2.2 The Turbulent Round Jet

Size: px
Start display at page:

Download "2.2 The Turbulent Round Jet"

Transcription

1 Canonical Turbulent Flows 13. The Turbulent Round Jet Jet flows are a subset of the general class of flows known as free shear flows where free indicates that the shear arises in the absence of a boundary (wall) and instead results from a maintained velocity difference. The scale of round jet flows ranges from the nozzle on an ink jet printer to a volcano. For a perfectly round jet the flow is essentially completely characterized by the Reynolds number Re D = U JD ν (.11) where D is the diameter of the jet orifice and U J is the velocity of the jet at the orifice. Ideally the velocity at the orifice will be constant across the exit plane, but if not we take U J = Q/A where Q is the flow rate and A is the jet cross-sectional area. At low Re D jets are laminar and at high Re D jets are turbulent. It is a bit difficult to define exactly where the transition occurs as it depends on the exact conditions of the flow at the orifice. Jets begin to exhibit turbulent behavior at relatively low Re D, as low as 300, but the fundamental parameters that characterize the turbulent round jet (to be defined in a moment) are weakly a function of Re D and the jet exit velocity profile (Zarruk & Cowen, 008. Simultaneous velocity and passive scalar concentration measurements in low Reynolds number neutrally buoyant turbulent round jets. Experiments in Fluids 44, ). For an essentially uniform jet exit velocity profile (known as a top-hat profile), the fundamental parameters of the turbulent jet become independent of Re for Re D > 4000, thus the canonical turbulent round jet problem is for Re D > Round jets are one of many flows that exhibit what is known as self-similar behavior. Self-similarity indicates that a flow will look similar when scaled appropriately. This appropriate scaling involves defining similarity variables that reduce the overall dimensionality of the problem. In the case of the turbulent round jet, after a transition region that occurs roughly from 0 <x/d<30 (where x is the coordinate along the jet axis coordinate system shown on next page), the jet cross-sectional properties are independent of x when properly scaled. The similarity variable in the round jet can be chosen in multiple ways but basically comes down to a statement that the radial coordinate c 017 Edwin A. Cowen

2 14 Canonical Turbulent Flows depends on the axial coordinate in a fixed way. We will choose as our similarity variable the ratio r/r 1/ where r 1/ is the half-width of the jet defined as the radial point where the velocity has dropped to half the centerline velocity. Several other normalizations have been developed including r/(x x 0 )wherex 0 is a virtual origin to be defined in a moment and r/l q where l q = A. Our choice of definition has the advantage that a single cross-sectional profile can be normalized without exact knowledge of the streamwise position of the profile relative to the jet orifice. For the round jet we define U 0 (x) =u(x, 0, 0) (.1) u(x, r 1, 0) = U 0(x) (.13) where U 0 is our nomenclature for the jet centerline velocity. If the centerline velocity is plotted versus the non-dimensional distance downstream an inverse relationship with downstream distance is found (this can actually be analytically predicted) U 0 (x) B U = ( ) J or U J x x0 U 0 (x) = 1 ( ) x x0 B D D (.14) where B (the slope term of the centerline velocity decay which Hussein, Capp &George (1994) define as B u, see below) and x 0 (the virtual origin of the jet) are constants of the expected linear fit that must be determine empirically for Re D > 4000 B 5.8 while x 0 /D is generally 4 but each are a function of Reynolds number and jet exit profile (Zarruk & Cowen, 008). c 017 Edwin A. Cowen

