corrosion c i = 3,17 mm c u = 0 mm Material X CrNiMo XCrNiMo17-1- Design Temperature 60 C 60 C / / Nominal stress K/S = 103,1 MPa K 0 /S 0 = / K t /S t = 100,9 MPa / / Modulus of elasticity E = MPa E t = MPa / / Nominal thicknesses s a = 43 mm s t =,11 mm 3,76 mm 5,56 mm Diameter D a = 416,91 mm d a =5,4 mm d i =1,18 m m D It = 398,89 mm D Ic = 395,9 mm Tolerance c 1 = 1,6 mm Pattern Rotated Triangular n = 56 A ro = / t = 31,75 mm l A = / d t D It s R d Dt s a D Ic d Dc Tubeside Shellside Design Diameter : D 1t = 406,91 mm D 1c = 406,91 mm Partition groove depth : 0 mm 5 mm d t = 473 mm d Dc = 406,91 mm Peripheral extra thicknesses : 10 mm Central extra thicknesses xx: 5 mm Design parameters Exp. Length : l * w * d a max d a Et st E * t da Ligament efficiency v Tube cross-section : At t Kt K da di 4 * l w s d a ; 1. l * w d * a v A t stationary Tubesheet 1 mm 4,5 mm 0, ,5 mm Calculation of tube loads di πpi di πp Tensile load / inner tube : Fti Compressive load / inner tube : F i ci 4 4 Maximum load / tube F R = max (F ti, F ci ) F ti F ci F R 0 N 0 N 0 N Calculation of admissible loads per tube In tensile/compressive case : FTX At Kt St = N F R F TX Tube-to-Tubesheet Joint Minimum expanded length : -Even l w1 = F R / [150 min(d a d i, 0.1d a )] -With groove l w = F R / [300 min(d a d i, 0.1d a )] -With flange l w3 = F R / [400 min(d a d i, 0.1d a )] Welded tubes : -Minimum thickness of welded joints g = 0.4(F R S)/(d a K) l w1 l w l w3 g 0 mm 0 mm 0 mm / Connection-manufacturing must respect code rules (AD B : l w mini = 1 mm) AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

30 Theoretical thickness at center of tubesheet TABLE 1 fig g 1 4 k 1 s D CD ps Kv s 1 1 C d t /d D C 1 s 1 s = (s 1 ) max Shellside 0,4 / / / 9,5 mm 9,5 mm Required thickness at peripheral part of tubesheet At the level of the stress-relieving grooves D1c 1.3S D1t 1.3S sr1 p rc s p rt K K R sr 0. 7s xx c1 s R1 s R s R / / 5,7 mm AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

31 Tubesheet, Loading conditions T0 [test condition] AD 000-Merkblatt B 5, AD B5 ch 6.7. Plate Tubeside Shellside Tubes Tubeside Shellside Pressure p p i = 0 MPa u = 1,144 MPa Corrosion c i = 3,17 mm c u = 0 mm Material X CrNiMo XCrNiMo17-1- Design Temperature 0 C 0 C / / Nominal stress K/S = 14,3 MPa K 0 /S 0 = / K t /S t = 14,3 MPa / / Modulus of elasticity E = MPa E t = MPa / / Nominal thicknesses s a = 43 mm s t =,11 mm 3,76 mm 5,56 mm Diameter D a = 416,91 mm d a =5,4 mm d i =1,18 m m D It = 398,89 mm D Ic = 395,9 mm Tolerance c 1 = 1,6 mm Pattern Rotated Triangular n = 56 A ro = / t = 31,75 mm l A = / d t D It s R d Dt s a D Ic d Dc Tubeside Shellside Design Diameter : D 1t = 406,91 mm D 1c = 406,91 mm Partition groove depth : 0 mm 5 mm d t = 473 mm d Dc = 406,91 mm Peripheral extra thicknesses : 10 mm Central extra thicknesses xx: 5 mm Design parameters Exp. Length : l * w * d a max d a Et st E * t da Ligament efficiency v Tube cross-section : At t Kt K da di 4 * l w s d a ; 1. l * w d * a v A t stationary Tubesheet 1 mm 4, mm 0, ,5 mm Calculation of tube loads di πpi di πp Tensile load / inner tube : Fti Compressive load / inner tube : F i ci 4 4 Maximum load / tube F R = max (F ti, F ci ) F ti F ci F R 0 N 0 N 0 N Calculation of admissible loads per tube In tensile/compressive case : FTX At Kt St = N F R F TX Tube-to-Tubesheet Joint Minimum expanded length : -Even l w1 = F R / [150 min(d a d i, 0.1d a )] -With groove l w = F R / [300 min(d a d i, 0.1d a )] -With flange l w3 = F R / [400 min(d a d i, 0.1d a )] Welded tubes : -Minimum thickness of welded joints g = 0.4(F R S)/(d a K) l w1 l w l w3 g 0 mm 0 mm 0 mm / Connection-manufacturing must respect code rules (AD B : l w mini = 1 mm) AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

32 Theoretical thickness at center of tubesheet TABLE 1 fig g 1 4 k 1 s D CD ps Kv s 1 1 C d t /d D C 1 s 1 s = (s 1 ) max Shellside 0,4 / / / 4,43 mm 4,43 mm Required thickness at peripheral part of tubesheet At the level of the stress-relieving grooves D1c 1.3S D1t 1.3S sr1 p rc s p rt K K R sr 0. 7s xx c1 s R1 s R s R / / 1,7 mm AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

33 Tubesheet, Loading conditions 0T [test condition] AD 000-Merkblatt B 5, AD B5 ch 6.7. Plate Tubeside Shellside Tubes Tubeside Shellside Pressure p i =,149 MPa p u = 0 MPa Corrosion c i = 3,17 mm c u = 0 mm Material X CrNiMo XCrNiMo17-1- Design Temperature 0 C 0 C / / Nominal stress K/S = 14,3 MPa K 0 /S 0 = / K t /S t = 14,3 MPa / / Modulus of elasticity E = MPa E t = MPa / / Nominal thicknesses s a = 43 mm s t =,11 mm 3,76 mm 5,56 mm Diameter D a = 416,91 mm d a =5,4 mm d i =1,18 m m D It = 398,89 mm D Ic = 395,9 mm Tolerance c 1 = 1,6 mm Pattern Rotated Triangular n = 56 A ro = / t = 31,75 mm l A = / d t D It s R d Dt s a D Ic d Dc Tubeside Shellside Design Diameter : D 1t = 406,91 mm D 1c = 406,91 mm Partition groove depth : 0 mm 5 mm d t = 473 mm d Dc = 406,91 mm Peripheral extra thicknesses : 10 mm Central extra thicknesses xx: 5 mm Design parameters Exp. Length : l * w * d a max d a Et st E * t da Ligament efficiency v Tube cross-section : At t Kt K da di 4 * l w s d a ; 1. l * w d * a v A t stationary Tubesheet 1 mm 4, mm 0, ,5 mm Calculation of tube loads di πpi di πp Tensile load / inner tube : Fti Compressive load / inner tube : F i ci 4 4 Maximum load / tube F R = max (F ti, F ci ) F ti F ci F R 757 N 0 N 757 N Calculation of admissible loads per tube In tensile/compressive case : FTX At Kt St = N F R F TX Tube-to-Tubesheet Joint Minimum expanded length : -Even l w1 = F R / [150 min(d a d i, 0.1d a )] -With groove l w = F R / [300 min(d a d i, 0.1d a )] -With flange l w3 = F R / [400 min(d a d i, 0.1d a )] Welded tubes : -Minimum thickness of welded joints g = 0.4(F R S)/(d a K) l w1 l w l w3 g 1,99 mm 0,99 mm 0,75 mm / Connection-manufacturing must respect code rules (AD B : l w mini = 1 mm) AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

34 Theoretical thickness at center of tubesheet TABLE 1 fig g 1 4 k 1 s D CD ps Kv s 1 1 C d t /d D C 1 s 1 s = (s 1 ) max Tubeside 0,4 / / / 33,47 mm 33,47 mm Required thickness at peripheral part of tubesheet At the level of the stress-relieving grooves D1c 1.3S D1t 1.3S sr1 p rc s p rt K K R sr 0. 7s xx c1 s R1 s R s R / / 8,05 mm AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

