Modelling multiphase flows in the Chemical and Process Industry


 Mark Clarke
 1 years ago
 Views:
Transcription
1 Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09
2 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase flows in pipelines 2
3 Bubbly flows in pipes and pipe bends 3
4 Bubble size distribution models Population balance equation: Dn Dt i = B D + B D ibr, ibr, icl, icl, Interfacial area concentration transport (e.g. Ishii s model): Da i Dt = φ + φ br cl 4
5 Moments of particle size distribution 0 th moment is the particle number density: n = S 0 2 nd moment is related to interfacial area density: A i = 2 nπ d P d ) dd = 0 ( π S 2 3 rd moment is related to dispersed phase volume fraction: 3 πd α = n P( d ) dd = 6 0 π S 6 The Sauter mean diameter is: S 3 6α 1 d 32 = = S π S 2 S 2 3 5
6 Transport equation The transport equation: S S γ t +.( S u ) = s + s γ Breakup: s br d br cl 3 γ 3 γ d ( N f ( d) 1) = 0 τ br ( d ) Coalescence: np( d) d( d) dd, dd, 2 cl = 0 0 cl Δ γ, cl s K S npd ( ) ddpddd ' ( ) ( ) 6
7 Hibiki bubble column (2001) Air/Water Cylindrical Test Section 50.8 mm ID, 3.06 m Height Ideal Gas Law for Air (297K) Inlet B.C. at z/d=6 Air/Water Velocities, Void Fraction Atmospheric Exit (pressure boundary) Twodimensional axisymmetric simulation ( cells) Steady state flow C L = C VM = 0.5 C D =
8 Fields distribution bubble size interfacial area density gas phase volume fraction 8
9 Radial void and velocity distributions ) a G ( voidage radial distribution sim. with starcd exp. Hibiki et al., 2001 j G =0.321 m/s, j L =0.986 m/s, z/d=53.5 ) v L (m/s) axial velocity profile sim. with starcd exp. Hibiki et al., 2001 j G =0.321 m/s, j L =0.986 m/s, z/d=53.5 v G (m/s s) 1.0 axial velocity profile sim. with starcd exp. Hibiki et al., 2001 j G =0.321 m/s, j L =0.986 m/s, z/d= r/r () r/r () r/r () Void fraction Liquid velocity Gas velocity 9
10 Bubble size distributions d B (mm m) 2 bubble size radial distribution sim. with starcd exp. Hibiki et al., 2001 j 1 G =0.321 m/s, j L =0.986 m/s, z/d=53.5 d B (mm) bubble size radial distribution sim. with starcd exp. Hibiki et al., 2001 j G =0.471 m/s, j L =2.01 m/s, z/d=53.5 )3 d B (mm) bubble size radial distribution sim. with starcd exp. Hibiki et al., 2001 j G =0.624 m/s, j L =2.01 m/s, z/d= r/r () r/r () j G and j L r/r () Bubble size distribution in radial direction. Different gas and liquid fluxes are investigated with S γ model. 10
11 Nottingham Multiphase flow in bend pipes Bubble accumulate at top of the bend Gas vol. fraction Bubble size 2phase model + Sgamma Uniform bubble distribution in vertical section 11
12 Nottingham Multiphase flow in bend pipes Large bubblesbbl Medium bubbles Small bubbles Liquid 4phase model 12
13 DEM Rotating drum 13
14 DEM Calculation scheme Solve continuous phase on flow grid. Solve particle tracks accounting for particleparticle and particlewall interactions. Apply porosity and sources from DEM grid to flow grid. Calculate porosity and sources from particles over a DEM grid. 14
15 DEM Particle equations Linear momentum of particle: d v dt i m i = F Drag + F Contact + F Other Angular momentum: I i d dt r M ω i = [ τ + M ] k j = 1 r = μ ij ij μ roll r F r ij Contact r ω i M r ij = rolling torque opposes particle rotation μ roll = rolling friction coefficient. 15
16 DEM Multiple inlets 16
17 DEM Buoyant particles 17
18 DEM Particle transport in pipe 18
19 DEM Nonspherical particles 19
20 DEM  Breakoff of cohesive particle 20
21 10m riser section of a 100m long pipeline 21
22 OLGASTAR coupled model To study 3D effects in inline equipment: valve, junction, elbow, obstacle, jumper, separator, slug catcher, compressor,... Flow rates from STAR to OLGA Flow rates from OLGA to STAR Inlet Outlet Pressure from STAR to OLGA Pressure from OLGA to STAR 22
23 Summary Active development of advanced models for multiphase flows found in the chemical and process industry. Breakup and coalescence of bubbles in bubbly flows. Particleparticle, particlewall collision modelling using the Discrete Element Model (DEM). Modelling of multiphase flows in long pipelines. Coupling 3D CFD to 1D pipeline codes. 23
Modelling of Breakup and Coalescence in Bubbly TwoPhase Flows
Modelling of Breakup and Coalescence in Bubbly TwoPhase Flows Simon Lo and Dongsheng Zhang CDadapco, Trident Park, Didcot OX 7HJ, UK email: simon.lo@uk.cdadapco.com Abstract Numerical simulations
More informationCFD modelling of multiphase flows
1 Lecture CFD3 CFD modelling of multiphase flows Simon Lo CDadapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cdadapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM
More informationOutline. Advances in STARCCM+ DEM models for simulating deformation, breakage, and flow of solids
Advances in STARCCM+ DEM models for simulating deformation, breakage, and flow of solids Oleh Baran Outline Overview of DEM in STARCCM+ Recent DEM capabilities Parallel Bonds in STARCCM+ Constant Rate
More informationModeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!