3 Canonical Turbulent Flows 15 I have handed out Hussein, Capp & George (1994). Velocity measurements in a high- Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 58, Look over this article for plots of Eq.14 and all of the plots below for jets. This is the current standard article on turbulent round jets. The standard paper prior to this paper (and still a benchmark!) was (available as a pdf in the \handouts section of the website) Wyzgnanski & Fiedler (1969). Some measurements in the self-preserving jet. J. Fluid Mech. 38, The same plots exist in this paper. Note both papers are excellent examples of experimental design and technology and should be regarded as exemplary experimental papers. Each reviews hot-wire anemometry and Hussein et al. reviews laser Doppler velocimetry (LDV) as well. We can define the jets spreading rate, S, basedonr 1 as (x) S = dr1 dx (.15) The conservation of momentum can be used to show that in a round jet the product r 1 (x)u 0 (x) is a constant. Eq.14 indicates that U 0 (x) x 1 hence r 1 (x) mustgoasx 1. Integration of Eq.15 and incorporation of the virtual origin results in r 1 (x) =S(x x 0 ) (.16) A typical value for S is (Hussein et al.). Note based on the definition arctan S gives the angle of spread of the r 1 (x) contour. ForS =0.094 the angle with respect to the x axis is about 5.4. A more physical sense of the jet width is based on S (greater than 90% of the momentum is contained within this contour). The included angle of the jet based on S is about 1 (e.g., the angle between the ±S contours). The above analysis is all based on mean quantities how does the turbulence in a round jet behave? It turns out that it too is self-similar. If we consider u and normalize it by the jet centerline velocity, U 0 (x), we find that it also decays as x 1 and in the self-similar region has a constant value of about 7% (Hussein et al.). If we consider v we find the same dependence however the constant value is a bit lower, about % (Hussein et al.). Note that the round jet is axially symmetric (there is no dependence on the exact c 017 Edwin A. Cowen

4 16 Canonical Turbulent Flows direction we choose perpendicular to the jet axis). Hence if we continue our analysis of the turbulence in Cartesian coordinates we find that w has the same dependence and the constant is %. Some general points about the shape of the turbulence profiles in the radial direction are worth noting. If you consider the shape of u it decays monotonically (but in a Gaussian like manner) from the peak centerline value to zero at an infinite radius. There is an inflection point in the profile where the maximum radial gradient occurs (at around r/r 1 = 0.5). This is the point of maximum shear and it is the point where turbulence production is a maximum. Since the shear is in the u component of the velocity field it should not be surprising that u shows a peak value above that of the centerline value at this point in the profile and then decays. As there is minimal shear driven production in the plane perpendicular to the jet axis the v and w profiles show no such offaxis peak but instead decay in a way very similar to u. See Hussein et al. s Figure 9-11 for examples. The final turbulence parameter we need to discuss is the Reynolds stress component u w (which is the same as the u v in the case of the round jet). Recall that this is the turbulent transport of momentum term. Physically the jet has its momentum focused along the jet axis and we expect that the turbulence is trying to spread the momentum radially away from the axis. Thus if we consider the upper half of the jet profile where u/ z <0 a positive w fluctuation will carry high momentum fluid away from the jet axis and hence u > 0. Thus in this region we expect u w > 0. An easy way to get a sense for the Reynolds stress behavior is to use what is called a scatter plot a plot of u vs w in the case just described. Here is an example of a scatter plot from ADV data near the region of maximum shear in a turbulent round jet (e.g., lab #1!). Similarly if we now consider the lower half of the jet profile where u/ z >0 a negative w fluctuation will carry high momentum fluid away from the jet axis and hence u > 0. Thus in this region we expect u w < 0. There will not be a discontinuity at the jet centerline so the value at jet centerline must be u w = 0. The Reynolds stress terms c 017 Edwin A. Cowen

5 Canonical Turbulent Flows w (cm/s u (cm/s play a pivotal role in turbulence production and hence we expect their value to be a peak where the mean velocity shear is a maximum - at around r/r 1 = 0.5 as indicated above. Further, as u(x) /U 0 (x) has a self-similar region we expect that u w /U0 will also be self-similar and it is. See Hussein et al. s Figure 1 for the profiles exact shape. That s it for now for the turbulent round jet. For more details see the two articles handed out and the excellent chapter in Pope (001), sections , on the reference list. We will investigate the mass flux in a turbulent round jet in the final laboratory exercise so the story is not quite over! c 017 Edwin A. Cowen

6 18 Canonical Turbulent Flows c 017 Edwin A. Cowen

Velocity and concentration measurements in initial region of submerged round jets in stagnant environment and in coflow

Velocity and concentration measurements in initial region of submerged round jets in stagnant environment and in coflow Title Velocity and concentration measurements in initial region of submerged round jets in stagnant environment and in coflow Author(s) Xia, LP; Lam, KM Citation Journal Of Hydro-Environment Research,

More information

Turbulent Flows. quiescent surroundings W U V. r U. nozzle. fluid supply CHAPTER 5: FREE SHEAR FLOWS

