ATOMISATION TECHNOLOGY TO MINIMIZE THE EFFECTS OF NOZZLE WEAR ON THE DROPLET SIZE

Size: px
Start display at page:

Download "ATOMISATION TECHNOLOGY TO MINIMIZE THE EFFECTS OF NOZZLE WEAR ON THE DROPLET SIZE"

Transcription

1 ILASS-Europe Darmstadt September ATOMISATION TECHNOLOGY TO MINIMIZE THE EFFECTS OF NOZZLE WEAR ON THE DROPLET SIZE J. Kohlmann*, M. Schmidt*, G. Slowik** and M.Bürgermeister*** * Fachhochschule für Technik und Wirtschaft Berlin University of Applied Sciences Fachbereich II Blankenburger Pflasterweg Berlin ** Universität Halle-Wittenberg Fachbereich Ingenieurwissenschaften Institut für Verfahrenstechnik Geusaer Str. 617 Merseburg *** Hans G. Werner GmbH, Reutlingen Delavan Zerstäubungstechnik Hölzlestr Reutlingen ABSTRACT The effect of the nozzle wear on the droplet size can be calculated by using some experimental data and the presented mathematical model. If it is not possible to minimize the wear by using special materials, like hard metal, the effect of the wear can be reduced to a minimum by using a new technology for the atomisation of the liquids. NOTATION A R area of wall friction α inlet coefficient b 1, b,. width of tangential slots η viscosity d diameter of orifice λ wall friction coefficient d S diameter of swirl chamber µ velocity coefficient D V,.5 volume median diameter θ spray angle F R force of friction ρ density h 1 height of swirl chamber σ surface tension M momentum τ wall shear stress m& mass flow rate n number of tangential slots r radiale coordinate r e average distance between tangential slots Indices Re Reynolds number r S radius of swirl chamber average area, inlet t thickness of liquid layer in the nozzle 1 inlet t s thickness of liquid sheet after leaving nozzle outlet U velocity in axial direction G gas V velocity in tangential direction L liquid V & We volume flow rate Weber number II

2 INTRODUCTION Using nozzles in industrial applications, in fact all nozzles wear out. Corresponding to the specification and the velocity of the fluid, the wear of the nozzle at several stress areas is different. Specially the orifice is a part with a very strong wear. The effects of the wear can be seen here in an increasing of the diameter of the orifice. In figure 1 for a nozzle for industrial use, the increasing of the diameter of the orifice is shown in correlation to the atomised mass of the liquid. Mostly the customer or user is,, 1,8 1,6 trying to reduce the wear by selecting special materials like hard metal (tungsten carbide) or ceramic for the orifice disk and swirl chamber. If everything is done in that way to protect the nozzle against 1,4 1, 1, wear, the user has to supervise the nozzles, to ensure that he is able to exchange the Volume in l nozzle at the right time. This is necessary to keep the droplet size and the capacity in a range that is allowed. Fig. 1: Typical increasing of nozzle diameter The aim of this presentation is, to analyse the wear of a nozzle and to calculate the run time of a nozzle and also to present a new nozzle system what is able to compensate during the use of the nozzles the wear out. With this new nozzle system the user is able to run the industrial application longer with a constant atomisation without exchanging of the wear parts of the nozzles. NEW ATOMISATION SYSTEM The nozzle we have used for the analysis is presented in fig.. The swirl chamber has 4 tangential slots (inlets). The slot sizes are for the slot couples in opposite positions the same. The slot size is decreasing in direction to the swirl chamber. In fig. the details about the pipe system for feeding the slots is not presented. The nozzle presented in fig. is a test nozzle for representing the new nozzle system [1]. The liquid flow is divided into two subflows (see fig.3) and feeds the slots of the Flow Valve Fig. : Cross view of swirl nozzle nozzle by two inlets separately. As presented in fig. the subflow A is connected with the two large slots (b3, b4) and the subflow B is connected with the two small slots (b1, b). Outside the nozzle the subflow A can be varied stepless. Valve Subflow A Fig. 3: Flow sheet Subflow B Nozzle II. 15.