http://www.nd.edu/~gtryggva/cfdcourse/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady NavierStokes equations
More informationDispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH
Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH 2011 ANSYS, Inc., Markus Braun 1 Overview The Euler/Lagrange concept Breaking the barrier
More informationMultiphase Flows. Mohammed Azhar Phil Stopford
Multiphase Flows Mohammed Azhar Phil Stopford 1 Outline VOF Model VOF Coupled Solver Free surface flow applications Eulerian Model DQMOM Boiling Model enhancements Multifluid flow applications Coupled
More informationDevelopment of twophaseeulerfoam
ISPRAS OPEN 2016 NUMERICAL STUDY OF SADDLESHAPED VOID FRACTION PROFILES EFFECT ON THERMAL HYDRAULIC PARAMETERS OF THE CHANNEL WITH TWOPHASE FLOW USING OPENFOAM AND COMPARISON WITH EXPERIMENTS Varseev
More informationCFD Simulation of Sodium Boiling in Heated Pipe using RPI Model
Proceedings of the 2 nd World Congress on Momentum, Heat and Mass Transfer (MHMT 17) Barcelona, Spain April 6 8, 2017 Paper No. ICMFHT 114 ISSN: 23715316 DOI: 10.11159/icmfht17.114 CFD Simulation of Sodium
More informationME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.
Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C
More informationFluid Dynamics Exercises and questions for the course
Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r
More informationApplications of Computational Fluid Dynamics in the Process Industries. Ahmad Haidari & Peter Spicka Fluent Inc.
Applications of Computational Fluid Dynamics in the Process Industries Ahmad Haidari & Peter Spicka Fluent Inc. 1 Outline Overview of CFD s growth in the process Industry Overview of modeling multiphase
More informationTHE EFFECT OF TWO PHASE (AIRWATER) FLOW CHARACTERISTICS ON MOMENTUM FLUX DUE TO FLOW TURNING ELEMENTS AT ATMOSPHERIC CONDITIONS
International Journal of Latest Trends in Engineering and Technology Vol.(8)Issue(1), pp.319328 DOI: http://dx.doi.org/10.21172/1.81.041 eissn:2278621x AN EXPERIMENTAL STUDY OF THE EFFECT OF TWO PHASE
More informationMultiFidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo
MultiFidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo CDadapco, Trident House, Basil Hill Road, Didcot, OX11 7HJ, UK MultiFidelity Computational
More informationEulerEuler Modeling of MassTransfer in Bubbly Flows
EulerEuler Modeling of MassTransfer in Bubbly Flows Roland Rzehak Eckhard Krepper Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der LeibnizGemeinschaft Overview Motivation
More informationSlug tracking simulation of severe slugging experiments
Slug tracking simulation of severe slugging experiments Tor Kindsbekken Kjeldby, Ruud Henkes and Ole Jørgen Nydal Abstract Experimental data from an atmospheric air/water terrain slugging case has been
More informationSimulation of Particulate Solids Processing Using Discrete Element Method Oleh Baran
Simulation of Particulate Solids Processing Using Discrete Element Method Oleh Baran Outline DEM overview DEM capabilities in STARCCM+ Particle types and injectors Contact physics Coupling to fluid flow
More informationOMAE FLUIDSTRUCTURE INTERACTION MODELING OF SUBSEA JUMPER PIPE
Proceedings of the ASME 2014 33 rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014 June 813, 2014, San Francisco, CA USA OMAE201424070 FLUIDSTRUCTURE INTERACTION MODELING
More information4 Mechanics of Fluids (I)
1. The x and y components of velocity for a twodimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in
More informationThe effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets
ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization
More informationInvestigation of slug flow characteristics in inclined pipelines
Computational Methods in Multiphase Flow IV 185 Investigation of slug flow characteristics in inclined pipelines J. N. E. Carneiro & A. O. Nieckele Department of Mechanical Engineering Pontifícia Universidade
More informationExperimental and Numerical Investigation of Two Phase Flow through Enlarging Singularity
Purdue University Purdue epubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 212 Experimental and Numerical Investigation of Two Phase Flow through Enlarging
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationConsider a control volume in the form of a straight section of a streamtube ABCD.