35 Tubes of the bundle. Tube of bundle in internal pressure. Material : XCrNiMo17-1- Seamless tube temperature in operation : T = 60 C Joint efficiency : v = 1 Stainless Steel Nominal thickness : s e =,11 mm External Diameter : D a = 5,40 mm p = internal pressure K/S = Allowable stress c = corrosion + tolerance e = minimum required thickness = circular stress p max = maximum allowable pressure Horizontal test Operation p (MPa) K/S (MPa) e+c (MPa) c p max (MPa), ,9 0,34 13,31 0,1 34,5953 1, 100,93 0,36 7,43 0,1 16,951 Minimum U-Bends thickness TEMA RCB-.31 : t o = t 1 [1+d o /(4R)] = 0,4 mm (R = 38,1 mm ) Tube of bundle in external pressure. Material : XCrNiMo17-1- Seamless tube p = External Pressure t = Temperature Stainless Steel K/S= Allowable stress E = modulus of elasticity = 0.3 Analysis thickness : s e = 1,90 mm External Diameter : D a = 5,40 mm c 1 +c = corrosion + tolerance AD 000-Merkblätter (07-01) [AD B 6 7] 3 K s l =.454,00 mm E s p u = 1.5% 1 = 1 e c c p = 1 1 e c c S D S a u D l D k 1 D 1 a a a 100s c c p (MPa) t ( C) K/S (MPa) E (MPa) S k c 1 +c min(p 1 ; p ) (MPa) 1, , , 0,1 4,615 0, , ,1 11,593 Minimum U-Bends thickness TEMA RCB-.31 : t o = t 1 [1+d o /(4R)] = 0,74 mm (R = 38,1 mm ) e 1 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

36 Vessel under combination loading Model for stress analysis due to supporting. Reaction per support, bending moment and shear loads is done from a beam model simply supported, one of the support is fix at left or right of the beam. The beam study use the reduction matrix method found on the Falk transmission matrix. Boundary conditions allow solving slope and moment not affected when crossing the support. External single load and moment are applied at their acting point and are considered as a discontinuity as an inertia or modulus of elasticity change. Distributed loads do not constitute a discontinuity. Reference axis are : beam x on the right, y up with positive loads down, moments > 0 from x to y. Shell own weight, liquid, and bundle are considered as distributed loads while head weight, flange and cover, floating head and nozzle are considered as concentrated loads. Termination heads are removed and replaced as a concentrated load and an external moment. The resultant of the hydrostatic pressure applied to its location also result in an external moment. For each study case, analysis is done for the vertical and/or horizontal plan. Saddle reactions and bending moment used for shell stresses check are the vector sum of the two plans. This also provides the new angle where the shell stress check must be done Thermal effects are due to the friction factor at the bottom of the saddle and results in an additional moment at the saddle location. Fixed saddle resists to all others. ( = 0,3) Principal stresses are f 1 = 0.5[ σ θ + σ z + (σ θ σ z ) + 4 ] and f = 0.5[ σ θ + σ z (σ θ σ z ) + 4 ] and general primary membrane stress intensity is σ eq = max( f 1 f ; f p ; f +0.5p ), with σ θ : circumferential stress, σ z : longitudinal stress and : shear stress. Stresses in saddle are studied in the 3 axes. For wind and earthquake design purpose, vibration period are evaluated from the general modal equation [k-ω².m] Φ = 0 and solving the eigenvectors and eigenvalues. The flexibility matrix 1/k is found from the beam analysis method, using unit loads applied one after one at the masse location. The dynamic matrix is found to be 1/g.1/k.m with g = acceleration due to gravity and m = mass matrix. Eigenvectors correspond to the natural modes and eigenvalues to their frequencies. Subtracting the contribution of the studied mode from the starting vector allows converging to higher modes Dunkerley method is used for stacked vessels. This enables to find the global circular frequency to 1/ω = /ω 1 where ω 1 is the circular frequency of one vessel. Finally the vibration period is T = π/ω AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

37 Location of dominant stresses and worst cases. Studied cases : 1 Operation Int.Max.P. (Corroded Weight) Lifting (New Weight) 3 Erected (New Weight) During test Int.Max.P. (Corroded Weight) Shutdown (Corroded Weight) During test P = 0. (Corroded Weight) () vertical downside and horizontal longitudinal to the right () vertical upside and horizontal longitudinal to the right () vertical downside and horizontal longitudinal to the left () vertical upside and horizontal longitudinal to the left () vertical downside and horizontal cross () vertical upside and horizontal cross Out the plane of the supports 1 10[01] Primary membrane stress intensity (highest point) 38,7 111,7 MPa (35%) / / Longitudinal compressive stress (highest point) / 1 10[01] Primary membrane stress intensity (lowest point) 38,6 111,7 MPa (35%) 6 0[01] Longitudinal compressive stress (lowest point) 1,8 14,3 MPa (1%) 4 0[01] Stability 0, (1%) In the plane of the supports 1 No. Primary membrane stress intensity (highest point, left) 30, 13,7 MPa (3%) 4 No. 1 Primary membrane stress intensity (highest point, right) 48,6 14,3 MPa (3%) 1 No. Primary membrane stress intensity (lowest point, left) 7, 13,7 MPa (0%) 1 No. 1 Primary membrane stress intensity (lowest point, right) 6,8 13,7 MPa (0%) / No. / Longitudinal compressive stress (highest point, left) / / No. / Longitudinal compressive stress (highest point, right) / 6 No. 1 Longitudinal compressive stress (lowest point, left) 7,5 14,3 MPa (4%) 6 No. 1 Longitudinal compressive stress (lowest point, right) 7,5 14,3 MPa (4%) 4 No. 1 Tangential shearing stress in the shell 3, 171,4 MPa (%) / No. / Tangential shearing stress in the head / 4 No. 1 Circumferential stress (compression) (edge of support) 0,6 14,3 MPa (0%) / No. / Circumferential stress (compression) (edge of the plate) / 4 No. 1 Circumferential stress (compression + bending) (edge of the support) 5, 67,9 MPa (9%) / No. / Circumferential stress (compression + bending) (edge of the plate) / / No. / Circumferential stress (compression + bending) (edge of the support + stiffener) / / No. / Circumferential stress (compression + bending) (edge of the plate + stiffener) / / No. / Circumferential stress (compression + bending) in stiffener (edge of the support) / / No. / Circumferential stress (compression + bending) in stiffener (edge of the plate) / In the supports 4 No. 1 Stress at the low point of the saddle,7 38,5 MPa (1%) 1 No. 1 Maximum bending stress 1,3 16,9 MPa (1%) / No. / Compressive stress / 1 No. 1 Bending and compression combination 0, (1%) 1 No. Tensile stress in the bolts -6,8 100 MPa (-7%) 4 No. 1 Stability (Ribs Number ) 1.059,3 8.66,5 dan (1%) 1 No. Shear stress in the bolts 1,7 100 MPa (%) AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

38 Case 1 - Operation Int.Max.P. (Corroded Weight). Moments and loads in plane of saddles. N o. Support saddles Location Stiffness (dan/mm) Reactions (dan) ,0 14,9.600,0 68,7 Vertical Horizontal Combined Shear Force (dan) -143,0 71,9-90,1 178,7 Bending moments (dan m) -94,9-137,6-151,1-108,4 Graph of bending moments and shear forces. Reactions Transverse (dan) Shear Force (dan) Bending moments (dan m) Reactions Longitudinal (dan) Reactions (dan) 0,0 0,0 0,0 75,9 14,9 0,0 0,0 0,0-75,9 68,7 Shear Force (dan) -143,0 71,9-90,1 178,7 Bending moments (dan m) -94,9-137,6-151,1-108,4 Vertical Moment Horizontal 100 dan m 1 dan m 1 Shear 100 dan 1 dan 1 Periods and Center of Gravity. Mode Center of Gravity Period 4, s 3, s 886, s 631, s 404, s mm maximum Longitudinal Bending Stresses Verification. Circumferential stress : = (P+P )R / t P : Hydrostatic pressure f t : allowable tensile stress Longitudinal stress : z = P m R / t M K 1 / R t P m : Pressure at the vessel equator f c : allowable compressive stress General primary membrane stress intensity : eq = MAX( - z ; z 0.5 P ) K 1 : Coef. EN ( ) Maximum allowable moment : M max = R t f c P max : allowable external pressure Component : 0[01] P = 0,8 MPa Maximum general primary membrane stress intensity : eq shall be f t Location M (dan m) R K 1 P m (MPa) (MPa) z (MPa) eq (MPa) v f t (MPa).599, ,1 358,0 1,94 0,80 47,73 4,68 9,50 0,85 13,67.599, ,1 358,0 1,94 0,80 47,73 3,06 9,03 0,85 13,67 Maximum longitudinal compressive stress : z < 0 z shall be MIN( f t ; f c ) Location M (dan m) R K 1 P m (MPa) z (MPa) v f t (MPa) f c (MPa) 0,0 - -1,8 358,0 1,94 0,80 3, ,67 198,65.599, ,1 358,0 1,94 0,80 3, ,67 198,65 Proof of stability : P / P max + M / M max shall be 1.0 (P > 0 P = 0) Location =.599 mm f c = 198,65 MPa M = -151,1 dan m M max = ,7 dan m P max = + MPa Stab. = 0,0031 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

