# Lab Exercise #3: Torsion

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round circular samples is another method of determining a basic engineering relationship in structural materials. Unlike tensile testing, torsion tests are not complicated by the phenomenon of necking and reduction in areas. A simple torsion test is relatively easy to perform. The angle of twist is measured on a specimen (with a circular cross-section) as an applied torque is increased at a constant rate. This is analogous to plotting the load and extension in a simple tensile test. The data can then be modified using appropriate equations to develop a curve where torsional stress and strain are plotted. As in a tensile test, there will be an elastic or linear portion of the curve where a proportional relationship can be used to determine engineering values. In a torsional stress versus strain graph, the value that will be determined by measuring the slope of the linear region is the modulus of rigidity, also known as the shear modulus and often given the symbol, G. It is analogous to Young s Modulus in tensile testing. Before further discussing the modulus of rigidity, it should be noted that experimental values of angle of twist can be compared with expected calculations based on the applied torque and certain material properties and geometry. The relationship below describes the expected angle of twist given an applied torque, T. φ = TL/JG where: T is the applied torque L is the length of the sample being tested J is the polar moment of inertia G is the shear modulus φ is the angle of rotation (twist) within the tested length. Units are radians. Note the relationship between the modulus of elasticity, E, and G the modulus of rigidity within the linear elastic range of the material is described by Hooke s law, which relates E, G, and Poisson s ration, ν. The knowledge of any two can be used to find the third using the relationship: E= 2G / (1 + ν) As previously mentioned, data collected from a torque vs. angle of twist experiment can be used to develop a graph of torsional stress vs. strain. The following formulas can be used: τ = Tc/J γ = φc/l Shear stress Shear strain where: T is the applied torque L is the length of the sample being tested

2 J is the polar moment of inertia φ is the angle of rotation (twist) within the tested length c is the radius of the solid circular rod It should be noted that the value of c is used in these equations giving the stress and strain values at the outside surface of the rod. The value c can be replaced with a variable to determine the stress and strain values at any radial distance away from the center of the rod, if so desired. With values of stress and strain (based on experimental data), it is possible to calculate the shear modulus, G. The following formula is based on Hooke s Law, as it applies to torsion: G = τ/γ It should be recognized that the torsion test determines shear stress vs. shear strain to find the shear modulus whereas in a tensile test, axial stress and axial strain are used to determine Young s modulus. Engineering values or material properties that can be found from torsion testing include the shear modulus as well as proportional limit shear stress, and the proportional modulus of rupture. The shear stress is at a maximum at the outside surface of the material and can be calculated using τ = Tc/J. The highest shear stress that the material can withstand and still return to its original geometry is at the limit of the proportional area of the graph and is known as the proportional limit shear stress. The torsion modulus of rupture is the stress calculated at rupture. Materials: 3/16 diameter 1018 steel rod 3/16 diameter 6061-T6 aluminum rod 3/16 diameter 360 brass rod Safety Issues: Weights will be applied to hangers to develop an external torque on the rods. The weights will hang over the end of a table. Use caution when loading the weights. Always be aware that the weights may fall due to unbalanced loading, a broken string, or other unforeseen cause. Keep feet and hands away from the area under the weights. Pre-lab: NOTE: Unlike previous labs, the lab exercise will be done entirely in SI units. For consistency, use the following: Length mm Force N Stress N/mm 2 Modulus N/ mm 2 Both radians and degrees will be used. Radians must be used in equations 1. Calculate J for 3/16 diameter cylinders. Convert the diameter to mm and calculate J in mm Calculate the expected value of twist angle (in degrees) per Newton mm of torque for aluminum, brass and steel. Find SI values of G in order to perform the calculations. Either find or convert G to units of N/mm 2. Assume a length of 200 mm and 400 mm for each type of material.