Turbulent Flows. quiescent surroundings W U V. r U. nozzle. fluid supply CHAPTER 5: FREE SHEAR FLOWS quiescent surroundings x W U V r U J θ d nozzle fluid supply Figure 5.1: Sketch of a round jet experiment, showing the polarcylindrical coordinate system employed. 0.2 x/d = 30 U /U J 0.1 x/d = 60 x/d

More information

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios The Effect of Endplates on Rectangular Jets of Different Aspect Ratios M. Alnahhal *, Th. Panidis Laboratory of Applied Thermodynamics, Mechanical Engineering and Aeronautics Department, University of

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

2.3 The Turbulent Flat Plate Boundary Layer

2.3 The Turbulent Flat Plate Boundary Layer Canonical Turbulent Flows 19 2.3 The Turbulent Flat Plate Boundary Layer The turbulent flat plate boundary layer (BL) is a particular case of the general class of flows known as boundary layer flows. The

More information

INITIAL CONDITION EFFECTS ON KELVIN-HELMHOLTZ INSTABILITIES AND DEVELOPMENT OF A ROUND JET

INITIAL CONDITION EFFECTS ON KELVIN-HELMHOLTZ INSTABILITIES AND DEVELOPMENT OF A ROUND JET INITIAL CONDITION EFFECTS ON KELVIN-HELMHOLTZ INSTABILITIES AND DEVELOPMENT OF A ROUND JET Amy B. McCleney and Philippe M. Bardet The George Washington University 800 22 nd St NW, Washington, D.C. 20037

More information

Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings

Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings Center for Turbulence Research Annual Research Briefs 1999 239 Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings By A. J. Basu AND N. N. Mansour 1. Motivation and

More information

PASSIVE SCALAR MIXING IN A TURBULENT JET

PASSIVE SCALAR MIXING IN A TURBULENT JET Seoul, Korea, 22-24 June 29 PASSIVE SCALAR MIXING IN A TURBULENT JET Massimo Falchi Propulsion and Cavitation Laboratory, INSEAN, Italian Ship Model Basin Via di Vallerano 39, Roma, 28, Italy m.falchi@insean.it

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION Cheng Z, Agranat V.M. and Tchouvelev A.V. A.V.Tchouvelev & Associates, Inc., 659 Spinnaker Circle, Mississauga, Ontario, Canada L5W R Hydrogenics

More information

DEPARTMENT OF TECHNOLOGY

DEPARTMENT OF TECHNOLOGY DEPARTMENT OF TECHNOLOGY Moment Balance of an axisymmetric jet and the effect of air entrainment from ambient Xue Fei May 2010 Master s Thesis in Building Environment Modeling - CFD, Measuring Techniques

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER.

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER. White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER Prepared by: Dr. Thomas J. Gieseke NUWCDIVNPT - Code 8233 March 29, 1999

More information

PARTICLE MOTION IN WATER-PARTICLE, GAS-PARTICLE AND GAS-DROPLET TWO-PHASE FLOWS

PARTICLE MOTION IN WATER-PARTICLE, GAS-PARTICLE AND GAS-DROPLET TWO-PHASE FLOWS ISTP-6, 5, PRAGUE 6 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA PARTICLE MOTION IN WATER-PARTICLE, GAS-PARTICLE AND GAS-DROPLET TWO-PHASE FLOWS Tsuneaki ISHIMA*, Masaaki YOKOTA**, Toshimichi ARAI***,

More information

DEPENDENCE OF A PLANE TURBULENT JET ON ITS NOZZLE CONTRACTION PROFILE

DEPENDENCE OF A PLANE TURBULENT JET ON ITS NOZZLE CONTRACTION PROFILE DEPENDENCE OF A PLANE TURBULENT JET ON ITS NOZZLE CONTRACTION PROFILE Deo*, R C, Mi, J and Nathan, G J School of Mechanical Engineering The University of Adelaide SA 55 AUSTRALIA *ravinesh.deo@usp.ac.fj

More information

Flow Structure Investigations in a "Tornado" Combustor

Flow Structure Investigations in a Tornado Combustor Flow Structure Investigations in a "Tornado" Combustor Igor Matveev Applied Plasma Technologies, Falls Church, Virginia, 46 Serhiy Serbin National University of Shipbuilding, Mikolayiv, Ukraine, 545 Thomas

More information

A Solution Method for the Reynolds-Averaged Navier-Stokes Equation

A Solution Method for the Reynolds-Averaged Navier-Stokes Equation A Solution Method for the Reynolds-Averaged Navier-Stokes Equation T.-W. Lee Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, 8587 Abstract- Navier-Stokes equations are difficult