39 Component : 03[0] 30.4 P = 0,8 MPa Maximum general primary membrane stress intensity : eq shall be f t Location M (dan m) R K 1 P m (MPa) (MPa) z (MPa) eq (MPa) v f t (MPa).600, ,6 358,5 1,94 0,80 47,80 8,6 33,7 0,85 13,67.600, ,6 358,5 1,94 0,80 47,80 6,9 3,15 0,85 13,67 Maximum longitudinal compressive stress : z < 0 z shall be MIN( f t ; f c ) Location M (dan m) R K 1 P m (MPa) z (MPa) v f t (MPa) f c (MPa) 3.147,8 - -4,9 00,3 1,0000 0,80 15, ,67 354, ,8 + -4,9 00,3 1,0000 0,80 15, ,67 354,1 Proof of stability : P / P max + M / M max shall be 1.0 (P > 0 P = 0) Location =.600 mm f c = 198,14 MPa M = -108,6 dan m M max = ,7 dan m P max = + MPa Stab. = 0,003 Component : 04[01] P = 0,8 MPa Maximum general primary membrane stress intensity : eq shall be f t Location M (dan m) R K 1 P m (MPa) (MPa) z (MPa) eq (MPa) v f t (MPa) 3.147,8 - -4,9 00,4 1,0000 0,80 8,86 14,78 17,86 0,85 13, ,8 + -0,7 00,4 1,0000 0,80 8,86 14,13 17,10 0,85 13,67 Maximum longitudinal compressive stress : z < 0 z shall be MIN( f t ; f c ) Location M (dan m) R K 1 P m (MPa) z (MPa) v f t (MPa) f c (MPa) 3.180,8 - -0,7 00,4 1,0000 0,80 14,7 1 13,67 38, ,8 + -4,9 00,4 1,0000 0,80 14, ,67 38,59 Proof of stability : P / P max + M / M max shall be 1.0 (P > 0 P = 0) Location = 3.147,8 mm f c = 38,59 MPa M = -4,9 dan m M max = 3.039,9 dan m P max = + MPa Stab. = 0,0011 Component : 10[01] 5.06 P = 1, MPa Maximum general primary membrane stress intensity : eq shall be f t Location M (dan m) R K 1 P m (MPa) (MPa) z (MPa) eq (MPa) v f t (MPa) 3.343,8 - -7,0 01,3 1,0130 1,0 64,34 3,3 38,73 0,85 111, ,8 + 0,0 01,3 1,0130 1,0 64,34 3,17 38,55 0,85 111,73 Maximum longitudinal compressive stress : z < 0 z shall be MIN( f t ; f c ) Location M (dan m) R K 1 P m (MPa) z (MPa) v f t (MPa) f c (MPa) 3.597,8-0,0 01,3 1,0130 1,0 3, ,73 6, ,8 + -7,0 01,3 1,0130 1,0 3, ,73 6,38 Proof of stability : P / P max + M / M max shall be 1.0 (P > 0 P = 0) Location = 3.343,8 mm f c = 6,38 MPa M = -7 dan m M max = 10.84,1 dan m P max = + MPa Stab. = 0,0006 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

40 Saddle No. 1 Calculation method : BS Zick informations Material of saddle : P65GH Pressure : pm = 0,8 MPa Horizontal reaction (longitudinal) : RaHL = 75,9 dan Horizontal reaction (cross) : RaH = 0 dan Maximum shear force : T = 143 dan Shell Head Stiffener Distance A = mm Length L = 3.47,8 mm Weight of saddle : Ws = 38, dan Vertical Load : RaV = 14,9 dan Reaction at support : Q = 14,9 dan Allowable stress f 13,7 MPa Allowable stress fr / All. compres. stress fc 13,7 MPa Thickness t1 10 mm Modulus of elasticity E MPa Width br 00 mm Thickness ts 6 mm Pad Angle ra 13,7 (not considered) Mean radius r 358 mm r = ra.arctan ( RaH / RaV) 13,7 Allowable stress fe 13,7 MPa b = b1+10ts = 30 mm Thickness te 6 mm A +1 = 13 Depth b 186, mm Yield Strength Leb 41 MPa Allowable stress ff / Width b1 170 mm Saddle Angle A 10 = A.arctan ( RaH / RaV) 10 Longitudinal stresses at the saddle pm.r M4 f3 = = 7,55 MPa / 9,1 MPa ts K1 r ts pm.r M4 f4 = = 1,8 MPa / 0,91 MPa ts Kr ts eq = 7,95 MPa / 9,61 MPa f (13,67 MPa) If f3 < 0 (Compressive) : f3 fc (13,67 MPa) eq = 5,91 MPa / 6,83 MPa f (13,67 MPa) If f4 < 0 (Compressive) : f4 fc (13,67 MPa) M 4 = -94,89 dan m / -137,57 dan m K1 = 0,107 K = 0,19 = p.r / ts (p = 0,8 MPa) shear stress K 3 = 1,1707 Circumferential stresses b = b ts = 30 mm K 5 = 0,076 K 6 = 0,059 q =K 3.T/(r.ts) = 0,78 MPa 106,13 MPa [Min(0.8 f, 0.06 E ts/r)] f 5 = - K 5.Q/(b.ts) = -0,1 MPa f 5 f f 6 = -Q/(4ts.b ) - 3K 6.Q/(ts ) = -5,1 MPa f f Design of saddle Stress due to horizontal reaction on the saddle (BS/PD5500 G ) K 9 = 0,035 H = K 9 Q = 437 N A b = 1.193,3 mm S b = H / (/3 A b ) = 0,55 MPa (90% Leb) (16,9 MPa) Bending and compression stresses I zz = 59, mm 4 S zz = I zz /v = mm 3 I xx = 14, mm 4 S xx = I xx /v = ,9 mm 3 M zz = 0 dan m Sb z = M zz / S zz M xx = 15,19 dan m Sb x = M xx / S xx Sb z = 0 MPa (90% Leb) (16,9 MPa) Sb x = 1,8 MPa (90% Leb) (16,9 MPa) A = mm f b = 160,67 MPa Sb c = Ra V / A Sb c = 0 MPa (0.8 f b ) (18,53 MPa) max(sb z ; Sb x ) / (90% Leb) + Sb c / (0.8 f b ) 1 Stability of web plate [CODAP C9.3..7] [AD S3/ 6.1.1] h b = 380,5 mm l b = 65,3 mm e ba = 10 mm E b = MPa f b = 90% Leb = 16,9 MPa b = f b 10 3 / E b x = h b / l b K b = 1,616 = 0,576 Q max = l b e ba f b = ,4 dan AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

41 Saddle No. Calculation method : BS Zick informations Material of saddle : P65GH Pressure : pm = 0,8 MPa Horizontal reaction (longitudinal) : RaHL = -75,9 dan Horizontal reaction (cross) : RaH = 0 dan Maximum shear force : T = 178,7 dan Shell Head Stiffener Distance A = 647,8 mm Length L = 3.47,8 mm Weight of saddle : Ws = 38, dan Vertical Load : RaV = 68,7 dan Reaction at support : Q = 68,7 dan Allowable stress f 13,7 MPa Allowable stress fr / All. compres. stress fc 13,7 MPa Thickness t1 10 mm Modulus of elasticity E MPa Width br 00 mm Thickness ts 6 mm Pad Angle ra 13,66 (not considered) Mean radius r 358,9 mm r = ra.arctan ( RaH / RaV) 13,66 Allowable stress fe / b = b1+10ts = 30 mm Thickness te / A +1 = 13 Depth b / Yield Strength Leb 41 MPa Allowable stress ff / Width b1 170 mm Saddle Angle A 10 = A.arctan ( RaH / RaV) 10 Longitudinal stresses at the saddle pm.r M4 f3 = = 9,77 MPa / 8,1 MPa ts K1 r ts pm.r M4 f4 = = 0,69 MPa / 1,61 MPa ts Kr ts eq = 30,17 MPa / 8,5 MPa f (13,67 MPa) If f3 < 0 (Compressive) : f3 fc (13,67 MPa) eq = 7,16 MPa / 6,5 MPa f (13,67 MPa) If f4 < 0 (Compressive) : f4 fc (13,67 MPa) M 4 = -151,1 dan m / -108,43 dan m K1 = 0,107 K = 0,19 = p.r / ts (p = 0,8 MPa) shear stress K 3 = 1,1707 Circumferential stresses b = b ts = 30 mm K 5 = 0,076 K 6 = 0,059 q =K 3.T/(r.ts) = 0,97 MPa 106,13 MPa [Min(0.8 f, 0.06 E ts/r)] f 5 = - K 5.Q/(b.ts) = -0,15 MPa f 5 f f 6 = -Q/(4ts.b ) - 3K 6.Q/(ts ) = -6,4 MPa f f Design of saddle Stress due to horizontal reaction on the saddle (BS/PD5500 G ) K 9 = 0,035 H = K 9 Q = 547 N A b = 1.196,4 mm S b = H / (/3 A b ) = 0,69 MPa (90% Leb) (16,9 MPa) Bending and compression stresses I zz = 77, mm 4 S zz = I zz /v = ,1 mm 3 I xx = 8, mm 4 S xx = I xx /v = ,3 mm 3 M zz = 0 dan m Sb z = M zz / S zz M xx = 15,19 dan m Sb x = M xx / S xx Sb z = 0 MPa (90% Leb) (16,9 MPa) Sb x = 0,79 MPa (90% Leb) (16,9 MPa) A = mm f b = 160,67 MPa Sb c = Ra V / A Sb c = 0 MPa (0.8 f b ) (18,53 MPa) max(sb z ; Sb x ) / (90% Leb) + Sb c / (0.8 f b ) 1 Stability of web plate [CODAP C9.3..7] [AD S3/ 6.1.1] h b = 381 mm l b = 66,9 mm e ba = 10 mm E b = MPa f b = 90% Leb = 16,9 MPa b = f b 10 3 / E b x = h b / l b K b = 1,613 = 0,575 Q max = l b e ba f b = ,5 dan Stresses in the bolts ( n b = ; S b = 5, mm ) Max. Tensile : bt = max{ 0 ; [ M zz / (I/v) / n b (Ra V + W S ) / n b / S b ]} = -6,8 MPa 100 MPa Max. Shear : bl = (Ra HL / n b )/ S b = 1,69 MPa 100 MPa AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