6 MOMENTUM EQUATION 6.1 Momentum and Fluid Flow In mechanics, the momentum of a particle or object is defined as the product of its mass m and its velocity v: Momentum = mv The particles of a fluid stream
More informationIHMTC EULEREULER TWOFLUID MODEL BASED CODE DEVELOPMENT FOR TWOPHASE FLOW SYSTEMS
Proceedings of the 24th National and 2nd International ISHMTASTFE Heat and Mass Transfer Conference (IHMTC2017), December 2730, 2017, BITSPilani, Hyderabad, India IHMTC2017130160 EULEREULER TWOFLUID
More informationEulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers
Advanced Computational Methods and Experiments in Heat Transfer XI 51 Eulerian model for the prediction of nucleate boiling of refrigerant in heat exchangers D. Simón, M. C. Paz, A. Eirís&E.Suárez E.T.S.
More informationModelling of GasLiquid TwoPhase Flows in Vertical Pipes using PHOENICS
Modelling of GasLiquid TwoPhase Flows in Vertical Pipes using PHOENICS Vladimir Agranat, Masahiro Kawaji, Albert M.C. Chan* Department of Chemical Engineering and Applied Chemistry University of Toronto,
More informationWater Pollution Control: Physical Methods. AWPPCE RPI Fall 2013
Water Pollution Control: Physical Methods AWPPCE RPI Fall 2013 Water Pollution Control Processes Water and Waste Water Treatment are usually carried out in specially designed vessels (reactors) under controlled
More informationSignature: (Note that unsigned exams will be given a score of zero.)
Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.
More informationCFD in COMSOL Multiphysics
CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective
More informationINFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW
INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW Daniel Merino Gabriel S. Bassani, Luiz Eduardo A. P. Duarte Deibi E. Garcia Angela O. Nieckele Twophase Flow
More informationCFDModeling of Boiling Processes
CFDModeling of Boiling Processes 1 C. Lifante 1, T. Frank 1, A. Burns 2, E. Krepper 3, R. Rzehak 3 conxita.lifante@ansys.com 1 ANSYS Germany, 2 ANSYS UK, 3 HZDR Outline Introduction Motivation Mathematical
More informationTutorial for the heated pipe with constant fluid properties in STARCCM+
Tutorial for the heated pipe with constant fluid properties in STARCCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities
More informationConservation of Angular Momentum
10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo
More informationAPPLIED FLUID DYNAMICS HANDBOOK
APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /
More informationDEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION
TMS (The Minerals, Metals & Materials Society), DEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION G.F. Yao, C. W. Hirt, and
More informationMinimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes
Computational Methods in Multiphase Flow V 227 Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes B. M. Halvorsen 1,2 & B. Arvoh 1 1 Institute
More informationMultiphase Flow and Heat Transfer
Multiphase Flow and Heat Transfer ME546 Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, TwoPhase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410
More informationOn the numerical study of isothermal vertical bubbly flow using two population balance approaches
On the numerical study of isothermal vertical bubbly flow using two population balance approaches Sherman C.P. Cheung 1, G.H. Yeoh 2 and J.Y. Tu 1 1 School of Aerospace, Mechanical and Manufacturing Engineering,
More informationBernoulli s equation may be developed as a special form of the momentum or energy equation.