3 MATHEMATICAL MODEL OF THE SWIRL ATOMIZER The mathematical model of the swirl atomizer covers the following steps: 1. Modelling the vortex in the swirl chamber of the nozzle,. Modelling of the thickness of the liquid layer in the orifice and modelling the spray angle, 3. Modelling of the volume median diameter. To calculate the vortex in the swirl chamber respecting the wall friction we can use equation 1 for symmetrical conditions. M d ( V r ) = (1) m& The infinitesimal friction momentum is calculated with the force for the wall friction what is calculated with wall shear stress, as described in equation. dm = r dfr = r τ da R = 4 π τ r dr () The wall shear stress is calculated with the coefficient of the wall friction. λ τ = ρ L V (3) 8 The coefficient of the wall friction depends on the Reynolds number and the velocity itself. That means that equation 1 has to be solved in combination with equation and 3 by using the explicit difference algorithm. The most important velocity component for the vortex is the tangential velocity. The tangential velocity at the radius r = r S =d S / is calculated with equation 4, respecting the contraction effects of the wall jet. 1 re V1 = V (4) α rs V is the average tangential velocity at the inlet, calculated using the volume flow rate and the area size of the tangential slots. V& V = (5) n n h1 b i i= 1 The radius r e is the average distance between the tangential slots and the centre of the swirl chamber. 1 n r e = rs b i (6) n i= 1 The inlet coefficient α is calculated similar to the calculation of this coefficient for cyclones []. The coefficient α depends only on the geometry of the nozzle [3]. The pressure loss is calculated by using the tangential velocity at the outlet of the swirl chamber (r = d/). ρ L P = V (7) The thickness of the liquid layer in the orifice is calculated by using the velocity coefficient µ. d t = 1 1 µ (8) The velocity coefficient µ can be calculated with the velocity component in axial direction U and the pressure loss. For the nozzle, presented in fig., equation 8 can be used..411 ρ L U µ = 1.3 (9) P 4 V& with U =. (1) π d With the restriction, that 1% of the velocity components at the outlet of the orifice is converted, the spray angle can be calculated with equation 11. V θ = arctan µ 1 U (11) II

4 The volume median diameter is calculated with the model WANG & LEFEBRVE [4]. x y D V,.5 = t s C A Re We + B We (1) The thickness of the liquid layer after the exit of the orifice is calculated with equation 13. t s = t cos( θ ) (13) The Reynolds number and the Weber number are defined in equation 14. ρ L V t s ρ G V t s Re = ; We = (14) η L σ The coefficients of [4] were be used for the own calculations and measurements. They were A = 4.5; B =.39; x =.5 and y =.5. The coefficient C is used to describe the correlation between the Sauter mean diameter and the volume mean diameter. For the tested nozzles the coefficient C has a value range of 1,1-1,3. EFFECTS OF NOZZLES WEAR USING SWIRL NOZZLES For the experimental work a spray drying nozzle with the following specification was used. Highness of the swirl chamber: h 1 =,6 mm Quantity of tangential slots: n = 1 Size of the tangential slot: b 1 =,5 mm Orifice diameter d =,89 mm, and d = 1,4 mm The tests were done with water in the lab room. With a Malvern-Sizer the droplet sizes were measured in the spray. To simulate the wear out of the orifice disk, two orifice disks were used with different diameters of the orifice. In fig. 4 the capacity is presented in correlation to the pressure. Increasing the diameter of the orifice from,89 mm up to 1,4 mm has the effect that the used pressure can be reduce from 5 bar down to bar. The influence of the reduction of the pressure is very large. Using a pressure of 5 bar, the measured volume median diameter is 14 µm (see fig. 5). This value is increasing up to µm if the pressure is reduced to bar. In fig. 6 the quality of the calculation of these values is presented. Perssure Difference in bar 5, 4, 3,, 1,, Fig. 4: Exp. d =,89 mm Calc. d =,89 mm Calc. d = 1, mm Calc. d = 1,1 mm Exp. d = 1,4 mm Calc. d = 1,4 mm 4 6 Flow rate in l/h Flow rate Pressure Difference - characteristic 3 As presented in fig. 1, it is possible to calculate the correlation between the wear process and the time. If this correlation is known, then it is possible to get information about the correlation between volume median diameter and time. Than is becomes possible to define the time, when the nozzle has to be exchanged. D V,,5 in µm Exp. d =,89 mm Calc. d =,89 mm Calc. d = 1, mm Calc. d = 1,1 mm Exp. d =1,4 mm Calc. d = 1,4 mm Flow rate in l/h Fig.5: Flow rate - median diameter - characteristic II

