resonance fluorescence from quantum dots

Size: px
Start display at page:

Download "resonance fluorescence from quantum dots"

Transcription

1 resonance fluorescence from quantum dots APS Tutorial Quantum Optics of Quantum Dots Nick Vamivakas University of Rochester Institute of Optics vamivakas/index.html Illustration by Fabian Rüdy / andraia.ch

2 what lies ahead resonance fluorescence from quantum dots indistinguishability and coherence properties of quantum dot single photons coherent control of quantum dots for quantum information cavity quantum electrodynamics with quantum dots

3 quantum heterostructures quantum heterostructures are artificial structures in which electrons & holes are confined by engineering material composition z x y Bulk Crystal Quantum Well 1 Quantum Wire Quantum Dots Crystal Electron Wave Function 1 Dingle, Wiegmann, Henry Phys. Rev. Lett. 33, 827 (1974)

4 quantum heterostructures materials what determines if the electron/hole is confined? à potential energy landscape modification must be commensurate with the De Broglie wavelength! De Broglie wavelength of a free electron λ = h p = h 2mE InAs band edge (0.35 ev)λ ~ 2 nm

5 quantum heterostructures materials what determines if the electron/hole is confined? à potential energy landscape modification must be commensurate with the De Broglie wavelength! De Broglie wavelength of a free electron λ = h p = h 2mE InAs band edge (0.35 ev)λ ~ 2 nm De Broglie wavelength of a crystal electron = h p = h p 2m E = 0 r m m Group Material m e */m m hh */m IV III-V Si At T = 300 K 0.98 (0.19) 0.50 GaAs InAs GaN InP II-VI CdSe at band edge in InAs λ InAs ~ 13 nm J. Appl. Phys. 89, 5815 (2001); Yu & Cardona, Fundamentals of Semiconductors, 4th ed. (2010).

6 quantum heterostructures materials confinement has two major consequences: changes the density of states breaks the (discrete translational) symmetry of the crystal. à dramatic impact on the optical and transport properties. Density of states Bulk Quantum Well Quantum Wire quantum confinement of the single particle wavefunctions (E 1/m*R 2 ) Quantum Dots E g Energy

7 quantum heterostructures materials how about metals? à m* ~ m e 1.14 for Au separation of confined electron states CdSe E 2e -E 1e ~ ev Au E 2e -E 1e ~ ev 4 nm

8 artificial atoms a striking manifestation of the confinement and discrete density of states is apparent in the photoluminescence from CdSe QDs joint density of states Cadmium Selenide QDs E g Energy Quantum Dots increasing radius 2-8 nms

9 artificial atom landscape artificial atoms relevant in quantum optics have been: Colloidal Quantum Dots; Optically Active Defects, Epitaxial Quantum Dots Type Material T (K) Emission, ZPL λ X (nm) Colloidal QDs CdSe/ZnSe [1] Optically Active Defects N-V Centers in Diamond [2] D 0 X in GaAs [3] InAs/GaAs [4] Epitaxial QDs InP/InGaP [5] CdSe/Zn(S,Se) [6] In x Ga 1-x N/Al x Ga 1-x N [7] [1] P. Michler et al., Nature 406, 968 (2000). [2] R. Brouri et al., Optics Lett. 25, 1294 (2000), [3] K. Fu et al., Phy. Rev. Lett. 95, (2005). [4] P. Michler et al., Science 290, 2282 (2000); C. Santori et al., Nature 419, 594 (2002). [5] A. Ugur Appl. Phys. Lett. 100, (2012). [6] K. Sebald et al., Appl. Phys. Lett. 81, 2920 (2002). [7] S. Kako et al., Nature Materials 5, 887 (2006); A. F. Jarjour et al., Appl. Phys. Lett. 91, 52101(2007).

10 artificial atoms for solid-state quantum optics Type Material T (K) Emission, ZPL λ X (nm) γ (s -1 ) γ ZPL (s -1 ) Homogeneous Linewidth Nanofabrication and integration with cavities Epitaxial QDs InAs/GaAs γ (1 1000) γ high Optically Active Defects N-V Center in Diamond γ (1 1000) γ Low D 0 X in GaAs > 1 γ 1 GHz Low several types of artificial atoms can be sources of non-classical light, show coherent population trapping 1 and entanglement of emitted photons 2, that is, basic building blocks for quantum optical experiments. however, very few artificial atoms exhibit the pristine optical properties of InAs/GaAs which makes them suitable for quantum optics 1 D. Bruner et al. 2009; K. Fu et al., Phy. Rev. Lett. 95, (2005). 2 Akopian et al., 2006; Stevenson et al., 2006

11 growth of InAs/GaAs quantum dots molecular beam epitaxy (MBE) of InAs/GaAs quantum dots Growth chamber semiconductor substrates ("wafers") are baked in a multi stage load lock system before being transferred into the growth chamber.