BERNOULLI S EQUATION Bernoulli equation may be developed a a pecial form of the momentum or energy equation. Here, we will develop it a pecial cae of momentum equation. Conider a teady incompreible flow
More informationA STUDY ON SLUG INDUCED STRESSES USING FILEBASED COUPLING TECHNIQUE
A STUDY ON SLUG INDUCED STRESSES USING FILEBASED COUPLING TECHNIQUE Abdalellah O. Mohmmed, Mohammad S. Nasif and Hussain H. AlKayiem Department of Mechanical Engineering, Universiti Teknologi Petronas,
More informationPrediction of Minimum Fluidisation Velocity Using a CFDPBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor
Journal of Engineering Science, Vol. 10, 95 105, 2014 Prediction of Minimum Fluidisation Velocity Using a CFDPBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Vahid Akbari and Mohd.
More informationV (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)
IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common
More informationVariable Definition Notes & comments
Extended base dimension system Pitheorem (also definition of physical quantities, ) Physical similarity Physical similarity means that all Piparameters are equal Galileonumber (solid mechanics) Reynolds
More informationVALIDATION OF CFDBWR, A NEW TWOPHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS
VALIDATION OF CFDBWR, A NEW TWOPHASE COMPUTATIONAL FLUID DYNAMICS MODEL FOR BOILING WATER REACTOR ANALYSIS V.Ustineno 1, M.Samigulin 1, A.Ioilev 1, S.Lo 2, A.Tentner 3, A.Lychagin 4, A.Razin 4, V.Girin
More informationControl Volume Revisited
Civil Engineering Hydraulics Control Volume Revisited Previously, we considered developing a control volume so that we could isolate mass flowing into and out of the control volume Our goal in developing
More informationNumerical Modelling of Twinscrew Pumps Based on Computational Fluid Dynamics
Numerical Modelling of Twinscrew Pumps Based on Computational Fluid Dynamics 68 th March 2017 Dr Sham Rane, Professor Ahmed Kovačević, Dr Di Yan, Professor Qian Tang, Centre for Compressor Technology,
More informationMSc. Thesis Project. Simulation of a Rotary Kiln. MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye. Challenge the future
MSc. Thesis Project Simulation of a Rotary Kiln MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye 1 Problem Description What is a Rotary Kiln? A Rotary Kiln is a pyroprocessing device used to raise
More informationINTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II Haryo Tomo
1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II Haryo Tomo 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different
More informationAnswers to questions in each section should be tied together and handed in separately.
EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the
More informationChapter Four Hydraulic Machines
Contents 1 Introduction.  Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. 3 4 Cavitation in hydraulic machines. 5 Examples. 6 Problems; sheet No. 4 (Pumps) 7 Problems;
More informationLagrangian Particle Tracking
FD with OpenFOAM software Lagrangian article Tracking Jelena Andric December 2009, Gothenburg About multiphase flows great importance can occur even more frequently than single phase flows correct formulation
More informationPhysics 218 Exam 3 Spring 2010, Sections
Physics 8 Exam 3 Spring 00, Sections 555 Do not fill out the information below until instructed to do so! Name Signature Student ID Email Section # Rules of the exam:. You have the full class period
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics
COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid
More informationIn this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor
Lect 3 In this lecture... Centrifugal compressors Thermodynamics of centrifugal compressors Components of a centrifugal compressor Centrifugal compressors Centrifugal compressors were used in the first
More informationChapter 6: Momentum Analysis
61 Introduction 62Newton s Law and Conservation of Momentum 63 Choosing a Control Volume 64 Forces Acting on a Control Volume 65Linear Momentum Equation 66 Angular Momentum 67 The Second Law of
More informationFluid Structure Interaction Analysis of TwoPhase Flow in an Mshaped Jumper. Star Global Conference University of Houston
Fluid Structure Interaction Analysis of TwoPhase Flow in an Mshaped Jumper Star Global Conference 2012 University of Houston College of Technology Mechanical Engineering Technology Leonardo Chica January
More informationPairwise Interaction Extended PointParticle (PIEP) Model for dropletladen flows: Towards application to the midfield of a spray