5 Flow Rate 4 l/h 6 4 Pressure Difference inbar Pressure Difference Calculation Pressure Difference Experiment 1 DV,.5 Calculation DV,.5 Experiment,85,9,95 1, 1,5 1,1 1,15 1, 1, D V,.5 in µm Fig. 6: Effect of development of nozzle diameter MINIMIZE THE EFFECTS OF NOZZLE WEAR But it is easier and more comfortable to use a technology what is able to compensate or minimize the wear out effects on the atomisation of the nozzles. With a nozzle, constructed as presented in fig. and used as presented in fig. 3, the effect of the new technology is discussed. The pressure can be varied without an influence to the capacity and backwards. The regulation of the capacity can be done in the same way as with pressure atomizers. Additionally the pressure can be changed by varying the ratio between the subflows. The results of the atomisation are presented in fig. 8. The volume median diameter is increasing from 5 µm up to 15 µm because of the wear on a standard nozzle. Pressure Differenze in bar With Swirl Control Whithout Swirl Control,6,7,8,9 1, Fig. 7: Pressure Difference Using the new nozzle technology the volume median diameter is only increasing up to 6 µm when the diameter of the orifice is increasing in the same way. The same effects will be seen on a standard nozzle when the diameter of the orifice will increase from,6 mm up to,65 mm. With the new nozzle technology, it is possible to use the nozzles longer than other nozzles. Activities by choosing hard metal or ceramic to reduce the wear out can be used similar to standard nozzles. The regulation of the pressure needs some additional work to do. II

6 D V,.5 in µm With Swirl Control 11 Whithout Swirl Control ,6,7,8,9 1, Fig. 8: Median diameter 1 3 Pressure Differenze in bar Flow Rate in l/h Both Sub Flows (Exp.) Both Sub Flows (Calc.) Small Sub Flow (Exp.) Small Sub Flow (Calc.) D V,.5 in µm Flow Rate in l/h Both Sub Flows (Exp.) Small Sub Flow (Exp.) Small Sub Flow (Calc.) Both Sub Flows (Calc.) Fig. 9: Pressure difference Fig. 1: Median diameter The size of the droplets can be kept constant, using this technology. To do that, the droplet size is measured in a usable way to regulate the ratio between the subflows at a constant pressure. The minimum and the maximum limit, the nozzle can be used, are presented in fig. 9 and fig. 1. With the presented technology the effect of the wear in combination to the result of the atomisation can be reduce dramatically. REFERENCES [1] Slowik, G., Kohlmann, J., Bürgermeister, M., A new principle for Influencing the droplet size in hollow cone nozzles, ILASS Europe 1999, Toulouse [] Muschelknautz E., D i e B e r e c h n u n g v o n Z y k l o n a b s c h e i d e r n f ü r, Chem.-Ing.-Techn., 44(197)1+, S [3] Schmidt M., Experimentelle Untersuchung der Zerstäubungseigenschaften einer steuerbaren Druck - zerstäuberdüse, Diplomarbeit FHTW Berlin, Berlin [4] Lefebvre A.H., A t o m i z a t i o n a n d S p r a y s, Hemispher Press, NY, 1989 II

Experimental Investigation of the Velocity Distribution near the Swirl Generator of a Uniflow Cyclone for Performance Data Prediction

Experimental Investigation of the Velocity Distribution near the Swirl Generator of a Uniflow Cyclone for Performance Data Prediction Experimental Investigation of the Velocity Distribution near the Swirl Generator of a Uniflow Cyclone for Performance Data Prediction M. Pillei 1,2,*, R. Goller 1, T. Kofler 1, A. Wierschem 2, M. Kraxner

More information

Effect of Primary Spray Characteristics on the Spray Generated by an Airblast Atomizer under High-Pressure Conditions

Effect of Primary Spray Characteristics on the Spray Generated by an Airblast Atomizer under High-Pressure Conditions ISS mericas, st nnual Conference on iquid tomization and Spray Systems, Orlando, Florida, May 8-8 Effect of Primary Spray Characteristics on the Spray Generated by an irblast tomizer under High-Pressure

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

Numerical Simulation of Unsteady Nozzle Flow and Spray Formation under Diesel Engine Conditions

Numerical Simulation of Unsteady Nozzle Flow and Spray Formation under Diesel Engine Conditions Numerical Simulation of Unsteady Nozzle Flow and Spray Formation under Diesel Engine Conditions Mikhail Konstantinov * & Claus Wagner German Aerospace Center (DLR) Institute for Aerodynamics and Flow Technology

More information

Separations II: Solid-Gas Systems

Separations II: Solid-Gas Systems Micro- and Nanoparticle Technology Separations II: Solid-Gas Systems Dr. K. Wegner - Lecture 18.04.2018 18. April 2018 1. Introduction Removal of particles from a gas stream either for recovery or for

More information

Effect of Geometric Configuration on Performance of Uniflow Cyclone

Effect of Geometric Configuration on Performance of Uniflow Cyclone International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-X, www.ijerd.com Volume 11, Issue 1 (January 215), PP.63-69 Effect of Geometric Configuration on Performance

More information

Consider a control volume in the form of a straight section of a streamtube ABCD.