12 growth of InAs/GaAs quantum dots QDs form from hetero-epitaxy of lattice mismatched crystals layers a substrate < a epilayer ε ε a (InAs) = 6.06 Å Epilayer wetting layer QDs a (GaAs) = 5.65 Å Substrate substrate substrate after certain thickness energetically preferable for InAs islands à island formation is a balance between surface and strain energy coherent mechanism of elastic relaxation à pristine optical properties

13 growth of InAs/GaAs quantum dots random distribution of QDs in plane & nonuniform size distribution wetting layer QDs dislocations QD density (µm -2 ) InAs coverage (ML) AFM topographies 1x1µm 2 ~ diffraction limited spot size

14 quantum confined energy levels in InAs QDs from bulk to quantum dots à quantum confinement bulk energy band diagram (InAs & GaAs) MBE grown self-assembled QD ~ 10 5 InAs = 1 QD! 2-5 nm cap growth direction z

15 quantum confined energy levels in InAs QDs from bulk to quantum dots à quantum confinement spatial confinement d p c-band minimum MBE grown self-assembled QD ~ 10 5 InAs = 1 QD! E g (GaAs)= 1.42 ev E g (InAs) = 0.35 ev s s p d E pp - E ss ~ 40 mev (30 nm) HH LH ~ 30 mev 3 2, ± , ± 1 2 v-band minimum 2-5 nm cap growth direction z quantization of the electron/hole energies bulk symmetry breaking degeneracy lifting of heavy & light holes giant oscillator strength of ~ 10 (0.6 nm dipole, ~ 30 debye)

16 quantum dot s-shell excitons four optically active s-shell exciton complexes à most resonant optical studies are with these states notation for charge & spin: ( ) electron = +1/2 (-1/2) ( ) hole = +3/2 (-3/2) = (+1/2,-1/2,+3/2)

17 quantum dot s-shell excitons four optically active s-shell exciton complexes à most resonant optical studies are with these states notation for charge & spin: ( ) electron = +1/2 (-1/2) ( ) hole = +3/2 (-3/2) = (+1/2,-1/2,+3/2) X 0 exciton dark excited states dark single particle states s-shell c-band s-shell v-band σ + multiparticle states σ + 0 σ - ΔE X ground state σ +/- Polarization (RHCP/LHCP) spontaneous emission rate ~ 1GHz (1-ns)

18 quantum dot s-shell excitons four optically active s-shell exciton complexes à most resonant optical studies are with these states notation for charge & spin: ( ) electron = +1/2 (-1/2) ( ) hole = +3/2 (-3/2) = (+1/2,-1/2,+3/2) XX biexciton excited states single particle states s-shell c-band s-shell v-band σ + multiparticle states σ + σ - ΔE XX X 0 excited state σ +/- Polarization (RHCP/LHCP) spontaneous emission rate ~ 1GHz (1-ns)

19 quantum dot s-shell excitons four optically active s-shell exciton complexes à most resonant optical studies are with these states notation for charge & spin: ( ) electron = +1/2 (-1/2) ( ) hole = +3/2 (-3/2) = (+1/2,-1/2,+3/2) X 1- trion excited states single particle states s-shell c-band s-shell v-band σ + multiparticle states σ + σ - ΔE X- ground state σ +/- Polarization (RHCP/LHCP) spontaneous emission rate ~ 1GHz (1-ns)

20 quantum dot s-shell excitons four optically active s-shell exciton complexes X 0 exciton XX biexciton multiparticle states σ + σ - ΔE X multiparticle states σ + σ - ΔE XX 0 X 0 X 1- trion X 1+ trion multiparticle states σ + σ - ΔE X- multiparticle states σ - σ + ΔE X+

21 quantum dot s-shell excitons these 4 exciton complexes basis of a number of applications à on-demand generation of single photons X 0 σ + σ - 0

22 quantum dot s-shell excitons these 4 exciton complexes basis of a number of applications à on-demand generation of single photons à on-demand generation of entangled photon s (XX-X 0 cascade) XX σ - σ + X 0 σ + σ - 0

