Modal Analysis Damped Systems

Size: px
Start display at page:

Download "Modal Analysis Damped Systems"

Transcription

1 Modal Analysis of MDOF Forced Damped Systems

2 Lecture : MODAL ANALYSIS OF MDOF FORCED DAMPED SYSTEMS TABLE OF CONTENTS Page. Introduction What is Mechanical Damping? Internal vs. External Damping Distributed vs. Localized Damping Modeling Structural Damping Matrix Equations ofmotion Equations of Motion Using Undamped Modes Three Ways Out Direct Diagonalization Damping Factor Guessing Diagonalization by Modal Projection Diagonalization by Proportional Damping Remainder oflecture Damped matrix EOM Diagonalization By Energy Balance, aka RQ Disgonalization..... Comparison ofexact Versus Diagonalized Responses......

3 . WHAT IS MECHANICAL DAMPING?.. Introduction The present lecture introduces damping within the context of dynamic modal analysis. After a brief overview of a very complex but fuzzy subject, the lecture focuses on a very specific damping model. Namely linearly viscous and light. Linearly viscous damping is proportional to the velocity. Light damping means a damping factor (also called damping ratio and damping coefficient) that is small compared to unity. In the terminology of Lecture 7, a lightly damped mechanical system is said to be underdamped. Accounting for damping effects brings good and bad news. All real dynamic systems experience damping because energy dissipation mechanisms are like death and taxes:* inevitable. Hence inclusion makes the dynamic model more physically realistic. The bad news is that it can seriously complicate the analysis process. Here is where the assumption of light viscous damping helps: it allows reuse of major parts of the modal analysis techniques introduced in the previous 3 lectures... What is Mechanical Damping? Damping is the (generally irreversible) conversion of mechanical energy into heat as a result of motion. For example, as we scratch a match against a rough surface, its motion generates heat and ignites the sulphur content. When shivering under cold, we rub palms against each other to warm up. Those are two classical examples of the thermodynamic effect of friction. In structural systems, damping is more complex, appearing in several forms. These may be broadly categorized into internal versus external, and distributed versus localized.... Internal vs. External Damping Internal damping is due to the structural material itself. Sources are varied: microstructural defects, crystal grain relative motions, eddy currents in ferromagnetic media, dislocations in metals, and molecular chain movements in polymers. The key macroscopic effect is the production of a hysteresis loop in stress-strain plots. The hysteresis loop area represents the energy dissipated per unit volume of material and per stress cycle. This kind of damping is intimately related to cyclic motions such as vibration. External damping come from boundary effects. An important form is structural damping, which is produced by rubbing friction: stick-and-slip contact or impact. That may happen between structural components such as bolted or riveted joints, or between a structural surface and non-structural solid media such as soil in building foundations. This form is often modeled by Coulomb damping, which describes the energy dissipation of rubbing dry-friction. Another form of external damping is fluid damping. When a structure is immersed in a fluid, such as air or water, and there is relative motion between the two, a drag force appears. This causes energy dissipation in the fluid through mechanisms such as viscosity, convection or turbulence. This effect is collectively known as fluid damping. A well known application is a vehicle shock absorber: a fluid (liquid or air) is forced through small openings by a moving piston. Parachutes operate on the same basic principle. * One exception: tax-exempt vampires. 3