Consider a control volume in the form of a straight section of a streamtube ABCD. 6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream

More information

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework Simulating Interfacial Tension of a Falling Drop in a Moving Mesh Framework Anja R. Paschedag a,, Blair Perot b a TU Berlin, Institute of Chemical Engineering, 10623 Berlin, Germany b University of Massachusetts,

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Numerical Study of Laminar Annular Two-Phase Flow in Effervescent Atomizers

Numerical Study of Laminar Annular Two-Phase Flow in Effervescent Atomizers ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2016 Numerical Study of Laminar Annular Two-Phase Flow in Effervescent Atomizers C.K. Mohapatra and M.A.

More information

Liquid Feed Injection in a High Density Riser

Liquid Feed Injection in a High Density Riser Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Liquid Feed Injection in a High Density

More information

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

Characterization of atomization processes in suspension/emulsion sprays. Walter Schäfer 1*, Cameron Tropea 2

Characterization of atomization processes in suspension/emulsion sprays. Walter Schäfer 1*, Cameron Tropea 2 Characterization of atomization processes in suspension/emulsion sprays Walter Schäfer 1*, Cameron Tropea 2 1 AOM-Systems GmbH, Flughafenstrasse 15, 64347 Darmstadt-Griesheim, Germany, email: ws@aom-systems.com

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

Michael Schultes, Werner Grosshans, Steffen Müller and Michael Rink, Raschig GmbH, Germany, present a modern liquid distributor and redistributor

Michael Schultes, Werner Grosshans, Steffen Müller and Michael Rink, Raschig GmbH, Germany, present a modern liquid distributor and redistributor Michael Schultes, Werner Grosshans, Steffen Müller and Michael Rink, Raschig GmbH, Germany, present a modern liquid distributor and redistributor design. All the mod Part 1 cons In recent years, great

More information

PF-FLO REFERENCE TEST AT THE MARTIN-LUTHER UNIVERSITY HALLE-WITTENBERG

PF-FLO REFERENCE TEST AT THE MARTIN-LUTHER UNIVERSITY HALLE-WITTENBERG PF-FLO REFERENCE TEST AT THE MARTIN-LUTHER UNIVERSITY HALLE-WITTENBERG Martin-Luther-Universität Halle-Wittenberg AMC Power PROMECON Fachbereich Ingenieurwissenschaften 15 Hopper Avenue Lehrstuhl für Mechanische

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

A comparative study on the hydrodynamics of liquid liquid hydrocyclonic separation

A comparative study on the hydrodynamics of liquid liquid hydrocyclonic separation Advances in Fluid echanics X 361 A comparative study on the hydrodynamics of liquid liquid hydrocyclonic separation H. H. Al-Kayiem, H. Osei, K. Y. Yin & F.. Hashim echanical Engineering Department, Universiti

More information

SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES

SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES Paper ID ILASS08-A009 ILASS08-2-14 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES J. Domnick*,

More information

Droplet behaviour in a Ranque-Hilsch vortex tube

Droplet behaviour in a Ranque-Hilsch vortex tube Journal of Physics: Conference Series Droplet behaviour in a Ranque-Hilsch vortex tube To cite this article: R Liew et al 2 J. Phys.: Conf. Ser. 38 523 View the article online for updates and enhancements.

More information

INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING---

INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING--- ILASS-Europe 2002 Zaragoza 9 11 September 2002 INTERNAL FLOW IN A Y-JET ATOMISER ---NUMERICAL MODELLING--- Z. Tapia, A. Chávez e-mail: ztapia@imp.mx Instituto Mexicano del Petróleo Blvd. Adolfo Ruiz Cortines

More information

CFD Analysis of Gas Cooling

CFD Analysis of Gas Cooling As presented at: ILASS Americas, 20th Annual Conference on Liquid Atomization and Spray Systems, Chicago, IL, May 2007 J. S. Markus* Spraying Systems Deutschland GmbH Paul-Strähle Str. 10 73614 Schorndorf,

More information

Research Article. Computational fluid dynamics analyzing to optimize tangential-inlet swirl nozzle for preparing nano-drug during a SEDS process