42 Maximum Allowable Working Pressure Maximum Allowable Working Pressure(Geometry). Type / Mark Diameter Thickness Max. allowable pressure Max. All. Ext. Pressure Hydrostatic pressure Operating Test Operating Test Operating Test (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) 01[06] ,0 6,0,04 3,5864 / / 0,0000 0,0070 / 0[01] ,0 6,0 1,8899 3,057 / / 0,0000 0,0070 / 03[0] ,0 6,0 1,811,970 / / 0,0000 0,0070 / 04[01] ,4 6,3 3,6779 5,9406 / / 0,0000 0,0069 / 05[18] 30.03,0004 3,310 / / 0,0000 0,0000 / 07[1].01 / / / / / / / 07[1].01 / / / / / / / 09[18] ,6114 3,177 / / 0,0000 0,0000 / 10[01] ,4 7,9,0840 4,7073 / / 0,0000 0,0038 / 11[06] ,4 8,0 4, ,1358 / / 0,0000 0,0038 / Maximum Allowable Working Pressure (Nozzles). Neck Flange Hydrostatic pressure Tag Operating Test Operating Test Operating Test (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) S 11, ,9478 0,8000 1,3000 0,0000 0,0000 / S1 0,560 33,11 0,8000 1,3000 0,0000 0,0070 / T 1,356,0698 0,8000 1,3000 0,0000 0,0038 / T1 1,356,0698 0,8000 1,3000 0,0000 0,0000 / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

43 Maximum Allowable Working Pressure (tubes of bundle). internal pressure External Pressure Operating Test Operating Test (MPa) (MPa) (MPa) (MPa) 16,951 34, ,5930 4,615 Maximum Allowable Working Pressure (compartment). Compartment maximum pressure Max. External Pressure Operating Test (shell) Shell (comp. 1) 0,800 MPa 1,90 MPa / Tube (comp. ) 1,00 MPa 3,160 MPa / / / / / Without any additional pressure due to hydrostatic height. AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

44 Isolated Opening(s) Isolated opening S [ in operation Int.P. ] (Shell Outlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Shell (No. ) Set In Pressure : p = 0,8 MPa Temperature : 104,4 C Shell Material :X CrNiMo Allowable stress : K/S = 13,67 MPa Joint efficiency : v = 0,85 Corrosion + tolerance : c 1A + c A = 0 mm Tolerance for seamless pipe : / Ext. Diameter : D a = 7 mm Nominal thickness : s e = 6 mm Nozzle Neck Material : X CrNiMo Allowable stress : K 1 /S = 13,67 MPa Corrosion : c 1S + c S = 0 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 60,3 mm Nominal thickness : s S =,77 mm DN 50 External Projection : 00 mm Internal Projection : 0 mm Schedule : 10 Inclination : 0 Eccentricity : 0 mm Flange Material : X CrNiMo Type : WN Rating : (DIN 401) 10 Height : 45 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,18 mm s A = s e + h = 6 mm h = / D i = D a - (s e - c 1A - c A ) = 710 mm ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 65,54 mm d i = d a - (s S - c 1S - c S ) = 55,45 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 90 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 14,8 mm 90 l S = 0.5 l S = / Available reinforcement area b r = 65,54 mm l Sr = 14,8 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 6,69 MPa K / S = 13,67 MPa Area II / / / / / Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

45 Isolated opening S [ in test Int.P. ] (Shell Outlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Shell (No. ) Set In Pressure : p = 1,144 MPa Temperature : 0 C Shell Material :X CrNiMo Allowable stress : K/S = 14,9 MPa Joint efficiency : v = 0,85 Corrosion + tolerance : c 1A + c A = 0 mm Tolerance for seamless pipe : / Ext. Diameter : D a = 7 mm Nominal thickness : s e = 6 mm Nozzle Neck Material : X CrNiMo Allowable stress : K 1 /S = 14,9 MPa Corrosion : c 1S + c S = 0 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 60,3 mm Nominal thickness : s S =,77 mm DN 50 External Projection : 00 mm Internal Projection : 0 mm Schedule : 10 Inclination : 0 Eccentricity : 0 mm Flange Material : X CrNiMo Type : WN Rating : (DIN 401) 10 Height : 45 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,16 mm s A = s e + h = 6 mm h = / D i = D a - (s e - c 1A - c A ) = 710 mm ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 65,54 mm d i = d a - (s S - c 1S - c S ) = 55,45 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 90 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 14,8 mm 90 l S = 0.5 l S = / Available reinforcement area b r = 65,54 mm l Sr = 14,8 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 89,65 MPa K / S = 14,9 MPa Area II / / / / / Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

46 Isolated opening S1 [ in operation Int.P. ] (Shell Outlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Cone (No. 3) Set In Pressure : p = 0,8 MPa Temperature : 104,4 C Shell Material :X CrNiMo Allowable stress : K/S = 13,67 MPa Joint efficiency : v = 0,85 Corrosion + tolerance : c 1A + c A = 0 mm Tolerance for seamless pipe : / Ext. Diameter : D a = 461,741 mm Nominal thickness : s e = 6 mm Nozzle Neck Material : X CrNiMo Allowable stress : K 1 /S = 13,67 MPa Corrosion : c 1S + c S = 0 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 33,7 mm Nominal thickness : s S =,77 mm DN 5 External Projection : 00 mm Internal Projection : 0 mm Schedule : 10 Inclination : 0 Eccentricity : 0 mm Flange Material : X CrNiMo Type : WN Rating : (DIN 401) 10 Height : 38 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,1 mm one-half apex angle : = 0,66 h = / Thickness : s A = s e + h = 6 mm D D i = e ( se c1a ca) cos di sin = 450,11 mm (Fig. ) di = d a - (s S - c 1S - c S ) = 8,85 mm cos ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 5,31 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 89,34 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 10,87 mm 90 l S = 0.5 l S = / Available reinforcement area (Area II) Side Ψ A b r = 5,31 mm l Sr = 10,87 mm l Sr = / Available reinforcement area (Area I) b r = 5,31 mm l Sr = 10,87 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 36,03 MPa K / S = 13,67 MPa Area II = 36,07 MPa K / S = 13,67 MPa Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

47 Isolated opening S1 [ in test Int.P. ] (Shell Outlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Cone (No. 3) Set In Pressure : p = 1,151 MPa Temperature : 0 C Shell Material :X CrNiMo Allowable stress : K/S = 14,9 MPa Joint efficiency : v = 0,85 Corrosion + tolerance : c 1A + c A = 0 mm Tolerance for seamless pipe : / Ext. Diameter : D a = 461,741 mm Nominal thickness : s e = 6 mm Nozzle Neck Material : X CrNiMo Allowable stress : K 1 /S = 14,9 MPa Corrosion : c 1S + c S = 0 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 33,7 mm Nominal thickness : s S =,77 mm DN 5 External Projection : 00 mm Internal Projection : 0 mm Schedule : 10 Inclination : 0 Eccentricity : 0 mm Flange Material : X CrNiMo Type : WN Rating : (DIN 401) 10 Height : 38 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,09 mm one-half apex angle : = 0,66 h = / Thickness : s A = s e + h = 6 mm D D i = e ( se c1a ca) cos di sin = 450,11 mm (Fig. ) di = d a - (s S - c 1S - c S ) = 8,85 mm cos ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 5,31 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 89,34 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 10,87 mm 90 l S = 0.5 l S = / Available reinforcement area (Area II) Side Ψ A b r = 5,31 mm l Sr = 10,87 mm l Sr = / Available reinforcement area (Area I) b r = 5,31 mm l Sr = 10,87 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 51,83 MPa K / S = 14,9 MPa Area II = 51,89 MPa K / S = 14,9 MPa Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