23 quantum dot s-shell excitons these 4 exciton complexes basis of a number of applications à on-demand generation of single photons à on-demand generation of entangled photon s (XX-X 0 cascade) XX σ - σ + electron-hole exchange interaction * ; Δ eh H XX V XX X 0 need to work a bit to generate entanglement X H H Δ eh X V X 0 σ + σ - V 0 0 * Byer et al PRB 65, (2002)

24 quantum dot s-shell excitons these 4 exciton complexes basis of a number of applications à on-demand generation of single photons à on-demand generation of entangled photon s (XX-X 0 cascade) à charges/spins as qubits, all-optical quantum computing 11 XX H V 01 Δ eh 10 H V X Li et al Science (2003).

25 quantum dot s-shell excitons these 4 exciton complexes basis of a number of applications à on-demand generation of single photons à on-demand generation of entangled photon s (XX-X 0 cascade) à charges/spins as qubits, all-optical quantum computing excited state for optical control 11 XX H V σ + 1 = 0 = B z 01 Δ eh 10 H V X 0 ground state spin qubits Imamoglu et al PRL 83, 4204 (1999). and the next speaker 0 0 Li et al Science (2003).

26 quantum dot s-shell excitons these 4 exciton complexes basis of a number of applications à on-demand generation of single photons à on-demand generation of entangled photon s (XX-X 0 cascade) à charges/spins as qubits, all-optical quantum computing à study many-body physics excited state for optical control 11 XX H V σ + 1 = 0 = B z 01 Δ eh H V 10 X 0 ground state spin qubits Imamoglu et al PRL 83, 4204 (1999). and the next speaker 0 0 Li et al Science (2003).

27 quantum dot optics: μphotoluminescence (μpl) simplest optics characterization à nonresonant optical charging - photon in ħw 1

28 quantum dot optics: μphotoluminescence (μpl) simplest optics characterization à nonresonant optical charging - photon in ħw 1 a starry night.imaging single quantum dots with a CCD ~ 50 x 50 μm 2 defocus excitation laser limit our detection to one of those regions à confocal detection à aperture array on surface

29 quantum dot optics: μphotoluminescence (μpl) simplest optics characterization à nonresonant optical charging - photon in - + ħw 1 + above band-gap excitation non-radiative relaxation optical recombination - photon in ħw 2 + photon energy/polarization fixed by recombining exciton complex

30 quantum dot optics: μphotoluminescence (μpl) identification of few level systems 1 st step towards quantum optics temperature 4.2K - electron - hole

31 quantum dot optics: μphotoluminescence (μpl) identification of few level systems 1 st step towards quantum optics à Coulomb Interactions give spectral diversity to exciton complexes temperature 4.2K - electron - hole transition energies ΔE X =E e +E h -V eh ΔE X- =E e +E h +V ee -2V eh ΔE X+ =E e +E h +V hh -2V eh hole more localized à V ee <V eh <V hh X 1+ (X 1- ) higher (lower)energy than X 0 ΔE XX =E e +E h +V hh +V ee -3V eh XX lower energy than X 0 V eh = e 2 4πε o ψ e ψ h 1 r ψ hψ e

32 quantum dot optics: μphotoluminescence (μpl) identification of few level systems 1 st step towards quantum optics à Coulomb Interactions give spectral diversity to exciton complexes à sure it is 1? confirm single photon emission to check temperature 4.2K - electron - hole photon antibunching 1 challenge: charge control to ensure specific ground state Michler et al Science 290, 2282 (2000). Santori et al Nature 419, 594 (2002).

33 quantum dot charge control charge control to enable transition selective excitation à coherent interfacing of a single photon and qd transition ~200nm InAs ~30nm embed the QDs in a Schottky diode heterostructure Coulomb blockade ensures fixed number of electrons trapped in a quantum dot Exciton (1e, 1h) Trion (2e, 1h) X 1- X2- X3- gate voltage produces an electric field on the quantum dots Stark shift. X 0 T = 4.2K Warburton et al Nature 405 (2000)