Research Article. Computational fluid dynamics analyzing to optimize tangential-inlet swirl nozzle for preparing nano-drug during a SEDS process Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2013, 5(6):43-49 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Computational fluid dynamics analyzing to optimize

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

The Two-Phase Screw-Type Engine with Flash Evaporation

The Two-Phase Screw-Type Engine with Flash Evaporation The Two-Phase Screw-Type Engine with Flash Evaporation Abstract Prof. Dr.-Ing. K. Kauder, Dipl.-Ing. B. Kliem FG Fluidenergiemaschinen, Universität Dortmund Deutsche Forschungsgemeinschaft (DFG) financially

More information

CFD ANALYSIS FOR DESIGN OPTIMIZATION OF REVERSE FLOW TYPE CYCLONE SEPARATOR

CFD ANALYSIS FOR DESIGN OPTIMIZATION OF REVERSE FLOW TYPE CYCLONE SEPARATOR International Journal of Mechanical and Production Engineering (IJMPERD) Vol.1, Issue 2 Dec 2011 110-123 TJPRC Pvt. Ltd., CFD ANALYSIS FOR DESIGN OPTIMIZATION OF REVERSE FLOW TYPE CYCLONE SEPARATOR Mr.

More information

ANALYSIS OF MULTIPHASE FLOW DURING THE PROCESS OF SHEET DISINTEGRATION AT HOLLOW CONE NOZZLES USING MULTIPLE ONE- DIMENSIONAL FIBRE-SENSORS

ANALYSIS OF MULTIPHASE FLOW DURING THE PROCESS OF SHEET DISINTEGRATION AT HOLLOW CONE NOZZLES USING MULTIPLE ONE- DIMENSIONAL FIBRE-SENSORS Paper ID ILASS8-A75 ILASS8--8 ILASS 8 Sep. 8-, 8, Como Lake, Italy ANALYSIS OF MULTIPHASE FLOW DURING THE PROCESS OF SHEET DISINTEGRATION AT HOLLOW CONE NOZZLES USING MULTIPLE ONE- DIMENSIONAL FIBRE-SENSORS

More information

APPLIED FLUID DYNAMICS HANDBOOK

APPLIED FLUID DYNAMICS HANDBOOK APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /

More information

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization

More information

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet , pp. 704 709 The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet Piljong LEE, Haewon CHOI 1) and Sunghong LEE 2) Technical Research Center, POSCO, Pohang

More information

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators ISSN 2395-1621 Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators #1 Sonali S Nagawade, #2 Prof. S Y Bhosale, #3 Prof. N K Chougule 1 Sonalinagawade1@gmail.com

More information

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE Applied Mathematics and Mechanics (English Edition), 2006, 27(2):247 253 c Editorial Committee of Appl. Math. Mech., ISSN 0253-4827 NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL

More information

Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi

Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi 1 Universität Duisburg-Essen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement

More information

A design procedure for liquid to air type atomisers

A design procedure for liquid to air type atomisers Chemical and Process Engineering 2015, 36 (3), 355-363 DOI: 10.1515/cpe-2015-0025 A design procedure for liquid to air type atomisers based on air and water mixture outflow velocity Piotr Krawczyk *, Krzysztof

More information

Contents 1 Introduction 2 Basic Ideas 3 How Cyclones Work

Contents 1 Introduction 2 Basic Ideas 3 How Cyclones Work Contents 1 Introduction 1 1.1 Removal of Particles from Gases 1 1.1.1 Filtration 2 1.1.2 Wet Scrubbers 5 1.1.3 Centrifugal/Cyclonic Devices 5 1.1.4 Knock-out Vessels and Settling Chambers 6 1.2 A Closer

More information

Entrained Air around a High Pressure Flat Jet Water Spray

Entrained Air around a High Pressure Flat Jet Water Spray ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Entrained Air around a High Pressure Flat Jet Water Spray A.J.Abbas*, G.G.Nasr, M.L.Burby and A.Nourian

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Angular momentum equation

Angular momentum equation Angular momentum equation For angular momentum equation, B =H O the angular momentum vector about point O which moments are desired. Where β is The Reynolds transport equation can be written as follows:

More information

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

NUMERICAL STUDY OF FLOW IN SIDE CHAMBERS OF A CENTRIFUGAL PUMP AND ITS EFFECT ON DISK FRICTION LOSS

NUMERICAL STUDY OF FLOW IN SIDE CHAMBERS OF A CENTRIFUGAL PUMP AND ITS EFFECT ON DISK FRICTION LOSS NUMERICAL STUDY OF FLOW IN SIDE CHAMBERS OF A CENTRIFUGAL PUMP AND ITS EFFECT ON DISK FRICTION LOSS 1 MOHAMMADREZA DAQIQSHIRAZI, 2 ALIREZA RIASI, 3 AHMAD NOURBAKHSH 1,2,3 University of Tehran Email: mdshirazi@ut.ac.ir,

More information

Research Article Performance of Single and Double Shaft Disk Separators

Research Article Performance of Single and Double Shaft Disk Separators Hindawi Publishing Corporation Physical Separation in Science and Engineering Volume 8, Article ID 58617, 5 pages doi:1.1155/8/58617 Research Article Performance of Single and Double Shaft Disk Separators

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

5. SPRAY/WALL IMPINGEMENT

5. SPRAY/WALL IMPINGEMENT 5. SPRAY/WALL IMPINGEMENT 5.1 Wall Interaction Regimes Wachters and Westerling (1966), Akao et al. (1980), Senda et al. (1994) and Nagaoka et al. (1994) describe in detail the phenomena observed when drops

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass),

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass), Chapter 6 MOMENTUM PRINCIPLE Review: Last time, we derived the Reynolds Transport Theorem: where B is any extensive property (proportional to mass), and b is the corresponding intensive property (B / m

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Computational Study of Sprays for the Development of a Monte Carlo Model

Computational Study of Sprays for the Development of a Monte Carlo Model 38th Dayton-Cincinnati Aerospace Sciences Symposium Computational Study of Sprays for the Development of a Monte Carlo Model Presenter: Murat Dinc West Virginia University Donald D. Gray West Virginia

More information

Figure 11.1: A fluid jet extruded where we define the dimensionless groups

Figure 11.1: A fluid jet extruded where we define the dimensionless groups 11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates

More information

2.2 The Turbulent Round Jet

2.2 The Turbulent Round Jet Canonical Turbulent Flows 13. The Turbulent Round Jet Jet flows are a subset of the general class of flows known as free shear flows where free indicates that the shear arises in the absence of a boundary

More information

Thermodynamics ENGR360-MEP112 LECTURE 7

Thermodynamics ENGR360-MEP112 LECTURE 7 Thermodynamics ENGR360-MEP11 LECTURE 7 Thermodynamics ENGR360/MEP11 Objectives: 1. Conservation of mass principle.. Conservation of energy principle applied to control volumes (first law of thermodynamics).

More information

ULTRASONIC ATOMIZATION SPRAY ANALYSIS WITH A THREE-PARAMETER GENERALIZED GAMMA FUNCTION

ULTRASONIC ATOMIZATION SPRAY ANALYSIS WITH A THREE-PARAMETER GENERALIZED GAMMA FUNCTION ILASS-Europe 2002 Zaragoza 9 11 September 2002 ULTRASONIC ATOMIZATION SPRAY ANALYSIS WITH A THREE-PARAMETER GENERALIZED GAMMA FUNCTION Dr. Christophe Dumouchel*, Dr. Daniel Sindayihebura** and Prof. Léon

More information

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor

In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Lect- 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first

More information

A swirl generator design approach to increase the efficiency of uniflow cyclones

A swirl generator design approach to increase the efficiency of uniflow cyclones A swirl generator design approach to increase the efficiency of uniflow cyclones Martin Pillei 1,*, Tobias Kofler 1 and Michael Kraxner 1 1: Department of Environmental, Process & Energy Engineering, MCI

More information

DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION. Grant Number: DE-FG22-95PC95105 Progress Report for Period 1/1/97-3/31/97

DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION. Grant Number: DE-FG22-95PC95105 Progress Report for Period 1/1/97-3/31/97 DESIGN OF ATOMIZERS AND BURNERS FOR COAL-WATER SLURRY COMBUSTION Grant Number: DE-FG22-95PC95105 Progress Report for Period 1/1/97-3/31/97 A. Mansour, and N. Chigier Spray Systems Technology Center Dept.