48 Isolated opening T [ in operation Int.P. ] (Channel Outlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Shell (No. 10) Set In Pressure : p = 0,8 MPa Temperature : 104,4 C Shell Material :P65GH Allowable stress : K/S = 111,73 MPa Joint efficiency : v = 1 Corrosion + tolerance : c 1A + c A = 4,165 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : D a = 406,4 mm Nominal thickness : s e = 7,9 mm Nozzle Neck Material : P65GH Allowable stress : K 1 /S = 150,67 MPa Corrosion : c 1S + c S = 3,175 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 60,3 mm Nominal thickness : s S = 3,91 mm DN 50 External Projection : 00 mm Internal Projection : 0 mm Schedule : STD Inclination : 0 Eccentricity : 0 mm Flange Material : P65GH Type : WN Rating : (DIN 401) 10 Height : 45 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,16 mm s A = s e + h = 7,9 mm h = / D i = D a - (s e - c 1A - c A ) = 398,89 mm ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 38,88 mm d i = d a - (s S - c 1S - c S ) = 59,81 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 90 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 4,81 mm 90 l S = 0.5 l S = / Available reinforcement area b r = 38,88 mm l Sr = 4,81 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 76,0 MPa K / S = 111,73 MPa Area II / / / / / Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

49 Isolated opening T [ in test Int.P. ] (Channel Outlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Shell (No. 10) Set In Pressure : p = 1,1478 MPa Temperature : 0 C Shell Material :P65GH Allowable stress : K/S = 5,38 MPa Joint efficiency : v = 1 Corrosion + tolerance : c 1A + c A = 4,165 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : D a = 406,4 mm Nominal thickness : s e = 7,9 mm Nozzle Neck Material : P65GH Allowable stress : K 1 /S = 5,38 MPa Corrosion : c 1S + c S = 3,175 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 60,3 mm Nominal thickness : s S = 3,91 mm DN 50 External Projection : 00 mm Internal Projection : 0 mm Schedule : STD Inclination : 0 Eccentricity : 0 mm Flange Material : P65GH Type : WN Rating : (DIN 401) 10 Height : 45 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,14 mm s A = s e + h = 7,9 mm h = / D i = D a - (s e - c 1A - c A ) = 398,89 mm ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 38,88 mm d i = d a - (s S - c 1S - c S ) = 59,81 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 90 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 4,81 mm 90 l S = 0.5 l S = / Available reinforcement area b r = 38,88 mm l Sr = 4,81 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 109,08 MPa K / S = 5,38 MPa Area II / / / / / Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

50 Isolated opening T1 [ in operation Int.P. ] (Channel inlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Shell (No. 10) Set In Pressure : p = 0,8 MPa Temperature : 104,4 C Shell Material :P65GH Allowable stress : K/S = 111,73 MPa Joint efficiency : v = 1 Corrosion + tolerance : c 1A + c A = 4,165 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : D a = 406,4 mm Nominal thickness : s e = 7,9 mm Nozzle Neck Material : P65GH Allowable stress : K 1 /S = 150,67 MPa Corrosion : c 1S + c S = 3,175 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 60,3 mm Nominal thickness : s S = 3,91 mm DN 50 External Projection : 00 mm Internal Projection : 0 mm Schedule : STD Inclination : 0 Eccentricity : 0 mm Flange Material : P65GH Type : WN Rating : (DIN 401) 10 Height : 45 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,16 mm s A = s e + h = 7,9 mm h = / D i = D a - (s e - c 1A - c A ) = 398,89 mm ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 38,88 mm d i = d a - (s S - c 1S - c S ) = 59,81 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 90 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 4,81 mm 90 l S = 0.5 l S = / Available reinforcement area b r = 38,88 mm l Sr = 4,81 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 76,0 MPa K / S = 111,73 MPa Area II / / / / / Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

51 Isolated opening T1 [ in test Int.P. ] (Channel inlet) AD 000-Merkblätter (07-01) B9 Nozzle without pad on Shell (No. 10) Set In Pressure : p = 1,144 MPa Temperature : 0 C Shell Material :P65GH Allowable stress : K/S = 5,38 MPa Joint efficiency : v = 1 Corrosion + tolerance : c 1A + c A = 4,165 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : D a = 406,4 mm Nominal thickness : s e = 7,9 mm Nozzle Neck Material : P65GH Allowable stress : K 1 /S = 5,38 MPa Corrosion : c 1S + c S = 3,175 mm Tolerance for seamless pipe : 7/8 (1.5%) Ext. Diameter : d a = 60,3 mm Nominal thickness : s S = 3,91 mm DN 50 External Projection : 00 mm Internal Projection : 0 mm Schedule : STD Inclination : 0 Eccentricity : 0 mm Flange Material : P65GH Type : WN Rating : (DIN 401) 10 Height : 45 mm Pad Material : / Allowable stress : K /S = / Height : / Width : / Ext. Diameter : / Required thickness of the nozzle neck under internal pressure : s = d a p / ( K 1 /S v + p) = 0,14 mm s A = s e + h = 7,9 mm h = / D i = D a - (s e - c 1A - c A ) = 398,89 mm ( s S c 1S c S ) / ( s A c 1A c A ) b s = b max ( Di sa c1a ca )( sa c1a ca ) ; 3sA = 38,88 mm d i = d a - (s S - c 1S - c S ) = 59,81 mm Longitudinal Section : Theoretical reinforcement area Angle A = AL = 90 Ψ A ls ( di ss c1s cs)( ss c1s cs) = 4,81 mm 90 l S = 0.5 l S = / Available reinforcement area b r = 38,88 mm l Sr = 4,81 mm l Sr = / Reinforcement checking A P A 0 A 1 A Ap 1 (mm ) (mm ) (mm ) (mm ) σ p Aσ0 Aσ1 Aσ Area I = 108,71 MPa K / S = 5,38 MPa Area II / / / / / Cross Section / / / / / AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

52 Summary [01] [0] [06] [13] [18] [1] [4] [39] Shell Cone Korbbogen Type Head Welding Neck Flange Body Flange Tubesheet Spacing Back Flange Summary of nozzles [ Location and Dimensions ]. Location Dimensions Flange Loc. Ori. Inc. Exc. Neck Reinforcement Projectio NPS DN Rating Typ. ( ) ( ) Diam. Thk. Sch. Type (a) (b) n (DN) S 1.855,0 70,00 0,00 0,00 60,30, (50) / / / 00, [13] S ,0 90,00 0,00 0,00 33,70, (5) / / / 00, [13] T 3.445,8 90,00 0,00 0,00 60,30 3,910 STD (50) / / / 00, [13] T ,8 70,00 0,00 0,00 60,30 3,910 STD (50) / / / 00, [13] (a),(b) : Pad = thickness, Width ; Self Reinforcing = Height, over thickness ; Internal Plate = thickness, Height Tag NB : The external projection and the height of over thickness of a self is measured on axis of the nozzle. Summary of nozzles [ Type, Adjacent Openings, Goose and Material ]. Tag Set-in (+) Set-on(-) Operati ng Goose hydrostatic height Material Adjacent openings Radius Loc. Operating Test Neck Pad Flange X CrNiMo X CrNiMo S (+) CS None / / 0,00 0,0 / S1 (+) CS None / / 0,00 X CrNiMo X CrNiMo ,0 / T (+) TS None / / 0,00 390,6 P65GH / P65GH T1 (+) TA None / / 0,00 0,0 P65GH / P65GH Nozzle Type A = Process, H = manhole, E = With Blind Flange, L = Instrument, AP = Boot, XT = transition by head, CA = Shell Inlet, CS = Shell Outlet, TA = Channel Inlet, TS = Tubeside Outlet. Summary of nozzles [ Type, Weight and Local Loads ]. Tag Loc. Operating Mass Shell Nozzle Flange Longitudinal Shear Load Circumferential Shear Load Radial Load Local Loads Longitudinal Moment Circular Moment Torsional moment No. (kg) (kg) (dan) (dan) (dan) (dan m) (dan m) (dan m) S 0[01] CS 0,6, S1 03[0] CS 0,4 1, T 10[01] TS 0,9, T1 10[01] TA 0,9, Nozzle Type A = Process, H = manhole, E = With Blind Flange, L = Instrument, AP = Boot, XT = transition by head, CA = Shell Inlet, CS = Shell Outlet, TA = Channel Inlet, TS = Tubeside Outlet. Flange Weight With blind flange if present. AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