4 Lecture : MODAL ANALYSIS OF MDOF FORCED DAMPED SYSTEMS... Distributed vs. Localized Damping All damping ultimately comes from frictional effects, which may however take place at different scales. If the effects are distributed over volumes or surfaces at macro scales, we speak of distributed damping. But occasionally the engineer uses damping devices designed to produce beneficial effects. For example: shock absorbers, airbags, parachutes, motion mitigators for buildings or bridges in seismic or hurricane zones, and active piezoelectric dampers for space structures. Those devices can be often idealized as lumped objects, modeled as point forces or moments, and said to produce localized damping. The distinction largely appears at the macro modeling level, since all motion-damper devices ultimately work as a result of some kind of internal energy conversion at the molecular level. Localized dampers may be classified into passive or active. The latter respond to motion feedback. But active devices would take us into control systems, which are beyond the scope of this course..3. Modeling Structural Damping The foregoing summary should make clear that damping is a ubiquitous but complicated business. In structures containing joints, for example, Coulomb (dry friction) damping often dominates; this model is partly nonlinear because the damping force depends on the sign of the velocity. Fluid damping tends to be highly nonlinear if the interacting flow is turbulent, since if so the drag is roughly quadratic in the relative velocity between solid and fluid. Another modeling complication is that friction may depend on fabrication or construction details that are not easy to predict; e.g., bolted versus welded connections. Balancing those complications is the fact that damping in most structures, especially metallic ones, is light in the sense that the damping factor ξ introduced in Lecture 7 is much smaller than one. In addition, the presence of damping is usually beneficial to safety in the sense that resonance effects are mitigated. If so, underestinating or ignoring damping is conservative in a safety sense. This gives structural engineers leeway to simplify a dynamic analysis, by proceeding as follows. A simple damping model, such as linear viscous damping, can be often assumed. Mode superposition is applicable because the EOM is linear. Moreover the frequencies and mode shapes for the undamped system can be reused if additional assumptions studied later, such as Rayleigh damping or modal damping, are made. It should be stressed that such simplifications are not recommended if precise modeling of damping effects is important to safety and performance. This occurs in the following scenarios: Damping is crucial to function or operation. Think, for instance, of a shock absorber, a parachute, or a piezoelectric damper. Fortunately such devices can be often modeled using empirical data (e.g., that provided by the manufacturer). Damping may destabilize the system by feeding energy instead of removing it. This can happen in active control systems and aeroelasticity. The last two scenarios are beyond the scope of this course. In this lecture we will focus on linear viscous damping. Moreover, damping levels will usually assumed to be light in the sense that the damping factor ξ<<; typically less than 0%. 4

5 (a).4 MATRIX EQUATIONS OF MOTION (b) Static equilibrium position k c F = k u s. F = c u d u = u (t) u = u (t) Static equilibrium position k Mass m c Mass m s s F = k (u u ) F = m u.. I d F x F d.. F = c (u u ) F = m u.. I Figure.. Two-DOF, forced, damped spring-mass example system: (a) configuration, (b) DFBD..4. Matrix Equations of Motion Consider again the two-dof mass-spring-dashpot example system of Lecture 9. This is reproduced in Figure. for convenience. The physical-coordinate EOM in detailed matrix notation are [ ] [ ][ ] [ ][ ] [ ] m 0 ][ü c + c + c u k + k + k u p =. (.) 0 m ü c c u k k u p In compact notation, M ü + C u + Ku= p, (.) in which M, C and K are the mass, damping and stiffness matrix, respectively, whereas p, u, u and ü are the force, displacement, velocity and acceleration vectors, respectively. The latter four are function of time: u = u(t), etc, but the time argument will be often omitted for brevity. In the sequel it will be assumed that M, C and K are symmetric. Furthermore M is taken as positive definite (PD) whereas K is nonnegative definite (NND)..4.. Equations of Motion Using Undamped Modes This technique attempts to reuse the modal analysis methods introduced in Lectures 9. Suppose that damping is removed whence C = 0. Get the natural frequencies and mode shapes of the unforced, undamped system governed by M ü + Ku = 0, by solving the eigenproblem KU i = 5

6 Lecture : MODAL ANALYSIS OF MDOF FORCED DAMPED SYSTEMS ωi MU i. Normalize the vibration mode shapes U i φ i so that they are orthonormal with respect to the mass matrix: φi T M φ i = δ ij, (.3) in which δ ij denotes the Kronecker delta: δ ij = ifi = j, else zero. Let Φ be the modal matrix constructed with the orthonormalized mode shapes φ i, and denote by η the array of modal amplitudes η i, also called generalized coordinates. As before, assume mode superposition, so that physical DOF are linked to modal amplitudes via u = Φ η. (.4) Following the same scheme as in the previous two Lectures, the transformed EOM in generalized coordinates are Φ T M Φ ü + Φ T C Φ u + Φ T K Φ u = Φ T p(t). (.5) Define the modal (also called generalized) mass, damping, stiffness and forces as M g = Φ T M Φ, C g = Φ T C Φ, K g = Φ T K Φ, f = Φ T p(t). (.6) Of these, the modal mass matrix M g and the modal stiffness matrix K g were introduced in Lecture 0. If Φ is built by stacking mass-orthonormalized vibration modes as columns, it was shown there that M g = I, K g = diag[ωi ]. (.7) That is, M g reduces to the identity matrix whereas K g becomes a diagonal matrix with squared frequencies stacked along its diagonal. The modal forces f(t), also called mgeneralized forces, were introduced in Lecture. The new term in (.6) is the modal damping matrix C g = Φ T C Φ, also called the generalized damping matrix in the literature. Substituting (.6) and (.7) into (.5) we arrive at the modal EOM for the damped system: η(t) + C g η(t) + diag(ωi ) η(t) = f(t). (.8) Here we ran into a major difficulty: matrix C g generally will not be diagonal. If that happens, the modal EOM (.8) will not decouple. We seem to have taken a promising path, but hit a dead end..4.. Three Ways Out There are three ways out of the dead end: Diagonalization. Keep working with (.8), but make C g diagonal through some artifice. Complex Eigensystem. Set up and solve a different (augmented) eigenproblem that diagonalizes two matrices that comprise M, C and K as submatrices. The name comes from the fact that it generally leads to frequencies and mode shapes that are complex. Direct Time Integration or DTI. Integrate directly (.) numerically in time without passing to modal coordinates. In the textbook of Craig-Kurdila the first two approaches listed above are called mode superposition through real modes of the undamped system, and mode superposition through complex modes of the damped system, respectively. See their Section 0..0 for details. Those mouthfuls are abbreviated above to more easily remembered labels. 6