Pairwise Interaction Extended PointParticle (PIEP) Model for dropletladen flows: Towards application to the midfield of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &
More informationFINITE ELEMENT METHOD IN
FINITE ELEMENT METHOD IN FLUID DYNAMICS Part 6: Particles transport model Marcela B. Goldschmit 2 3 Lagrangean Model The particles movement equations are solved. The trajectory of each particles can be
More informationMixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds
Mixing and Evaporation of Liquid Droplets Injected into an Air Stream Flowing at all Speeds F. Moukalled* and M. Darwish American University of Beirut Faculty of Engineering & Architecture Mechanical Engineering
More informationExperimental Investigation of Heat Transfer from a Flat and Surface Indented Plate Impinged with Cold Air Jet Using Circular Nozzle
International Journal of Emerging Engineering Research and Technology Volume 2, Issue 5, August 2014, PP 160170 ISSN 23494395 (Print) & ISSN 23494409 (Online) Experimental Investigation of Heat Transfer
More informationCFD MODELLING OF PRESSURE DROP AND FLOW DISTRIBUTION IN PACKED BED FILTERS
CFD MODELLING OF PRESSURE DROP AND FLOW DISTRIBUTION IN PACKED BED FILTERS Kate TAYLOR 1, Anthony G SMITH 1, Stuart ROSS 2 and Martin W SMITH 2 1 S&C Thermofluids Ltd, The Old Tannery, Kelston, Bath, BA1
More informationStrategy in modelling irregular shaped particle behaviour in confined turbulent flows
Title Strategy in modelling irregular shaped particle behaviour in confined turbulent flows M. Sommerfeld F L Mechanische Verfahrenstechnik Zentrum Ingenieurwissenschaften 699 Halle (Saale), Germany wwwmvt.iw.unihalle.de
More informationDEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS
DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henry Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stocholm,
More informationCFD modeling of AirWater Twophase Annular Flow before a 90 elbow
6 SECCIÓN TÉCNICA CFD modeling of AirWater Twophase Annular Flow before a 9 elbow Modelamiento en CFD de flujo anular bifásico aireagua en una tubería antes de un codo de 9 Andrés Felipe Melo Zambrano
More informationBest Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows. René V.A. Oliemans
Best Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows René V.A. Oliemans ERCOFTAC Seminar, Innventia, Stockholm, June 78, 2011 1 Vermelding onderdeel organisatie Department of
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationCalculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.
Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 201013th Conference on Process Integration, Modelling
More informationANALYSIS AND APPLICATIONS OF A TWOFLUID MULTIFIELD HYDRODYNAMIC MODEL FOR CHURNTURBULENT FLOWS
Proceedings of the 2013 21st International Conference on Nuclear Engineering ICONE21 July 29  August 2, 2013, Chengdu, China ICONE2116297 ANALYSIS AND APPLICATIONS OF A TWOFLUID MULTIFIELD HYDRODYNAMIC
More informationResearch Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle
Science and Technology of Nuclear Installations Volume 2012, Article ID 795935, 8 pages doi:10.1155/2012/795935 Research Article CFD Modeling of Boiling Flow in PSBT 5 5Bundle Simon Lo and Joseph Osman
More informationwhere = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system
The Energy Equation for Control Volumes Recall, the First Law of Thermodynamics: where = rate of change of total energy of the system, = rate of heat added to the system, = rate of work done by the system
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationFluid Flow, Heat Transfer and Boiling in MicroChannels
L.P. Yarin A. Mosyak G. Hetsroni Fluid Flow, Heat Transfer and Boiling in MicroChannels 4Q Springer 1 Introduction 1 1.1 General Overview 1 1.2 Scope and Contents of Part 1 2 1.3 Scope and Contents of
More informationWP2.3: Boiling Water Reactor Thermal Hydraulics
WP2.3: Boiling Water Reactor Thermal Hydraulics H. Anglart, D. Caraghiaur, D. Lakehal, J. Pérez, V. Tanskanen, M. Ilvonen BWR Thermalhydraulic issues CFD Eulerian/Eulerian approach (KTH) Annular flow
More information3.8 The First Law of Thermodynamics and the Energy Equation
CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationAnalysis of hydrodynamic forces on nonspherical particles (Spherocylinder)
Coimbra, 68 March 2013. International workshop Fibre Suspension Flow Modelling French program ANR PLAYER Analysis of hydrodynamic forces on nonspherical particles (Spherocylinder) Rafik OUCHENE (LEMTA,
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationInternational Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 29 (2008) 593 602 Contents lists available at ScienceDirect International Journal of Heat and Fluid Flow journal homepage: www.elsevier.com/locate/ijhff Experimental