53 Summaries of bundle. Baffles and Support Plates. Transverse : No = / Thickness = / Diameter = / Holes = / Total weight = / Material = / Locations : / Support : No = / Thickness = / Diameter = / Holes = / Total weight = / Material = / Locations : / Longitudinal : No = / Thickness = / Width = / Total length = / Total weight = / Material = / (Location, length) : / Partition Plates. Front box Total weight = 10,5 kg Material = SA516GR60 Rear box Total weight = / Material = / Impingement plate, tubes by-pass and sealing strips. Plate : No = / Thickness = / length = / Material = / Total weight = / Tubes : No = / Thickness = / Diameter = / Material = / Total weight = / Sealing Strips : No = / Thickness / Width / Material = / Total weight = / Sliding Rails. Quantity = 0 Height / Diameter = / Material = / Type = / Width = / Total weight = / Tie Rods, spacers and Dummy Tubes. Bar Stays : No = / Diameter = / Total weight = / Material = / Spacer : Thk. = / Diameter = / Total weight = / Material = / Dummy Tubes No = / Diameter = / Total weight = / Material = / Miscellaneous. / No = / Thickness = / Total weight = / Material = / Summary of bends. Row Number Circumferential Weight Thickness Bending radius Straight Length of bends Length 1 9 6, kg,11 mm 38,10 mm.500,00 mm 5.119,69 mm 8 6,3 kg,11 mm 65,60 mm.500,00 mm 5.06,08 mm 3 7 6,4 kg,11 mm 93,09 mm.500,00 mm 5.9,46 mm 4 4 6,6 kg,11 mm 10,59 mm.500,00 mm 5.378,84 mm Total number of bends = 8 Length ( thk =,11 mm ) = 146,3 m Total weight = 178,3 kg AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

54 Summary of Forged Items and Relevant Accessories. Flange dimensions Tag Type (1) C C T () External Diameter Internal Diameter Bolt Circle Flange thickness Hub length Cylindrical extension length Hub thickness shellside Hub thickness flangeside Nubbins width Stub Thickness , , , , , (1) Flange Type : P = slip-on (loose), C = integral with hub, T = lap-type joint (loose), R = slip-on (integral), G = Integral with hub, swing bolts O = optional (corner joint), F = compression flange, S = backing flange.. () Flange face : 0= flat face unconfined, 1= male-female semi-confined, = tongue and groove, 3= tongue and groove + nubbins. Bolting Tag (3) no. [n B] Designation Friction Friction Thread Bolt Load Bolt torque Diameter Bolts length coefficient coefficient pitch [F BO nom / n B] [M t,nom] in nut in thread [ p t] (N) (N mm) [ n] [ t] 5.01 / M (4) 1.65,15 0,1 0,1 (3) Bolt Type : 1,,4,6 : ISO (1 et 4 : Pitch 3 mm for Ø > M4) (1 et 6 : Tensile Stress Area ;,4 : Root Area) 3 : UNC, Root Area 5 : ISO, Reduced Area (DIN 510) (4) Bolt torque according to EN Appendix D : M t,nom = k B F BO nom / n B k B = p t /() + t d t /(cos) + n d n / (5) Bolt torque according to EN Appendix G.8.4 : (6) Bolt torque according to GOST R Appendix J : Gaskets d t = pitch diameter of the thread d n = mean diameter in the nut (friction) = half angle of thread Partition rib Ring Diameter Width Thickness Tag width Outer Width Internal Width Thickness 5.01 / , ,5 / Tubesheets No. 1 (a) Side Shellside Machining Shell support Stress Relief But joint Partition Tube External Flange Face Thickness extension or radius Slope extension groove depth Extension Diameter Tube Shellside 5 Tube 5 (a) Floating Tubesheet for a floating head exchanger , Standard Flanges. Type / Mark Norm Diameter Nominal Rating Material Group [13] S DIN 401 DN X CrNiMo [13] S1 DIN 401 DN 5 10 X CrNiMo [13] T DIN 401 DN P65GH [13] T1 DIN 401 DN P65GH Temperature ( C) Pressure (MPa) Max. allowable pressure (MPa) 104,4 C 0,8 0,8 test 1,144 1,3 104,4 C 0,8 0,8 test 1,151 1,3 104,4 C 0,8 0,8 test 1,148 1,3 104,4 C 0,8 0,8 test 1,144 1,3 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

55 Summary of Geometry. Type Tag Diameter Height / Length Thickness Angle Mass Flanges Internal base rating ( ) (kg) Specifi c Gravity Material 01[06] ,0 36, 50,0 6, ,4 8,00 X CrNiMo [01] ,0.550,0.600,0 6, ,3 8,00 X CrNiMo [0] ,0 547, ,8 6, ,00 X CrNiMo [01] NPS 16 33, ,8 6,350 0,1 8,00 X CrNiMo [18] ,7 67,0 3.47,8 0, , 8,00 X CrNiMo [4] space -,0 3.45,8 07[1] ,9 33,0 3.78,8 0, ,00 X CrNiMo [4] space -,0 3.76,8 09[18] ,6 67, ,8 0, ,8 7,85 P65GH 10[01] 5.06 NPS 16 04, ,8 7, ,9 7,85 P65GH 11[06] ,4 156, ,8 8, ,85 P65GH Angle : half angle at apex for a concentric cone ; maximum angle between cone an cylinder for an eccentric cone. Material : (N) = normalized NB : Italic line indicates an element without pressure.. AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

56 Summary of Weights, Capacities and Painting Areas. Designation Mass (kg) Lifted Erected Operating Test Shutdown Shells 93 X X X X X Cones 48 X X X X X Heads 48 X X X X X Shell flanges 53 X X X X X Skirts Support saddles 78 X X X X X Anchor boxes Fireproofing Man holes Nozzles 1 X X X X X Piping Support Ring Trays Liquid on trays Packing Helicoidal plates Inner lining Insulation supports Insulation (Vessel) Insulation (Piping) Coil Liquid in Coils Stiffening rings Piping Clips Structural Clips Ladders Platforms Tubesheets 37 X X X X X Tubes and Tie Rods 178 X X X X X Baffles and Support Baffles 11 X X X X X Floating head flange Backing device Operating Internals Test Lifting Erection Operating External loads Test Lifting Erection Compartment Shell (comp. 1) Tube (comp. ) / Capacity (m 3 ) 1,150 0,098 / Operating 0 0 / Liquid Mass (kg) Test / Total Test / / / Mass (kg) Area (m ) NB : New weight. Vessel Operating 758 Lifted 758 Erected 758 Shutdown 758 Vessel Tag 8,3 Support 1,6 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

57 Summary of saddles. H EYV M K T FB EXA < 0 a F EXF EXF EXA > 0 F a EXA = 0 F a Standard : APVessel Number of saddles = Fixed saddle No. = Saddle No 1 (left) Location = mm Stiffness = / H = 561 mm Welded Diameter =7 mm T = 10 Mass = 39 kg Bolts : Diameter = 0 mm ( Hole Diameter = 3 mm ) Base Plate Ribs Wear Plate Web E B L C G EXV EYV K / Saddle No (right) Location =.600 mm Stiffness = / H = 561,93 mm Welded Diameter =73,86 mm T = 10 Mass = 39 kg Bolts : Diameter = 0 mm ( Hole Diameter = 3 mm ) Base Plate Ribs Wear Plate Web E B EYV EXV L C G EXV EYV K / Summary of Foundation Loads D B C DB L EXF EXA G Ra V : Vertical reaction in dan seismic load Ra HT : Horizontal reaction (cross) in dan () vertical downside and horizontal longitudinal to the right Ra HL : Horizontal reaction (longitudinal) in dan () vertical downside and horizontal longitudinal to the left Am T : Circumferential bending moment in dan m () vertical upside and horizontal longitudinal to the right Am L : Longitudinal bending moment in dan m () vertical upside and horizontal longitudinal to the left () vertical downside and horizontal cross Stacked vessels : loads for the whole. () vertical upside and horizontal cross Support No E D D M M F F E FB FB EXF EXA G EXF EXF EXA EXA E G a a (Corroded Weight) (New Weight) Operation Int.P. Wind Normal Lifting Ra V Ra HT 0 0 Ra HL Am T 0 0 Am L 0 0 Ra V Ra HT 0 0 Ra HL 0 0 Am T 0 0 Am L 0 0 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

58 (New Weight) (Corroded Weight) Erected During test Ra V Ra HT 0 0 Ra HL 0 0 Am T 0 0 Am L 0 0 Ra V Ra HT 0 0 Ra HL 0 0 Am T 0 0 Am L 0 0 (Corroded Weight) Shutdown Wind Normal Ra V Ra HT 0 0 Ra HL Am T 0 0 Am L 0 0 (Corroded Weight) During test P = 0. Ra V Ra HT 0 0 Ra HL 0 0 Am T 0 0 Am L 0 0 AutoPIPE Vessel (Microprotol) procal V prodia V Bentley Systems, Inc.