More information

Chapter 4. Experimental Results - Statistics

Chapter 4. Experimental Results - Statistics Chapter 4 Experimental Results - Statistics 13 4.1 Overview The present chapter includes a presentation and discussion of the results for two major geometries. For the first geometry, the swirler center

More information

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

arxiv: v1 [physics.flu-dyn] 11 Oct 2012 Low-Order Modelling of Blade-Induced Turbulence for RANS Actuator Disk Computations of Wind and Tidal Turbines Takafumi Nishino and Richard H. J. Willden ariv:20.373v [physics.flu-dyn] Oct 202 Abstract

More information

Convection in Three-Dimensional Separated and Attached Flow

Convection in Three-Dimensional Separated and Attached Flow Convection in Three-Dimensional Separated and Attached Flow B. F. Armaly Convection Heat Transfer Laboratory Department of Mechanical and Aerospace Engineering, and Engineering Mechanics University of

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction

Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction 13 th Int. Symp. on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal, June 26-29, 26 Intensely swirling turbulent pipe flow downstream of an orifice: the influence of an outlet contraction Marcel

More information

Turbulent Flows. g u

Turbulent Flows. g u .4 g u.3.2.1 t. 6 4 2 2 4 6 Figure 12.1: Effect of diffusion on PDF shape: solution to Eq. (12.29) for Dt =,.2,.2, 1. The dashed line is the Gaussian with the same mean () and variance (3) as the PDF at

More information

An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient

An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient PHYSICS OF FLUIDS VOLUME 16, NUMBER 5 MAY 2004 An experimental investigation of symmetric and asymmetric turbulent wake development in pressure gradient Flint O. Thomas and Xiaofeng Liu Center for Flow

More information

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake

Evolution of the pdf of a high Schmidt number passive scalar in a plane wake Evolution of the pdf of a high Schmidt number passive scalar in a plane wake ABSTRACT H. Rehab, L. Djenidi and R. A. Antonia Department of Mechanical Engineering University of Newcastle, N.S.W. 2308 Australia

More information

Conditional statistics for passive-scalar mixing in a confined rectangular turbulent jet

Conditional statistics for passive-scalar mixing in a confined rectangular turbulent jet Chemical and Biological Engineering Publications Chemical and Biological Engineering 2007 Conditional statistics for passive-scalar mixing in a confined rectangular turbulent jet H. Feng Iowa State University

More information

Structure of turbulent plumes from a momentumless source in a smooth bed

Structure of turbulent plumes from a momentumless source in a smooth bed Environ Fluid Mech (2006) 6:573 592 DOI 10.1007/s10652-006-9007-2 ORIGINAL ARTICLE Structure of turbulent plumes from a momentumless source in a smooth bed J. P. Crimaldi J. R. Koseff Received: 17 July

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Bulletin of the JSME Vol.9, No.3, 24 Journal of Fluid Science and Technology Re-evaluating wake width in turbulent shear flow behind an axisymmetric cylinder by means of higher order turbulence statistics

More information

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG LEHRSTUHL FÜR STRÖMUNGSMECHANIK

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG LEHRSTUHL FÜR STRÖMUNGSMECHANIK FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG LEHRSTUHL FÜR STRÖMUNGSMECHANIK CHALMERS UNIVERSITY OF TECHNOLOGY, GÖTEBORG DEPARTMENT OF THERMO AND FLUID DYNAMICS Master Thesis Multi-Point Similarity

More information

Near Field Measurements of an Axisymmetric Turbulent Jet at Low Reynolds Numbers: A PIV and CTA Comparison

Near Field Measurements of an Axisymmetric Turbulent Jet at Low Reynolds Numbers: A PIV and CTA Comparison Near Field Measurements of an Axisymmetric Turbulent Jet at Low Reynolds Numbers: A PIV and CTA Comparison 1 Brian D. Landers, 2 Peter J. Disimile 1,2 Department of Aerospace Engineering, University of

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

ENVIRONMENTAL FLUID MECHANICS

ENVIRONMENTAL FLUID MECHANICS ENVIRONMENTAL FLUID MECHANICS Turbulent Jets http://thayer.dartmouth.edu/~cushman/books/efm/chap9.pdf Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College One fluid intruding into another