34 quantum dot resonant light scattering how does a 2-level system interact with a near resonant cw-laser? incoming laser (E 0 ~Ω) scattered field e s scattered field intensity E 0 +e s E 0 QD E 0 +e s saturation power e g ~200 nm e s = e si + e sc On a detector we measure P M ~ E e si 2 + e sc 2 + 2Re{E * 0 e sc } + 2Im{E* 0 e sc } s = 2 Ω2 2 character, ie coherence, depends on laser Rabi frequency (power) Loudon, The Quantum Theory of Light, 3rd ed. Cohen-Tannoudji et al, Atom-Photon Interactions

35 quantum dot resonant light scattering how does a 2-level system interact with a near resonant cw-laser? an optical transition (of a quantum system) has two components: 1) coherently scattered part (resonant Rayleigh scattering) - first-order coherence properties follows the excitation laser. - second-order correlation function shows antibunching. 2) incoherent part (resonance fluorescence) - first-order coherence properties depend solely on the transition. - second-order correlation function shows antibunching.

36 quantum dot resonant light scattering how does a 2-level system interact with a near resonant cw-laser? an optical transition (of a quantum system) has two components: 1) coherently scattered part (resonant Rayleigh scattering) - first-order coherence properties follows the excitation laser. - second-order correlation function shows antibunching. only discuss recent cw experiments (what I have done!) QD light generated by the transition being driven (no Raman photons) à Include refs at end to other work mix of laser spectroscopy, solid-state quantum optics and QIS 2) incoherent part (resonance fluorescence) - first-order coherence properties depend solely on the transition. - second-order correlation function shows antibunching.

37 qd resonant light scattering: coherent part I In the beginning (2004) à homodyne the laser with the scattered qd field ω L laser ω QD transition incoming laser (E 0 ~Ω,Δ) scattered field e s power detector -P M Forward Direction e g ω L ω QD E 0 QD E 0 +e s Δ e s = e si + e sc vary detuning, Δ,between the laser and the transition P M ~ E e si 2 + e sc 2 + 2Re{E * 0 e sc } + 2Im{E* 0 e sc } dip due to destructive interference; optical thm or phase-shifts Alen et al APL (2003)

38 qd resonant light scattering: coherent part I measure the fine structure of X 0 transition selective excitation via polarization; same for Trion! 1 dip due to destructive interference; optical thm or phase-shifts X V X H X H Δ eh X V X 0 Δ eh H+V tune laser frequency H a.u. V 0 Δ eh needs to be suppressed to generate entangle photons 1 Hogele et al PRL (2004)

39 qd resonant light scattering: coherent part I spin-state preparation à nuclear spins mediate spin-flip in plateau center at B z 0 Faraday configuration B = 0T B = 350mT σ + γ r ~10-3 Bz nuclear spin mediated e - spin flip cotunneling spin pumping time ~ 1-μs 1 also Voigt (B in-plane) à spin pumping time ~ ns s 2 1 Atatüre et al. Science 312 (2006); 2 Xu et PRL 99, (2007).

40 qd resonant light scattering: suppress the laser Is it possible to only measure the scattered QD field? à yes! but need to reject the excitation laser incoming laser (E 0 ~Ω) scattered field e s scattered field intensity E 0 +e s E 0 QD E 0 +e s e g ~200 nm e s = e si + e sc On a detector we measure P M ~ E e si 2 + e sc 2 + 2Re{E * 0 e sc } + 2Im{E* 0 e sc } s = 2 Ω2 2 character, ie coherence, depends on laser Rabi frequency (power)

41 qd resonant light scattering: suppress the laser how we do it in the lab side excitation (atomic physics approach) polarization suppression first time seen with QD à Muller et al PRL (2007)

42 qd resonant light scattering: suppress the laser how we do it in the lab side excitation (atomic physics approach) polarization suppression first time seen with QD à Muller et al PRL (2007) Citron et al PRA 16 (1977).

43 qd resonant light scattering: suppress the laser how we do it in the lab side excitation (atomic physics approach) polarization suppression how it works Ω pol H ~ σ + +σ -, σ + excite: H ~ σ + +σ - emit: σ + ~ H+V measure: V H first time seen with QD à Muller et al PRL (2007) Citron et al PRA 16 (1977).

44 qd resonant light scattering: suppress the laser a typical resonance fluorescence data set QD X 1- Na: D 2 line at saturation 12 MHz M.L. Citron et al PRA 16 (1977).