59

60

Design Calculations. CTC My Address My City. Revision : 16/02/10. Example B102

Design Calculations. CTC My Address My City. Revision : 16/02/10. Example B102 Revision : 16/2/1 2 16/2/1 1 6/11/9 Rev. Date Description Aut. Chk. App. QA Job Tag : Description : Job Name : Drawing No : Vessel Tag : Bentley AutoPIPE Vessel (Microprotol) procal V33.3..2 1 prodia2

More information

ASME VIII div.1 verification document

ASME VIII div.1 verification document ASME VIII div. verification document August July, a AutoPIPE Vessel... No changes 5 Mar July, a Microprotol..7.6 Feb Same as Rev 9 including Bentley Inc. 4 Oct 9 July, a Microprotol..7.5 Oct Including

More information

WTS Table of contents. Layout

WTS Table of contents. Layout Table of contents Thermal and hydraulic design of shell and tube heat exchangers... 2 Tube sheet data... 4 Properties of Water and Steam... 6 Properties of Water and Steam... 7 Heat transfer in pipe flow...

More information

ASTRA EVANGELISTA S.A.

ASTRA EVANGELISTA S.A. (1) STR EVNGELIST S.. PLNT CNNING COMPRESS Pressure Vessel Design Calculations Vessel No: Customer: FIUB Contract: Designer: HRI/SEG Date: lunes, agosto 09, 2004 1 / 33 Table Of Contents1) Table Of Contents

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Part :Fill the following blanks (20 points)

Part :Fill the following blanks (20 points) Part :Fill the following blanks (20 points) 1. Among the impurity elements in carbon steel, ( ) are useful elements, ( ) are harmful elements. 2. The plastic properties of metal materials are ( ) and 3.

More information

ASME BPVC VIII Example E E4.3.8 PTB

ASME BPVC VIII Example E E4.3.8 PTB ASME BPVC VIII-1 217 Example E4.3.7 - E4.3.8 PTB-4-213 Table of contents Comparison - Form for equations... 2 Example E4.3.7- Conical Transitions Without a Knuckle... 3 E4.3.7 Large End - Dished heads

More information

Created by Neevia docuprinter LT trial version

Created by Neevia docuprinter LT trial version October 10, 003 Agenda Item 650-464 Appendix for External Pressure Resp: John Lieb, TIC, lieb@tankindustry.com, FA 630-6-080 Purpose: The purpose of this item is to develop an appendix for API 650 to address

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Note to reviewers: See next page for basis for the change shown on this page. L-3160 TANGENTIAL CONTACT BETWEEN FLANGES OUTSIDE THE BOLT CIRCLE

Note to reviewers: See next page for basis for the change shown on this page. L-3160 TANGENTIAL CONTACT BETWEEN FLANGES OUTSIDE THE BOLT CIRCLE ASME BPVC.III.A-2017 ð17þ L-3160 TANGENTIAL CONTACT BETWEEN FLANGES OUTSIDE THE BOLT CIRCLE The design procedure is based on the assumption that the flanges are in tangential contact at their outside diameter

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

Your Company Name Here

Your Company Name Here Your Company Name Here Your Address Here COMPRESS Pressure Vessel Calculations Rev 1 Contact: Engineer's Name Here Item: Example Amine Absorber Drawing No: 12345-1 Rev 3 Customer: Size: 114"ID x 57'-0"

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

For ASME Committee use only.

For ASME Committee use only. ð15þ KD-232 PROTECTION AGAINST LOCAL FAILURE In addition to demonstrating protection against plastic collapse as defined in KD-231, the local failure criteria below shall be satisfied. KD-232.1 Elastic

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

PVP BUTANE STORAGE BULLET CALCULATION AND FEA VERIFICATION

PVP BUTANE STORAGE BULLET CALCULATION AND FEA VERIFICATION Proceedings of PVP2005 2005 ASME Pressure Vessels and Piping Division Conference July 17-21, 2005, Denver, Colorado USA PVP2005-71123 BUTANE STORAGE BULLET CALCULATION AND FEA VERIFICATION Zhanghai Wang

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Thermal Design of Shell and tube heat Exchanger

Thermal Design of Shell and tube heat Exchanger King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Thermal Design of Shell and tube heat Exchanger March 2018 1 Contents 1-Introduction 2-Basic components Shell types

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:

External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows: External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

Safety Analysis of a Class 3 Component by ANSYS

Safety Analysis of a Class 3 Component by ANSYS Safety Analysis of a Class 3 Component by ANSYS D. L. Wang Department of Aerospace Engineering, Texas A & M Z. X. Tian Key Laboratory for Power Machinery and Engineering of Ministry Education Shanghai

More information

Mandatory Appendices

Mandatory Appendices Mandatory Appendices MANDATORY APPENDICES A99 Appendix 1 Supplementary Design Formulas... 315 Appendix 2 Rules for Bolted Flange Connections With Ring Type Gaskets... 331 Appendix 3 Definitions... 351

More information

C100 Cryomodule Vacuum Vessel Structural Analysis An Addendum to JLAB-TN

C100 Cryomodule Vacuum Vessel Structural Analysis An Addendum to JLAB-TN Introduction C100 Cryomodule Vacuum Vessel Structural Analysis An Addendum to JLAB-TN-07-081 Gary G. Cheng and Edward F. Daly The C100 cryomodule (CM) vacuum vessel structural analysis per ASME Boiler

More information

SHELL-AND-TUBE TEST PROBLEMS

SHELL-AND-TUBE TEST PROBLEMS SHELL-AND-TUBE TEST PROBLEMS The problems that have been used to validate some of the capabilities in INSTED for the analysis of shell-and-tube heat exchanger are discussed in this chapter. You should

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (1)

Global J. of Mech., Engg. & Comp. Sciences, 2012: 2 (1) Research Paper: Thombare et al., 2012: Pp. 10-14 FLOW INDUCED VIBRATION ANALYSIS OF TEMA J-TYPE U-TUBE SHELL AND TUBE HEAT EXCHANGER Thombare, T.R., Kapatkar, V.N*., Utge, C.G., Raut A.M and H.M. Durgawale

More information

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total Mechanics of Materials MENG 70 Fall 00 Eam Time allowed: 90min Name. Computer No. Q.(a) Q. (b) Q. Q. Q.4 Total Problem No. (a) [5Points] An air vessel is 500 mm average diameter and 0 mm thickness, the

More information

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER DESIGN OF A SHELL AND TUBE HEAT EXCHANGER Swarnotpal Kashyap Department of Chemical Engineering, IIT Guwahati, Assam, India 781039 ABSTRACT Often, in process industries the feed stream has to be preheated

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Steel Structures Design and Drawing Lecture Notes

Steel Structures Design and Drawing Lecture Notes Steel Structures Design and Drawing Lecture Notes INTRODUCTION When the need for a new structure arises, an individual or agency has to arrange the funds required for its construction. The individual or

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES Delete endnote 18, which says "Express metric values in exponential form" A-8100 INTRODUCTION A-8110 SCOPE (a) This Article contains a method of analysis

More information

ASME BPVC VIII Example E E PTB

ASME BPVC VIII Example E E PTB Table of contents Comparison - Form for equations... 2 Example E4.16.1 - Integral Type... 3 E 4.16.1 - Bolted flanges ASME BPVC VIII DIVISION 1 APP. 2, 2017 Edition... 5 Example E4.16.2 - Loose Type...