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Abstract Particle image velocimetry (PIV)

Abstract Particle image velocimetry (PIV) Computation of Pressure Distribution Using PIV Velocity Data R. Gurka'l), A. Liberzon''), D. Hefet~'~), D. Rubinstein"), U. Shavit(')* 'I) Agricultural Engineering, Technion, Haifa 32000, Israel (anuri@tr.technian.ac.il)

More information

Turbulent Shear Flow Experiments: Design of Natural Convection Rig and LDA Measurement in Swirling Jets

Turbulent Shear Flow Experiments: Design of Natural Convection Rig and LDA Measurement in Swirling Jets THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING IN THERMO AND FLUID DYNAMICS Turbulent Shear Flow Experiments: Design of Natural Convection Rig and LDA Measurement in Swirling Jets ABOLFAZL SHIRI Department

More information

Investigation of Jet Dynamics in Cross-Flow: Quantifying Volcanic Plume Behavior

Investigation of Jet Dynamics in Cross-Flow: Quantifying Volcanic Plume Behavior Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Fall 11-23-2016 Investigation of Jet Dynamics in Cross-Flow: Quantifying Volcanic Plume Behavior Graham Freedland

More information

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer

More information

Scale-by-scale budget equation and its self-preservation in the shear-layer of a free round jet

Scale-by-scale budget equation and its self-preservation in the shear-layer of a free round jet TSpace Research Repository tspace.library.utoronto.ca Scale-by-scale budget equation and its self-preservation in the shear-layer of a free round jet Hamed Sadeghi, Philippe Lavoie, and Andrew Pollard

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES THERMAL SCIENCE, Year, Vol. 8, No. 5, pp. 87-9 87 PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES by Cheng-Xu TU, a,b Fu-Bin BAO

More information

A Study of The Turbulent Flows in Sloping and Adversely Sloping Rectangular Culvert

A Study of The Turbulent Flows in Sloping and Adversely Sloping Rectangular Culvert International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol:12 No:06 85 A Study of The Turbulent Flows in Sloping and Adversely Sloping Rectangular Culvert Abdullah I Alhomidan College of

More information

Turbulence statistics and distribution of turbulent eddies for jet flow and rigid surface interaction

Turbulence statistics and distribution of turbulent eddies for jet flow and rigid surface interaction Arch. Mech., 70, 1, pp. 55 88, Warszawa 2018 SEVENTY YEARS OF THE ARCHIVES OF MECHANICS Turbulence statistics and distribution of turbulent eddies for jet flow and rigid surface interaction S. ROY, K.

More information

BORESCOPIC LASER DOPPLER VELOCIMETRY PROBE KORY T. O BRIEN SEMIH M. OLCMEN, COMMITTEE CHAIR JOHN BAKER BRIAN T. FISHER A THESIS

BORESCOPIC LASER DOPPLER VELOCIMETRY PROBE KORY T. O BRIEN SEMIH M. OLCMEN, COMMITTEE CHAIR JOHN BAKER BRIAN T. FISHER A THESIS BORESCOPIC LASER DOPPLER VELOCIMETRY PROBE by KORY T. O BRIEN SEMIH M. OLCMEN, COMMITTEE CHAIR JOHN BAKER BRIAN T. FISHER A THESIS Submitted in partial fulfillment of the requirements for the degree of

More information

PIV study for the analysis of planar jets in cross-flow at low Reynolds number

PIV study for the analysis of planar jets in cross-flow at low Reynolds number PIV study for the analysis of planar jets in cross-flow at low Reynolds number Vincenti I., Guj G., Camussi R., Giulietti E. University Roma TRE, Department of Ingegneria Meccanica e Industriale (DIMI),

More information

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient PIV measurements of turbulence in an inertial particle plume in an unstratified ambient D.B. Bryant & S.A. Socolofsky Zachry Department of Civil Engineering, Texas A&M University, USA ABSTRACT: A high-speed

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

This is the published version of a paper presented at Healthy Buildings 2017 Europe, Lublin, Poland.