3 Procedure: See the Pre-lab note about units. 1. There are two profiled ends to each specimen, i.e. a semi-circular end and a triangular end. The triangular end is to be clamped in the jaws of the chuck, while the semi-circular end is to be clamped in the fixed clamp at the other end of the base plate. 2. Clamp the aluminum alloy specimen in position and put the load hanger on the cord. Set the pointer to be 400 mm from the fixed end and bring the rotation scale close to the pointer. Zero the pointer. 3. Add a load from 5 N to 60 N in 5 N increments, recording the twist of the specimen for each increment on your data sheet. Remove the load, move the rotation scale and pointer to 200 mm from the clamp, and repeat the above procedure. Measure and record the diameter of the rod. (The weight of the hanger can be neglected.) 4. Now change the specimen for the steel and brass rod and repeat the procedure with the pointer at 400 mm only. Discussion Items for report 1. For each case (aluminum, brass, and steel), plot a (single) graph of torque versus angle of twist (degrees) and draw best-fit straight lines through the points. Aluminum will have two lines since two tests were run. Since twist is proportional to length, the slopes of the two lines for aluminum should be in the ratio of 1:2. Important: This task asks for a graph of torque vs. angle of twist, which means torque is on the y- axis. In Excel, this is more difficult than using your data to create a graph of angle of twist vs. torque for several curves. However, such a graph would not be as useful when it comes time to create a stress vs. strain curve. Consult with your Teaching Assistant with any difficulties. 2. In Excel, calculate the values of shear stress (at the surface of the rods) and shear strain for each material at each torque value. Remember, φ must be in radians. Shear stress should be in N/mm 2 and shear strain should be unitless. 3. Using the values determined in the previous step, create a single graph of shear stress vs. strain for all of the materials and lengths. 4. Determine the modulus of rigidity (G) for each specimen by measuring the slope of the curves. This may be done by either picking points or calculating the slopes, or by using the Add Trendline feature in Excel. 5. Research the values of G for aluminum (6061), steel (1018) and brass (360) and compare to your values. Calculate the percent difference. 6. For the 400 mm aluminum rod, calculate the expected angle of twist for each value of torque. The appropriate equation is shown on page one of this lab. After making the calculations in Excel, create a graph that shows the angle of twist (both measured and calculated) versus torque. Notice the x and y axes have been switched compared to the first graph made. Angle of twist will now be on the y-axis. Discuss any differences in the curves.

4 Pre-Lab Worksheet ENGR 151 Strength of Materials Lab Exercise #3: Name: Lab Day - M T W R F Lab Start Time: Calculate J for 3/16 diameter rods J = mm 4 Find a source that lists the values of G for the metals used in this lab G (1018 steel) = N/mm 2 G (6061 aluminum) = N/mm 2 G (360 brass) = N/mm 2 Calculate the expected angle of twist (in degrees) per N mm of torque for each metal Angle of twist (1018 steel) = degrees/(n mm) Angle of twist (6061 aluminum) = degrees/(n mm) Angle of twist (360 brass) = degrees/(n mm)

5 Data Sheet ENGR 151 Strength of Materials Lab Exercise #3: Name: Lab Day - M T W R F Lab Start Time: Pulley radius Aluminum (L = 400 mm) Weight Angle of Twist Aluminum (L = 200 mm) Weight Angle of Twist Brass (L = 400 mm) Weight Angle of Twist Weight Steel (L = 400 mm) Angle of Twist

### Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

### Experiment: Torsion Test Expected Duration: 1.25 Hours

Course: Higher Diploma in Civil Engineering Unit: Structural Analysis I Experiment: Expected Duration: 1.25 Hours Objective: 1. To determine the shear modulus of the metal specimens. 2. To determine the

### MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

### Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

### Rotational Dynamics Smart Pulley

Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If

### Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

### Stress-Strain Behavior

Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

### BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

### 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

### MECE 3321: MECHANICS OF SOLIDS CHAPTER 5

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5 SAMANTHA RAMIREZ TORSION Torque A moment that tends to twist a member about its longitudinal axis 1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT Assumption If the

### 4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

### The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism

TORSION OBJECTIVES: This chapter starts with torsion theory in the circular cross section followed by the behaviour of torsion member. The calculation of the stress stress and the angle of twist will be

### The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting

### Pre-Lab Exercise Full Name:

L07 Rotational Motion and the Moment of Inertia 1 Pre-Lab Exercise Full Name: Lab Section: Hand this in at the beginning of the lab period. The grade for these exercises will be included in your lab grade

### Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Group Number: Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. Signature: INSTRUCTIONS Begin each problem

### Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

### CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

### Chapter 7. Highlights:

Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

### Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

### Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

### OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM

EXPERIMENT Spring-Mass System and a Torsional Pendulum OSCILLATIONS OF A SPRING-MASS SYSTEM AND A TORSIONAL PENDULUM Structure.1 Introduction Objectives. Determination of Spring Constant Static Method

### The Torsion Pendulum (One or two weights)

The Torsion Pendulum (One or two weights) Exercises I through V form the one-weight experiment. Exercises VI and VII, completed after Exercises I -V, add one weight more. Preparatory Questions: 1. The

### UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

### UNIT I SIMPLE STRESSES AND STRAINS

Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

### 6.37 Determine the modulus of resilience for each of the following alloys:

6.37 Determine the modulus of resilience for each of the following alloys: Yield Strength Material MPa psi Steel alloy 550 80,000 Brass alloy 350 50,750 Aluminum alloy 50 36,50 Titanium alloy 800 116,000

### CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

### Chapter 13 ELASTIC PROPERTIES OF MATERIALS

Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions

### MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

### Only for Reference Page 1 of 18

Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

### Rotational Inertia (approximately 2 hr) (11/23/15)

Inertia (approximately 2 hr) (11/23/15) Introduction In the case of linear motion, a non-zero net force will result in linear acceleration in accordance with Newton s 2 nd Law, F=ma. The moving object

### 4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

### 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

### five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

### MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

### SHM Simple Harmonic Motion revised May 23, 2017

SHM Simple Harmonic Motion revised May 3, 017 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

### Wilberforce Pendulum (One or two weights)

Wilberforce Pendulum (One or two weights) For a 1 weight experiment do Part 1 (a) and (b). For a 2 weight experiment do Part1 and Part 2 Recommended readings: 1. R.A.Serway and J.W.Jewett, Jr. Physics

### Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress

### MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

### 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

### PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION

CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION In this experiment we will explore the relationship between force and acceleration for the case of uniform circular motion. An object which experiences a constant

### Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

### 2014 MECHANICS OF MATERIALS

R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~

### Discontinuous Distributions in Mechanics of Materials

Discontinuous Distributions in Mechanics of Materials J.E. Akin, Rice University 1. Introduction The study of the mechanics of materials continues to change slowly. The student needs to learn about software

### SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

### Sean Carey Tafe No Lab Report: Hounsfield Tension Test

Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small test-piece. It is mostly used for tensile

### FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

### Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

### BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

### Rotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body

Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125 cm bead

### Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

### DETAILED SYLLABUS FOR DISTANCE EDUCATION. Diploma. (Three Years Semester Scheme) Diploma in Architecture (DARC)

DETAILED SYLLABUS FOR DISTANCE EDUCATION Diploma (Three Years Semester Scheme) Diploma in Architecture (DARC) COURSE TITLE DURATION : Diploma in ARCHITECTURE (DARC) : 03 Years (Semester System) FOURTH

Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

### Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

### Unified Quiz M4 May 7, 2008 M - PORTION

9:00-10: 00 (last four digits) 32-141 Unified Quiz M4 May 7, 2008 M - PORTION Put the last four digits of your MIT ID # on each page of the exam. Read all questions carefully. Do all work on that question

### A. Objective of the Course: Objectives of introducing this subject at second year level in civil branches are: 1. Introduction 02

Subject Code: 0CL030 Subject Name: Mechanics of Solids B.Tech. II Year (Sem-3) Mechanical & Automobile Engineering Teaching Credits Examination Marks Scheme Theory Marks Practical Marks Total L 4 T 0 P

### The Torsion Pendulum

Page 1 of 9 The Torsion Pendulum Introduction: This experiment helps to relate many of the concepts that we see in everyday life. Damped oscillations and pendulums are an everyday occurrence. You will

### Lab 11: Rotational Dynamics

Lab 11: Rotational Dynamics Objectives: To understand the relationship between net torque and angular acceleration. To understand the concept of the moment of inertia. To understand the concept of angular

### 1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine MIT Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 COMPRESSION TESTING AND ANISOTROPY OF WOOD Purpose: Reading: During this laboratory

### MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

### Initial Stress Calculations

Initial Stress Calculations The following are the initial hand stress calculations conducted during the early stages of the design process. Therefore, some of the material properties as well as dimensions

### Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,

### X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

### March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

### For more Stuffs Visit Owner: N.Rajeev. R07

Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

### MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

### Shafts. Fig.(4.1) Dr. Salah Gasim Ahmed YIC 1

Shafts. Power transmission shafting Continuous mechanical power is usually transmitted along and etween rotating shafts. The transfer etween shafts is accomplished y gears, elts, chains or other similar

### Date Submitted: 1/8/13 Section #4: T Instructor: Morgan DeLuca. Abstract

Lab Report #2: Poisson s Ratio Name: Sarah Brown Date Submitted: 1/8/13 Section #4: T 10-12 Instructor: Morgan DeLuca Group Members: 1. Maura Chmielowiec 2. Travis Newberry 3. Thomas Cannon Title: Poisson

### Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

### Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

### 1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown.

Chapter 1 Review of Mechanics of Materials 1-1 Locate the centroid of the plane area shown 650 mm 1000 mm 650 x 1- Determine the location of centroid of the composite area shown. 00 150 mm radius 00 mm

### Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

Rotational Motion 1 Purpose The main purpose of this laboratory is to familiarize you with the use of the Torsional Harmonic Oscillator (THO) that will be the subject of the final lab of the course on

### External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

### PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

### Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass

### BME 207 Introduction to Biomechanics Spring 2017

April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

### MECHANICAL PROPERTIES OF SOLIDS

Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

### Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight

Elastic properties of solids Page 1 of 8 Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight This is a rare experiment where you will get points for breaking

CHAPTER OBJECTIVES qanalyze the stress developed in thin-walled pressure vessels qreview the stress analysis developed in previous chapters regarding axial load, torsion, bending and shear qdiscuss the

### Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

### 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

### This chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links

his chapter is devoted to the study of torsion and of the stresses and deformations it causes. In the jet engine shown here, the central shaft links the components of the engine to develop the thrust that

### How materials work. Compression Tension Bending Torsion

Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

### Mechanical properties 1 Elastic behaviour of materials

MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

### Mechanics of Materials

Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

### Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 19. Home Page. Title Page. Page 1 of 36.

Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 19 Page 1 of 36 12. Equilibrium and Elasticity How do objects behave under applied external forces? Under

### Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

### 14. *14.8 CASTIGLIANO S THEOREM

*14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

### σ = F/A ε = L/L σ ε a σ = Eε

Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke

### 13-Nov-2015 PHYS Rotational Inertia

Objective Rotational Inertia To determine the rotational inertia of rigid bodies and to investigate its dependence on the distance to the rotation axis. Introduction Rotational Inertia, also known as Moment

### EQUILIBRIUM and ELASTICITY

PH 221-1D Spring 2013 EQUILIBRIUM and ELASTICITY Lectures 30-32 Chapter 12 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 12 Equilibrium and Elasticity In this chapter we will

### 1.105 Solid Mechanics Laboratory

1.105 Solid Mechanics Laboratory General Information Fall 2003 Prof. Louis Bucciarelli Rm 5-213 x3-4061 llbjr@mit.edu TA: Attasit Korchaiyapruk, Pong Rm 5-330B x 3-5170 attasit@mit.edu Athena Locker: /mit/1.105/

### Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

### Mechanics. In the Science Program, Mechanics contributes to the following program goals described in the Exit Profile:

Mechanics Objectives: 00UR Discipline: Physics Ponderation: 3-2-3 Course Code: 203-NYA-05 Prerequisite: Sec. V Physics 534, Mathematics 536 (or equivalent) Course Credit: 2 2/3 Corequisite: 00UP (Calculus

### Lab 2: Equilibrium. Note: the Vector Review from the beginning of this book should be read and understood prior to coming to class!

Lab 2: Equilibrium Note: This lab will be conducted over 2 weeks, with half the class working with forces while the other half works with torques the first week, and then switching the second week. Description

### Torques and Static Equilibrium

Torques and Static Equilibrium INTRODUCTION Archimedes, Greek mathematician, physicist, engineer, inventor and astronomer, was widely regarded as the leading scientist of the ancient world. He made a study

### BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in