45 qd resonant light scattering: coherent part II low power limit of resonant light scattering scattered field intensity saturation power e g s = 2 Ω2 2

46 qd resonant light scattering: coherent part II low power limit of resonant light scattering Ω ~ à as a function of laser detuning à coherent scatter on an incoherent background incoherent coherent coherent incoherent

47 qd resonant light scattering: coherent part II low power limit of resonant light scattering; only the coherent

48 qd resonant light scattering: coherent part II single photon generation à ultracoherent subnatural linewidth single photons (Heitler regime) à single photons inherent laser coherence >> Γ -1 r ; τ coh ~ 22 ns laser incoherent pumping coherent QD à optical charging/incoherent excitation reduces photon coherence

49 qd resonant light scattering: coherent part II high power limit of resonant light scattering scattered field intensity saturation power e g s = 2 Ω2 2

50 qd resonant light scattering: incoherent part large Rabi frequency resonance fluorescence: the Mollow triplet à strong laser dresses the QD optical transitions X 1- trion Jaynes-Cummings ladder Ω Ω à n+1 pol H bottom of the ladder is vacuum Rabi splitting à cqed peak height 1:3:1

51 qd resonant light scattering: incoherent part large Rabi frequency resonance fluorescence: the Mollow triplet à strong laser dresses the QD optical transitions Ω

52 qd resonant light scattering: incoherent part large Rabi frequency resonance fluorescence: the Mollow triplet à strong laser dresses the QD optical transitions Ω from Carlos Stroud, Na D2 F Schuda et al 1974 J. Phys. B: At. Mol. Phys. 7 L198 Wu et al Phys. Rev. Lett. 35, 1426 (1975)

53 qd resonant light scattering: incoherent part the Mollow triplet as a function of laser frequency à laser tunable single photon generation, no laser leakage

54 qd resonant light scattering: incoherent part photon coherence properties à power induced phonon dephasing (also in sideband linewidth 1 ) à example 1 of not-so-atom like behaviour 1x 650x 4000x saturation 0.5x saturation saturation decay Decay ps ps 20-π rotations 1 S. M. Ulrich et al., Phys. Rev. Lett. 106, (2011).

55 qd resonant light scattering: incoherent part spin-dependent sideband frequencies à Mollow quintuplet à different effective Rabi frequencies à Zeeman splitting, laser detuning, selection rules H B z 50 mt

56 qd resonant light scattering: incoherent part spin-dependent sideband frequencies à Mollow quintuplet à different effective Rabi frequencies à Zeeman splitting, laser detuning, selection rules à leverage to measure spin orientation (need more cnts!) H B z

57 qd resonant light scattering: incoherent part spin-dependent sideband frequencies à Mollow quintuplet à different effective Rabi frequencies à Zeeman splitting, laser detuning, selection rules à full spectral overlap of photons with anti-correlated polarization H B z

58 qd resonant light scattering: incoherent part resonance fluorescence to monitor Bohr spin quantum jumps à qd molecule; spin-to-transition energy mapping à QIS: direct single shot spin measurement spin quantum jumps

59 qd resonant light scattering: incoherent part resonance fluorescence to monitor Bohr spin quantum jumps à qd molecule; spin-to-transition energy mapping à QIS: direct single shot spin measurement à exploit partner QD to control spin spin quantum jumps write- in 0 ( )

60 quantum dots à not so artificial atoms! nuclear spins, like phonons, interact with optical transitions à laser spectroscopy under finite magnetic field à dragging also visible in the RF spectrum à spectroscopic tool

61 quantum dots à not so artificial atoms! nuclear spins, like phonons, interact with optical transitions à nuclear spins can mitigate fluctuations; improve coherence NanoPID (100 Hz)

62 thanks for the attention QD Collaborators Mete Atature, Yong Zhao, Chao-yang Lu, Clemens Matthiesen University of Cambridge Antonio Badolato, University of Rochester Atac Imamoglu, Stefan Falt, Alex Hogele, ETH-Zurich group members Questions?

63 reference list H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd ed., World Scientific, Singapore, 2001, pp R. Loudon, The Quantum Theory of Light, 3rd ed., Oxford University Press, Oxford, V.V. Mitrin, V.A. Kochelap, and M.A. Stroscio, Quantum Heterostructures: Microelectronics and Optoe- lectronics, Cambridge University Press, Cambridge, S. Mukamel, Principles of Nonlinear Optical Spectro- scopy, Oxford University Press, New York, U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer, Berlin, L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots, Springer, Berlin, D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, Wiley, Chichester, UK, D.D. Awschalom, D. Loss, and N. Samarth, Semi- conductor Spintronics and Quantum Computation, Springer, Berlin, P.M. Petroff, A. Lorke, and A. Imamoglu, Epitaxially self-assembled quantum dots, Phys. Today 54 (2001), pp D. Gammon and D.G. Steel, Optical studies of single quantum dots, Phys. Today 55 (2002), pp M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Reithmaier, F. Klopf,andF.Scha fer,finestructureofneutraland charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots, Phys. Rev. B 65 (2002), :1 23.