This is the published version of a paper presented at Healthy Buildings 2017 Europe, Lublin, Poland. http://www.diva-portal.org This is the published version of a paper presented at Healthy Buildings 2017 Europe, Lublin, Poland. Citation for the original published paper: Kabanshi, A., Sattari, A., Linden,

More information

An Experimental Investigation of Symmetric and. Asymmetric Turbulent Wake Development in. Pressure Gradient

An Experimental Investigation of Symmetric and. Asymmetric Turbulent Wake Development in. Pressure Gradient An Experimental Investigation of Symmetric and Asymmetric Turbulent Wake Development in Pressure Gradient Flint O. Thomas and Xiaofeng Liu Center for Flow Physics and Control The University of Notre Dame

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency

On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency J. Fluid Mech. (1999), vol. 401, pp. 157 182. Printed in the United Kingdom c 1999 Cambridge University Press 157 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1.

More information

+ = + t x x x x u. The standard Smagorinsky model has been used in the work to provide the closure for the subgridscale eddy viscosity in (2):

+ = + t x x x x u. The standard Smagorinsky model has been used in the work to provide the closure for the subgridscale eddy viscosity in (2): International Conference on Methods of Aerophysical Research, ICMAR 008 LARGE EDDY SIMULATION OF TURBULENT ROUND IMPINGING JET B.B. Ilyushin, D.V. Krasinsky Kutateladze Institute of Thermophysics SB RAS

More information

AN EXPERIMENTAL STUDY OF A PLANE TURBULENT WALL JET USING PARTICLE IMAGE VELOCIMETRY. A Thesis Submitted to the College of

AN EXPERIMENTAL STUDY OF A PLANE TURBULENT WALL JET USING PARTICLE IMAGE VELOCIMETRY. A Thesis Submitted to the College of AN EXPERIMENTAL STUDY OF A PLANE TURBULENT WALL JET USING PARTICLE IMAGE VELOCIMETRY A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the

More information

Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers

Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers L. A. Garrison A. S. Lyrintzis G. A. Blaisdell Purdue University, West Lafayette, IN, 47907, USA W. N. Dalton Rolls-Royce Corporation,

More information

Measurement methods in turbulent flows

Measurement methods in turbulent flows Measurement methods in turbulent flows Neda Draskovic Mechanical Engineering Submission date: October 27 Supervisor: Lars Sætran, EPT Norwegian University of Science and Technology Department of Energy

More information

Large-eddy simulations of round jets : effects of initial conditions on self-similarity region

Large-eddy simulations of round jets : effects of initial conditions on self-similarity region 19 ème Congrès Français de Mécanique Marseille, - août 9 Large-eddy simulations of round jets : effects of initial conditions on self-similarity region C. BOGEY a, C. BAILLY a,b a. Laboratoire de Mécanique

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS

PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS Proceedings of the Sixth Triennial International Symposium on Fluid Control, Measurement and Visualization, Sherbrooke, Canada, August -7,. PASSIVE CONTROL ON JET MIXING FLOWS BY USING VORTEX GENERATORS

More information

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS ELECTRIC POWER 2003 March 4-6, 2003 George R Brown Convention Center, Houston, TX EP 03 Session 07C: Fuels, Combustion and Advanced Cycles - Part II ASME - FACT Division CHARACTERISTICS OF ELLIPTIC CO-AXIAL

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

doi: / (

doi: / ( doi: 10.1063/1.1921949(http://dx.doi.org/10.1063/1.1921949) PHYSICS OF FLUIDS 17, 061701 2005 Experimental study of the production of vortex rings using a variable diameter orifice J. J. Allen a Department

More information

Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets

Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets Center for Turbulence Research Annual Research Briefs 1998 35 Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets By L. K. Su 1. Motivation and objectives The

More information

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD 3rd Workshop on Transport Phenomena in Two-Phase Flow Nessebar, Bulgaria, 2-7 September 1998, p.p. 133-138 INTERACTION OF AN AIR-BUBBLE DISPERSED PHASE WITH AN INITIALLY ISOTROPIC TURBULENT FLOW FIELD

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

Article published by EDP Sciences and available at or

Article published by EDP Sciences and available at   or http://www.emath.fr/proc/vol.1/ Three-Dimensional Vorticity Dynamics in a Coowing Turbulent Jet Subjected to Axial and Azimuthal Perturbations Katherine Prestridge and Juan C. Lasheras Department of Applied

More information

Jets and Plumes. Agenda. Definition of jets, plumes, and others. Engineering applications of Jets/Plumes. Basic properties of Jets/Plumes