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAALLI - 6113. QUESTION WITH ANSWERS DEARTMENT : CIVIL SEMESTER: V SUB.CODE/ NAME: CE 5 / Strength of Materials UNIT 3 COULMNS ART - A ( marks) 1. Define columns

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

More information

Design and rating of Shell and tube heat Exchangers Bell-Delaware method

Design and rating of Shell and tube heat Exchangers Bell-Delaware method King Abdulaziz University Mechanical Engineering Department MEP 460 Heat Exchanger Design Design and rating of Shell and tube heat Exchangers Bell-Delaware method 1 April 2018 Bell Delaware method for

More information

Steel Post Load Analysis

Steel Post Load Analysis Steel Post Load Analysis Scope The steel posts in 73019022, 73019024, and 73019025, are considered to be traditional building products. According to the 2015 International Building Code, this type of product

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points)

and F NAME: ME rd Sample Final Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) ME 270 3 rd Sample inal Exam PROBLEM 1 (25 points) Prob. 1 questions are all or nothing. PROBLEM 1A. (5 points) IND: In your own words, please state Newton s Laws: 1 st Law = 2 nd Law = 3 rd Law = PROBLEM

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

ENG1001 Engineering Design 1

ENG1001 Engineering Design 1 ENG1001 Engineering Design 1 Structure & Loads Determine forces that act on structures causing it to deform, bend, and stretch Forces push/pull on objects Structures are loaded by: > Dead loads permanent

More information

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works? HEAT EXCHANGERS 1 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2 WHAT ARE THEY USED FOR? Classification according to service. Heat

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions

S19 S19. (1997) (Rev ) (Rev. 2 Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 2000) (Rev.5 July 2004) S Application and definitions (1997) (Rev. 1 1997) (Rev. Feb. 1998) (Rev.3 Jun. 1998) (Rev.4 Sept. 000) (Rev.5 July 004) Evaluation of Scantlings of the Transverse Watertight Corrugated Bulkhead between Cargo Holds Nos. 1 and, with

More information

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017 Juliet balconies using BALCONY 2 System (Aerofoil) handrail PAGE 1 (ref: JULB2NB280317) Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail Our ref: JULB2NB280317 Date

More information

Longitudinal buckling of slender pressurised tubes

Longitudinal buckling of slender pressurised tubes Fluid Structure Interaction VII 133 Longitudinal buckling of slender pressurised tubes S. Syngellakis Wesse Institute of Technology, UK Abstract This paper is concerned with Euler buckling of long slender

More information

APPENDIX 2 RULES FOR BOLTED FLANGE CONNECTIONS WITH RING TYPE GASKETS

APPENDIX 2 RULES FOR BOLTED FLANGE CONNECTIONS WITH RING TYPE GASKETS APPEDIX RULES FOR BOLTED FLAGE COECTIOS WITH RIG TYPE GASKETS -1 SCOPE GEERAL (a) The rules in Appendix apply specifically to the design of bolted flange connections with gaskets that are entirely within

More information

SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

More information

2. Polar moment of inertia As stated above, the polar second moment of area, J is defined as. Sample copy

2. Polar moment of inertia As stated above, the polar second moment of area, J is defined as. Sample copy GATE PATHSHALA - 91. Polar moment of inertia As stated above, the polar second moment of area, is defined as z π r dr 0 R r π R π D For a solid shaft π (6) QP 0 π d Solid shaft π d Hollow shaft, " ( do

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

my!wind Ltd 5 kw wind turbine Static Stability Specification

my!wind Ltd 5 kw wind turbine Static Stability Specification my!wind Ltd 5 kw wind turbine Static Stability Specification 1 P a g e 0 3 / 0 4 / 2 0 1 4 Contents Contents... 2 List of Changes... 2 Appendixes... 2 General remarks... 3 1. Introduction... 4 2. Geometry...

More information

CHAPTER 2 Failure/Fracture Criterion

CHAPTER 2 Failure/Fracture Criterion (11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

More information

C100 Cryomodule Vacuum Vessel Structural Analysis Gary G. Cheng, William R. Hicks, and Edward F. Daly

C100 Cryomodule Vacuum Vessel Structural Analysis Gary G. Cheng, William R. Hicks, and Edward F. Daly Introduction C100 Cryomodule Vacuum Vessel Structural Analysis Gary G. Cheng, William R. Hicks, and Edward F. Daly Cryomodule (CM) prototypes for CEBAF 12GeV upgrade project have been built in the past

More information

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (1993-2002) 2.3 LOADS 2.4 LOAD COMBINATIONS

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

Simplified Method for Mechanical Analysis of Safety Class 1 Piping

Simplified Method for Mechanical Analysis of Safety Class 1 Piping Simplified Method for Mechanical Analysis of Safety Class 1 Piping ZHANG Zheng-ming *, WANG Min-zhi, HE Shu-yan Division of Reactor Structure & Mechanics, Institute of Nuclear Energy Technology, Tsinghua

More information

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes)

The Islamic University of Gaza Department of Civil Engineering ENGC Design of Spherical Shells (Domes) The Islamic University of Gaza Department of Civil Engineering ENGC 6353 Design of Spherical Shells (Domes) Shell Structure A thin shell is defined as a shell with a relatively small thickness, compared

More information

MANDATORY APPENDIX 41 ELECTRIC IMMERSION HEATER ELEMENT SUPPORT PLATES

MANDATORY APPENDIX 41 ELECTRIC IMMERSION HEATER ELEMENT SUPPORT PLATES 41-1 41-5 Page 1 of 5 No changes, age is included for reference. MANDATORY APPENDIX 41 ELECTRIC IMMERSION HEATER ELEMENT SUPPORT PLATES 41-1 SCOPE 41-3 41-1.1 The rules in this Mandatory Aendix cover the

More information

TECHNICAL CORRECTION July Process Industry Practices Structural. PIP STE03360 Heat Exchanger and Horizontal Vessel Foundation Design Guide

TECHNICAL CORRECTION July Process Industry Practices Structural. PIP STE03360 Heat Exchanger and Horizontal Vessel Foundation Design Guide TECHNICAL CORRECTION July 2007 Structural Heat Exchanger and Horizontal Vessel Foundation Design Guide PURPOSE AND USE OF PROCESS INDUSTRY PRACTICES In an effort to minimize the cost of process industry

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

my!wind Ltd 5 kw wind turbine Static Stability Specification

my!wind Ltd 5 kw wind turbine Static Stability Specification my!wind Ltd 5 kw wind turbine Static Stability Specification 1 P a g e 0 3 / 0 4 / 2 0 1 4 Contents Contents... 2 List of Changes... 2 Appendixes... 2 General remarks... 3 1. Introduction... 4 2. Geometry...

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

API 11E - Specification for Pumping Units

API 11E - Specification for Pumping Units API 11E - Specification for Pumping Units 5 Beam Pump Structure Requirements 5.1 General Requirements for beam pump structures are specified in the following sections. Only loads imposed on the structure

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s

D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s D e s i g n o f R i v e t e d J o i n t s, C o t t e r & K n u c k l e J o i n t s 1. Design of various types of riveted joints under different static loading conditions, eccentrically loaded riveted joints.

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

By Dr. Mohammed Ramidh

By Dr. Mohammed Ramidh Engineering Materials Design Lecture.6 the design of beams By Dr. Mohammed Ramidh 6.1 INTRODUCTION Finding the shear forces and bending moments is an essential step in the design of any beam. we usually

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

Matlab Sheet 2. Arrays

Matlab Sheet 2. Arrays Matlab Sheet 2 Arrays 1. a. Create the vector x having 50 logarithmically spaced values starting at 10 and ending at 1000. b. Create the vector x having 20 logarithmically spaced values starting at 10

More information

STRUCTURAL SURFACES & FLOOR GRILLAGES

STRUCTURAL SURFACES & FLOOR GRILLAGES STRUCTURAL SURFACES & FLOOR GRILLAGES INTRODUCTION Integral car bodies are 3D structures largely composed of approximately subassemblies- SSS Planar structural subassemblies can be grouped into two categories

More information

D y E y = E y. Legend:

D y E y = E y. Legend: MODAL APPENDIX 1 ASME BPVC.XII-2017 Figure 1-1.4(a)-2 Maximum Range for Tensile Strength Properties, for Categories 406, 407, and 412 Class 3 Tanks Where Yield Strength Is the Determining Criterion for

More information

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8) Application nr. 7 (Connections) Strength of bolted connections to EN 1993-1-8 (Eurocode 3, Part 1.8) PART 1: Bolted shear connection (Category A bearing type, to EN1993-1-8) Structural element Tension

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

For more Stuffs Visit Owner: N.Rajeev. R07

For more Stuffs Visit  Owner: N.Rajeev. R07 Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

More information

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en

T20WN. Data Sheet. Torque transducers. Special features. Installation example with bellows couplings. B en T20WN Torque transducers Data Sheet Special features - Nominal (rated) torques 0.1 N m, 0.2 N m, 0. N m, 1 N m, 2 N m, N m, 10 N m, 20 N m, 0 N m, 100 N m, 200 N m - Accuracy class: 0.2 - Contactless transmission

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

90/10 COPPER NICKEL ALLOY EUCARO 10 OFFSHORE APPLICATIONS

90/10 COPPER NICKEL ALLOY EUCARO 10 OFFSHORE APPLICATIONS 0/ COPPER NICKEL ALLOY EUCARO OFFSHORE APPLICATIONS 2 W O R L D O F COPPER N I CK E L Eucaro TABLE OF CONTENTS Technical Information Page - Pipes Page Inner Flanges Page - Outer Flanges Page Solid Slip-On

More information