More informationHydrodynamics of Bubble Columns: Turbulence and Population Balance Model
Article Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model Camila Braga Vieira *, and Pierre Proulx ID ID, Giuliana Litrico, Ehsan Askari ID, Gabriel Lemieux ID Chemical Engineering
More informationFigure 11.1: A fluid jet extruded where we define the dimensionless groups
11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates
More informationModeling of Wallboiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions
Modeling of Wallboiling Phenomena from Nucleate Subcooled Boiling up to CHF Conditions Thomas Frank (1), Amine Ben Hadj Ali (1), Conxita Lifante (1), Florian Kaiser (2), Stephan Gabriel (2), Henning Eickenbusch
More informationChapter 2 Flow Characteristics and Void Fraction Prediction in Large Diameter Pipes
Chapter Flow Characteristics and Void Fraction Prediction in Large Diameter Pipes Xiuzhong Shen, Joshua P. Schlegel, Shaowen Chen, Somboon Rassame, Matthew J. Griffiths, Takashi Hibiki and Mamoru Ishii
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationTransient Reactor Test Loop (TRTL) Model Development
Transient Reactor Test Loop (TRTL) Model Development Emory Brown WORKING GROUP MEETING FLL 2016 TSK 2 BREKOUT SESSION BOSTON, M Outline Task Description Current Model Status With model projections Preliminary
More informationChapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:
linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)
More informationCFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING
CFD SIMULATION OF THE DEPARTURE FROM NUCLEATE BOILING Ladislav Vyskocil and Jiri Macek UJV Rez a. s., Dept. of Safety Analyses, Hlavni 130, 250 68 Husinec Rez, Czech Republic Ladislav.Vyskocil@ujv.cz;
More informationDifferential relations for fluid flow
Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More informationVALIDATION OF DIRECT CONTACT CONDENSATION CFD MODELS AGAINST CONDENSATION POOL EXPERIMENT. I1.Vesa Tanskanen, I2. Djamel Lakehal, I1.
Abstract VALIDATION OF DIRECT CONTACT CONDENSATION CFD MODELS AGAINST CONDENSATION POOL EXPERIMENT I.Vesa Tansanen, I2. Djamel Laehal, I. Maru Puustinen I,Lappeenranta University of Technology (LUT) P.O.
More informationLOW REYNOLDS NUMBER FLOWS HINCHEY
LOW REYNOLDS NUMBER FLOWS HINCHEY LUBRICATION FLOWS Lubrication flows are governed by Reynolds Equation for Pressure. For a Cartesian geometry, its derivation starts with the following simplified form
More informationDEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLYDISPERSED MULTIPHASE FLOWS
DEVELOPMENT OF A MULTIPLE VELOCITY MULTIPLE SIZE GROUP MODEL FOR POLYDISPERSED MULTIPHASE FLOWS JunMei Shi, Phil Zwart 1, Thomas Frank 2, Ulrich Rohde, and HorstMichael Prasser 1. Introduction Polydispersed
More informationNumerical Modeling of Pressure drop due to Singlephase Flow of Water and Twophase Flow of Airwater Mixtures through Thick Orifices
International Journal of Engineering Trends and Technology VolumeIssue Numerical Modeling of Pressure drop due to Singlephase Flow of Water and Twophase Flow of Airwater Mixtures through Thick Orifices
More informationChemical Reaction Engineering
Lecture 32! Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.!! 1! Lecture 32 Thursday
More informationAIRLIFT BIOREACTORS. contents
AIRLIFT BIOREACTORS contents Introduction Fluid Dynamics Mass Transfer Airlift Reactor Selection and Design 1 INTRODUCTION airlift reactor (ALR) covers a wide range of gas liquid or gas liquid solid pneumatic
More information2 NavierStokes Equations
1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1
More informationNumerical Investigation of Nucleate Boiling Flow in Water Based Bubble Bumps
International Journal of Fluid Mechanics & Thermal Sciences 2015; 1(2): 3641 Published online June 15, 2015 (http://www.sciencepublishinggroup.com/j/ijfmts) doi: 10.11648/j.ijfmts.20150102.14 Numerical
More informationApplied Computational Fluid Dynamics (Applied CFD) MEng/M.Sc. Module
Applied Computational Fluid Dynamics (Applied CFD) MEng/M.Sc. Module. Dr Hervé MORVAN, Module Convenor School of Civil Engineering, The University of Nottingham, UK Herve.Morvan@Nottingham.ac.uk Table
More informationPh1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004
Ph1a: Solution to the Final Exam Alejandro Jenkins, Fall 2004 Problem 1 (10 points)  The Delivery A crate of mass M, which contains an expensive piece of scientific equipment, is being delivered to Caltech.
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More information