64 reference list Spin Proposal: Imamoglu, et al, Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83, 4204 (1999). Many of Sophia Economou s papers Single Photons: P. Michler, et al, A Quantum Dot Single-Photon Turnstile Device, Science 290, 2282 (2000). C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device", Nature 419, 594 (2002). Q. Cryptography: E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Secure Communication: Quantum cryptography with a photon turnstile," Nature 420, 762 (2002). Entangled Photons: R. M. Stevenson, et al., A semiconductor source of triggered entangled photon pairs, Nature (London) 439, 179 (2006) Electron Spin Rotation: D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature 456, 218 (2008). J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot, Science 320, 349 (2008).

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Table of List of contributors Preface page xi xv Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 1 Growth of III V semiconductor quantum dots C.

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Quantum optics with multi-level transitions in semiconductor quantum dots

Quantum optics with multi-level transitions in semiconductor quantum dots Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK Confocal Quantum Coherent

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

InAs Quantum Dots for Quantum Information Processing

InAs Quantum Dots for Quantum Information Processing InAs Quantum Dots for Quantum Information Processing Xiulai Xu 1, D. A. Williams 2, J. R. A. Cleaver 1, Debao Zhou 3, and Colin Stanley 3 1 Microelectronics Research Centre, Cavendish Laboratory, University

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Generation of single photons and correlated photon pairs using InAs quantum dots

Generation of single photons and correlated photon pairs using InAs quantum dots Fortschr. Phys. 52, No. 2, 8 88 (24) / DOI.2/prop.2488 Generation of single photons and correlated photon pairs using InAs quantum dots C. Santori,2, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto,3,

More information

Spin selective Purcell effect in a quantum dot microcavity system

Spin selective Purcell effect in a quantum dot microcavity system Spin selective urcell effect in a quantum dot microcavity system Qijun Ren, 1 Jian Lu, 1, H. H. Tan, 2 Shan Wu, 3 Liaoxin Sun, 1 Weihang Zhou, 1 Wei ie, 1 Zheng Sun, 1 Yongyuan Zhu, 3 C. Jagadish, 2 S.

More information

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes What is a semiconductor? The Fermi level (chemical potential of the electrons) falls

More information

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots S. Spatzek, 1 A. Greilich, 1, * Sophia E. Economou, 2 S. Varwig, 1 A. Schwan, 1 D. R. Yakovlev, 1,3 D. Reuter, 4 A.

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Entangled photon pairs from radiative cascades in semiconductor quantum dots

Entangled photon pairs from radiative cascades in semiconductor quantum dots Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI Original phys. stat. sol. (b, 1 5 (26 / DOI 1.12/pssb.267152 Entangled

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Single-photon nonlinearity of a semiconductor quantum dot in a cavity Single-photon nonlinearity of a semiconductor quantum dot in a cavity D. Sanvitto, F. P. Laussy, F. Bello, D. M. Whittaker, A. M. Fox and M. S. Skolnick Department of Physics and Astronomy, University

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Xiaozhen Xu Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 xzxu@unm.edu We consider the nonlinearity

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities

Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities Ziliang Lin* and Jelena Vučković E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics 550 Brazilian Journal of Physics, vol. 34, no. 2B, June, 2004 Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics S. Fafard, K. Hinzer, and C. N. Allen Institute for Microstructural

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way Contents Part I Concepts 1 The History of Heterostructure Lasers Zhores I. Alferov... 3 1.1 Introduction... 3 1.2 The DHS Concept and Its Application for Semiconductor Lasers. 3 1.3 Quantum Dot Heterostructure

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Quantum Dot Lasers Using High-Q Microdisk Cavities

Quantum Dot Lasers Using High-Q Microdisk Cavities phys. stat. sol. (b) 224, No. 3, 797 801 (2001) Quantum Dot Lasers Using High-Q Microdisk Cavities P. Michler 1; *Þ (a), A. Kiraz (a), C. Becher (a), Lidong Zhang (a), E. Hu (a), A. Imamoglu (a), W. V.