More information

DESIGN PROCEDURE AND EXPERIMENTAL EVALUATION OF PRESSURE-SWIRL ATOMIZERS

DESIGN PROCEDURE AND EXPERIMENTAL EVALUATION OF PRESSURE-SWIRL ATOMIZERS 24 TH INTERNATIONA CONGRESS OF THE AERONAUTICA SCIENCES DESIGN PROCEDURE AND EXPERIMENTA EVAUATION OF PRESSURE-SWIR ATOMIZERS Pedro Teixeira acava*, Demétrio Bastos-Netto**, Amílcar Porto Pimenta* *Instituto

More information

Introduction to Turbomachinery

Introduction to Turbomachinery 1. Coordinate System Introduction to Turbomachinery Since there are stationary and rotating blades in turbomachines, they tend to form a cylindrical form, represented in three directions; 1. Axial 2. Radial

More information

Experiment (3): Impact of jet

Experiment (3): Impact of jet Experiment (3): Impact of jet Introduction: Impact of jets apparatus enables experiments to be carried out on the reaction force produced on vanes when a jet of water impacts on to the vane. The study

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Part 1 Principles of the Fluid Dynamic Design of Packed Columns for Gas/Liquid Systems

Part 1 Principles of the Fluid Dynamic Design of Packed Columns for Gas/Liquid Systems Part 1 Principles of the Fluid Dynamic Design of Packed Columns for Gas/Liquid Systems List of Symbols for Part 1 Formula Variables, Latin Letters a m 2 m 3 geometric surface area of packing per unit volume

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Numerical Investigation of Multijet Air Impingement on Pin Fin Heat Sink with Effusion Slots

Numerical Investigation of Multijet Air Impingement on Pin Fin Heat Sink with Effusion Slots , 23-25 October, 2013, San Francisco, USA Numerical Investigation of Multijet Air Impingement on Pin Fin Heat Sink with Effusion Slots N. K. Chougule G. V. Parishwad A. R. Nadgire Abstract The work reported

More information

Viscous potential flow analysis of stress induced cavitation in an aperture flow

Viscous potential flow analysis of stress induced cavitation in an aperture flow cavitation-july9.tex Viscous potential flow analysis of stress induced cavitation in an aperture flow T. Funada, J. Wang and D. D. Joseph Department of Digital Engineering, Numazu College of Technology,

More information

Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation

Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation Caturwati Ni Ketut, Dwinanto, Attegar Mechanical Engineering Department, University of Sultan Ageng Tirtayasa,

More information

Modelling multiphase flows in the Chemical and Process Industry

Modelling multiphase flows in the Chemical and Process Industry Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase

More information

ME 316: Thermofluids Laboratory

ME 316: Thermofluids Laboratory ME 316 Thermofluid Laboratory 6.1 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS ME 316: Thermofluids Laboratory PELTON IMPULSE TURBINE 1) OBJECTIVES a) To introduce the operational principle of an impulse

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Instruction Manual. Equipment for Engineering Education

Instruction Manual. Equipment for Engineering Education Equipment for Engineering Education Instruction Manual HM15007 Bernoulli s Principle Demonstrator GUNT Gerätebau GmbH PO Box 1125 D-22881 Barsbüttel Germany Phone (040) 670854-0 Fax (040) 670854-42 Instruction

More information

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MS. Hesham El-Batsh Institute of Thermal Turbomachines and Power Plants Vienna University of Technology Getreidemarkt 9/313, A-1060 Wien Tel:

More information

nozzle which is fitted to a pipe through which the liquid is flowing under pressure.

nozzle which is fitted to a pipe through which the liquid is flowing under pressure. Impact of Jets 1. The liquid comes out in the form of a jet from the outlet of a nozzle which is fitted to a pipe through which the liquid is flowing under pressure. The following cases of the impact of

More information

Centrifugal Machines Table of Contents

Centrifugal Machines Table of Contents NLNG Course 017 Table of Contents 1 Introduction and Basic Principles... 1.1 Hydraulic Machines... 1.... 1.3 Pump Geometry... 1.4 Pump Blade Geometry...3 1.5 Diffusers...5 1.6 Pump Losses...6 1.7 Example

More information

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows Title Strategy in modelling irregular shaped particle behaviour in confined turbulent flows M. Sommerfeld F L Mechanische Verfahrenstechnik Zentrum Ingenieurwissenschaften 699 Halle (Saale), Germany www-mvt.iw.uni-halle.de

More information

CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM

CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM CHARACTERISTIC OF VORTEX IN A MIXING LAYER FORMED AT NOZZLE PITZDAILY USING OPENFOAM Suheni and Syamsuri Department of Mechanical Engineering, Adhi Tama Institute of Technology Surabaya, Indonesia E-Mail:

More information

STUDY OF DESIGN OF CYCLONE SEPARATOR UNDER COLLECTION EFFICIENCY AND AIR DENSITY EFFECT

STUDY OF DESIGN OF CYCLONE SEPARATOR UNDER COLLECTION EFFICIENCY AND AIR DENSITY EFFECT STUDY OF DESIGN OF CYCLONE SEPARATOR UNDER COLLECTION EFFICIENCY AND AIR DENSITY EFFECT Radhe Shyam Verma 1, Prakash Kumar Sen 2, Shailendra Kumar Bohidar 3 1 Student, Mechanical Engineering, Kirodimal

More information

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION 1446 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1446-1450 MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION by Li-Juan QIAN * China Jiliang University, Hangzhou, China Short

More information

Effect of Viscosity on the Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles. University of Toronto, Toronto, ON M5S 3G8

Effect of Viscosity on the Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles. University of Toronto, Toronto, ON M5S 3G8 ILASS Americas, 19 th Annual Conference on Liquid Atomization and Spray Systems, Toronto, Canada, May 2006 Effect of Viscosity on the Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles M. Ahmed

More information

Numerical Simulation Analysis of Ultrafine Powder Centrifugal Classifier Bizhong XIA 1, a, Yiwei CHEN 1, b, Bo CHEN 2

Numerical Simulation Analysis of Ultrafine Powder Centrifugal Classifier Bizhong XIA 1, a, Yiwei CHEN 1, b, Bo CHEN 2 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) Numerical Simulation Analysis of Ultrafine Powder Centrifugal Classifier Bizhong XIA 1, a, Yiwei CHEN 1,

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows by Ali Afshar A thesis submitted in conformity with the requirements for the degree of Masters

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Macroscopic conservation equation based model for surface tension driven flow

Macroscopic conservation equation based model for surface tension driven flow Advances in Fluid Mechanics VII 133 Macroscopic conservation equation based model for surface tension driven flow T. M. Adams & A. R. White Department of Mechanical Engineering, Rose-Hulman Institute of

More information

LOCAL VELOCITY MEASUREMENTS AND COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF SWIRLING FLOW IN A CYLINDRICAL CYCLONE SEPARATOR

LOCAL VELOCITY MEASUREMENTS AND COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF SWIRLING FLOW IN A CYLINDRICAL CYCLONE SEPARATOR Proceedings of ETCE 001: Engineering Technology Conference on Energy February 5-7, 001, Houston, Texas ETCE 001-17101 LOCAL VELOCITY MEASUREMENTS AND COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF SWIRLING

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction 13 th Int. Symp. on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29, 26 Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction Marcel

More information

SIMULATION OF PRECESSION IN AXISYMMETRIC SUDDEN EXPANSION FLOWS

SIMULATION OF PRECESSION IN AXISYMMETRIC SUDDEN EXPANSION FLOWS Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 SIMULATION OF PRECESSION IN AXISYMMETRIC SUDDEN EXPANSION FLOWS Baoyu GUO, Tim

More information

Impact of the HP Preheater Bypass on the Economizer Inlet Header

Impact of the HP Preheater Bypass on the Economizer Inlet Header Impact of the HP Preheater Bypass on the Economizer Inlet Header Dr.-Ing. Henning Zindler E.ON Kraftwerke Tresckowstrasse 5 30457 Hannover Germany henning.zindler@eon-energie.com Dipl.-Ing. Andreas Hauschke

More information

Hydrodynamics of Liquid Protection schemes for IFE Reactor Chambers

Hydrodynamics of Liquid Protection schemes for IFE Reactor Chambers Hydrodynamics of Liquid Protection schemes for IFE Reactor Chambers S. I. Abdel-Khalik and M. Yoda IAEA Meeting - Vienna (November 2003) G. W. Woodruff School of Mechanical Engineering Atlanta, GA 30332

More information

Compressible Duct Flow with Friction

Compressible Duct Flow with Friction Compressible Duct Flow with Friction We treat only the effect of friction, neglecting area change and heat transfer. The basic assumptions are 1. Steady one-dimensional adiabatic flow 2. Perfect gas with

More information

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Volume 119 No. 12 2018, 59-63 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Ramprasad T and Jayakumar

More information

Transactions on Engineering Sciences vol 5, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 5, 1994 WIT Press,   ISSN Pressure-swirl atomiser modelling T.L. Chan & W.T.V. Leung" Department of Mechanical and Marine Engineering, Faculty of Engineering, Hong Kong Polytechnic, Hong Kong * Graduated student ABSTRACT The pressure-swirl

More information