Jets and Plumes. Agenda. Definition of jets, plumes, and others. Engineering applications of Jets/Plumes. Basic properties of Jets/Plumes Dr. (IfH) Environmental Fluid Mechanics II Stratified Flow and Buoyant Mixing Jets and Plumes Dong-Guan Seol INSTITUTE FOR HYDROMECHANICS National Research Center of the Helmholtz Association www.kit.edu

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Homogeneous Turbulence Generated by Multiscale

Homogeneous Turbulence Generated by Multiscale Journal of Physics: Conference Series Homogeneous Turbulence Generated by Multiscale Grids To cite this article: Per-Åge Krogstad and Peter Davidson 0 J. Phys.: Conf. Ser. 38 0304 View the article online

More information

Vortex shedding from slender surface mounted pyramids

Vortex shedding from slender surface mounted pyramids Vortex shedding from slender surface mounted pyramids M. J. Morrison 1, R. J. Martinuzzi 3, E. Savory 1, G. A. Kopp 2 1 Department of Mechanical and Materials Engineering, University of Western Ontario,

More information

ESTIMATING THE FRICTION VELOCITY IN A TURBULENT PLANE WALL JET OVER A TRANSITIONALLY ROUGH SURFACE

ESTIMATING THE FRICTION VELOCITY IN A TURBULENT PLANE WALL JET OVER A TRANSITIONALLY ROUGH SURFACE ESTIMATING THE FRICTION VELOCITY IN A TRBLENT PLANE WALL JET OVER A TRANSITIONALLY ROGH SRFACE Noorallah Rostamy niversity of Saskatchewan nori.rostamy@usask.ca Donald J. Bergstrom niversity of Saskatchewan

More information

Measurement of the turbulent kinetic energy budget of a planar wake flow in pressure gradients

Measurement of the turbulent kinetic energy budget of a planar wake flow in pressure gradients Measurement of the turbulent kinetic energy budget of a planar wake flow in pressure gradients Xiaofeng Liu, Flint O. Thomas Experiments in Fluids 37 (004) 469 48 DOI 0.007/s00348-004-083-3 Abstract Turbulent

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

CHARACTERIZATION OF THE BEHAVIOR OF CONFINED LAMINAR ROUND JETS. Douglas Tyler Landfried. Bachelor of Science, University of Pittsburgh, 2009

CHARACTERIZATION OF THE BEHAVIOR OF CONFINED LAMINAR ROUND JETS. Douglas Tyler Landfried. Bachelor of Science, University of Pittsburgh, 2009 CHARACTERIZATION OF THE BEHAVIOR OF CONFINED LAMINAR ROUND JETS by Douglas Tyler Landfried Bachelor of Scie, University of Pittsburgh, 2009 Submitted to the Graduate Faculty of Swanson School of Engineering

More information

EFFECTS OF ACOUSTIC ACTUATION FREQUENCY AND NOZZLE GEOMETRY ON HEAT TRANSFER AND FLOW CHARACTERISTICS OF AN IMPINGING CONFINED WATER JET

EFFECTS OF ACOUSTIC ACTUATION FREQUENCY AND NOZZLE GEOMETRY ON HEAT TRANSFER AND FLOW CHARACTERISTICS OF AN IMPINGING CONFINED WATER JET HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta EFFECTS OF ACOUSTIC ACTUATION FREQUENCY AND NOZZLE GEOMETRY ON HEAT TRANSFER AND FLOW

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications by K. M. Bernhard Gustafsson Department of Thermo and Fluid Dynamics Chalmers University of Technology SE-41296 Göteborg, SWEDEN

More information

Numerical Modelling of the Interaction Between Water Sprays and Hot Air Jets - Part I: Gas Phase Large Eddy Simulations

Numerical Modelling of the Interaction Between Water Sprays and Hot Air Jets - Part I: Gas Phase Large Eddy Simulations Numerical Modelling of the Interaction Between Water Sprays and Hot Air Jets - Part I: Gas Phase Large Eddy Simulations Tarek Beji, Georgios Maragkos, Setareh Ebrahimzadeh, Bart Merci Department of Flow,

More information

Turbulent Mixing of Passive Tracers on Small Scales in a Channel Flow

Turbulent Mixing of Passive Tracers on Small Scales in a Channel Flow Turbulent Mixing of Passive Tracers on Small Scales in a Channel Flow Victor Steinberg Department of Physics of Complex Systems, The Weizmann Institute of Science, Israel In collaboration with Y. Jun,