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom* Center for Spintronics and Quantum

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Charge noise and spin noise in a semiconductor quantum device

Charge noise and spin noise in a semiconductor quantum device Charge noise and spin noise in a semiconductor quantum device Andreas V. Kuhlmann, 1 Julien Houel, 1 Arne Ludwig, 1, 2 Lukas Greuter, 1 Dirk Reuter, 2, 3 Andreas D. Wieck, 2 Martino Poggio, 1 and Richard

More information

Physcis Today 55 N.10 p.36 October 2002

Physcis Today 55 N.10 p.36 October 2002 Feature Article Optical Studies of Single Quantum Dots Like atoms, quantum dots can be probed and manipulated with light. Unlike atoms, they can be customized. Daniel Gammon and Duncan G. Steel Atomic

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

Coherence of an Entangled Exciton-Photon State

Coherence of an Entangled Exciton-Photon State Coherence of an Entangled Exciton-Photon State A. J. Hudson,2, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll 2, P. Atkinson 2, K. Cooper 2, D. A. Ritchie 2 and A. J. Shields. Toshiba Research

More information

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot Physics Physics Research Publications Purdue University Year 2005 Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot M. E. Ware, E. A. Stinaff, D.

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Single photon nonlinear optics in photonic crystals

Single photon nonlinear optics in photonic crystals Invited Paper Single photon nonlinear optics in photonic crystals Dirk Englund, Ilya Fushman, Andrei Faraon, and Jelena Vučković Ginzton Laboratory, Stanford University, Stanford, CA 94305 ABSTRACT We

More information

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Coherent optical manipulation of triplet-singlet states in coupled quantum dots

Coherent optical manipulation of triplet-singlet states in coupled quantum dots Coherent optical manipulation of triplet-singlet states in coupled quantum dots Hakan E. Türeci, 1 J. M. Taylor, 2 and A. Imamoglu 1 1 Institute of Quantum Electronics, ETH-Zürich, CH-8093 Zürich, Switzerland

More information

How to measure packaging-induced strain in high-brightness diode lasers?

How to measure packaging-induced strain in high-brightness diode lasers? How to measure packaging-induced strain in high-brightness diode lasers? Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany Optical Spectroscopies of Thin Films and Interfaces Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany 1. Introduction 2. Vibrational Spectroscopies (Raman and Infrared)

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

arxiv:quant-ph/ v3 20 Apr 2005

arxiv:quant-ph/ v3 20 Apr 2005 Controlling the Spontaneous Emission Rate of Single Quantum Dots in a 2D Photonic Crystal Dirk Englund, 1 David Fattal, 1 Edo Waks, 1 Glenn Solomon, 1,2 Bingyang Zhang, 1 Toshihiro Nakaoka, 3 Yasuhiko

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity

Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity 1 Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity Serkan Ates 1, Sven Marcus Ulrich 1, Stephan Reitzenstein 2, Andreas Löffler 2, Alfred Forchel 2 and

More information

Theory of quantum dot cavity-qed

Theory of quantum dot cavity-qed 03.01.2011 Slide: 1 Theory of quantum dot cavity-qed -- LO-phonon induced cavity feeding and antibunching of thermal radiation -- Alexander Carmele, Julia Kabuss, Marten Richter, Andreas Knorr, and Weng

More information

Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Received 5 Jul 211 Accepted 21 Dec 211 Published 7 Feb 212 DOI: 1.138/ncomms1657 Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Mohsen Ghali

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Kinetic Monte Carlo simulation of semiconductor quantum dot growth

Kinetic Monte Carlo simulation of semiconductor quantum dot growth Solid State Phenomena Online: 2007-03-15 ISSN: 1662-9779, Vols. 121-123, pp 1073-1076 doi:10.4028/www.scientific.net/ssp.121-123.1073 2007 Trans Tech Publications, Switzerland Kinetic Monte Carlo simulation

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Optical control and decoherence of spin qubits in quantum dots

Optical control and decoherence of spin qubits in quantum dots Materials Science-Poland, Vol. 26, No. 4, 2008 Optical control and decoherence of spin qubits in quantum dots P. MACHNIKOWSKI 1*, A. GRODECKA 1,2**, C. WEBER 2***, A. KNORR 2 1 Institute of Physics, Wrocław

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff, M.E. Ware, J.G. Tischler, D. Park, A. Shabaev, and A.L. Efros Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff,

More information