More information

STRESS TRANSPORT MODELLING 2

STRESS TRANSPORT MODELLING 2 STRESS TRANSPORT MODELLING 2 T.J. Craft Department of Mechanical, Aerospace & Manufacturing Engineering UMIST, Manchester, UK STRESS TRANSPORT MODELLING 2 p.1 Introduction In the previous lecture we introduced

More information

Fluid flow II: The stream function

Fluid flow II: The stream function 5//0 Miscellaneous Exercises Fluid Flow II Fluid flow II: The stream function This exercise is a continuation of the Fluid flow I exercise. Read that exercise an introduction. It is possible to obtain

More information

Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows

Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows DOI 10.1007/s00348-015-2101-9 ERRATUM Erratum to: High speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto igniting in high temperature, vitiated co flows Michael J. Papageorge

More information

Experimental assessment of Taylor s hypothesis and its applicability to dissipation estimates in turbulent flows

Experimental assessment of Taylor s hypothesis and its applicability to dissipation estimates in turbulent flows Experimental assessment of Taylor s hypothesis and its applicability to dissipation estimates in turbulent flows Werner J. A. Dahm and Kenneth B. Southerland Department of Aerospace Engineering, The University

More information

Numerical and Physical Modeling of Turbulent Shear Flows

Numerical and Physical Modeling of Turbulent Shear Flows Clemson University TigerPrints All Dissertations Dissertations 5-2007 Numerical and Physical Modeling of Turbulent Shear Flows John Raiford Clemson University, raiford@clemson.edu Follow this and additional

More information

PIV measurements and convective heat transfer of an impinging air jet

PIV measurements and convective heat transfer of an impinging air jet PIV measurements and convective heat transfer of an impinging air jet by T. S. O Donovan (), D. B. Murray () and A.A. Torrance (3) Department of Mechanical & Manufacturing Engineering, Trinity College

More information

Turbulent velocity fluctuations need not be Gaussian

Turbulent velocity fluctuations need not be Gaussian J. Fluid Mech. (1998), vol. 376, pp. 139 147. Printed in the United Kingdom c 1998 Cambridge University Press 139 Turbulent velocity fluctuations need not be Gaussian By JAVIER JIMÉNEZ School of Aeronautics,

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Entrained Air around a High Pressure Flat Jet Water Spray

Entrained Air around a High Pressure Flat Jet Water Spray ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Entrained Air around a High Pressure Flat Jet Water Spray A.J.Abbas*, G.G.Nasr, M.L.Burby and A.Nourian

More information

ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET

ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET TUR-3 ExHFT-7 8 June 03 July 009, Krakow, Poland ASSESSMENT OF ANISOTROPY IN THE NEAR FIELD OF A RECTANGULAR TURBULENT JET Α. Cavo 1, G. Lemonis, T. Panidis 1, * 1 Laboratory of Applied Thermodynamics,

More information

Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets

Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets Journal of Scientific Computing, Vol. 21, No. 3, December 2004 ( 2004) Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets Ali Uzun, 1 Gregory A. Blaisdell, 2 and Anastasios S. Lyrintzis

More information

Ray traces through unsteady jet turbulence

Ray traces through unsteady jet turbulence aeroacoustics volume 1 number 1 2002 pages 83 96 83 Ray traces through unsteady jet turbulence J. B. Freund 1 and T. G. Fleischman 2 1 Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign

More information

Low Reynolds Numbers LDA-Experimental Analysis of the Near-Field of an Isothermal Laminar Round Free Jet

Low Reynolds Numbers LDA-Experimental Analysis of the Near-Field of an Isothermal Laminar Round Free Jet Copyright 24 Tech Science Press FDMP, vol., no.3, pp.39-34, 24 Low Reynolds Numbers LDA-Experimental Analysis of the Near-Field of an Isothermal Laminar Round Free Jet A. Abbassi,2, N. Kechiche, and H.

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

Advances in Fluid Mechanics and Heat & Mass Transfer

Advances in Fluid Mechanics and Heat & Mass Transfer Performance Study of Nozzle Geometry on Heat Transfer Characteristics Part I: Local Heat Transfer M. Attalla Mechanical Power and Energy Department, Faculty of Engineering, South Valley University, Qena

More information