7 .5 DIRECT DIAGONALIZATION Each approach has strengths and weaknesses. (Obviously, else we would mention just one.) Diagonalization allows straightforward reuse of undamped frequencies and mode shapes, which are fairly easy to obtain with standard eigensolution software. The uncoupled modal equations often have physical interpretation and can be validated with experiments. Only real arithmetic is necessary. The down side is that we dont solve the original damped EOM (.) directly, so some form of approximation is likely. This is counteracted by the fact that structural damping is often difficult to quantify since it can come from many sources, as discussed earlier. Thus the approximation may be tolerable in view of modeling uncertainties. This is particularly true if damping is light. There are certain problems, however, in which diagonalization cannot adequately represent damping effects within engineering accuracy. Three of them are: () Structures with localized damper devices (e.g., shock absorbers, piezoelectric dampers) () Problem in which structure-media interaction is important. Examples: building and bridge foundations, tunnels, aeroelasticity, marine structures, surface ships (3) Active control systems In those situations one of the two remaining approaches must be taken. The complex eigensystem method is mathematically irreproachable and can solve (.) without additional approximations. No assumptions as to light versus heavy damping are needed. But it involves a substantial amount of preparatory work since the EOM must be transformed to the socalled state space form. For a large number of DOF, solving complex eigensystems is unwieldy. Physical interpretation of complex frequencies and modes is less immediate and may require substantial expertise in math as well as engineering experience. But in the scenarios listed above it should be preferred to diagonalization as long as the EOM are linear. This precludes its use in certain damping models. Direct time integration (DTI) has the advantage of being completely general. In fact it can handle not only the linear EOM (.), but also nonlinear systems, as well as non-viscous damping mechanisms. No transformations to mode coordinates is required, and no complex arithmetic emerges. The main disadvantage is that it requires substantial expertise in computational handling of ODE, which is a hairy topic onto itself. Since DTI can only handle fully numerically-specified models, the approach is not particularly useful during preliminary design stages when free parameters float around. Because the last two approaches lie outside the scope of an introductory course (they are usually taught at the graduate level), our choice is easy: diagonalization it is. This choice can be implemented in several ways, three of which are discussed in the following sections:. Direct diagonalizaton: assume uncoupled modal equations and a damping ratio for each mode. Matrix C need not be explicitly constructed. See.5.. Proportional damping: pick a form for C that diagonalizes on passing to modal equations. See.7. Diagonalize by modal projection: form C and project it on the modal coordinates, retianing only the diagonal. See.6 This form is studied in more advanced courses. 7

8 Lecture : MODAL ANALYSIS OF MDOF FORCED DAMPED SYSTEMS.5. Direct Diagonalization In this approach the generalized damping matrix C g = Φ T C Φ is assumed to be diagonal from the start by assuming modal damping factors C g = diag[ξ i ω i M i ] = i =,,...n. (.9) in which n is the number of DOF, M i = φi T M φ i is the i th modal (generalized) mass, and ξ i is the assumed the damping factor for the i th natural mode. A compact matrix form of (.9) used in.5. C g = M g, = UMU (.0) in which = diag[ξ i ω i ]. As a result of this assumption, the modal EOM (.8) decouple, reducing the EOM to n canonical second-order scalar equations in the modal amplitudes η i + ξ i ω i η i + ω i η = f i (t), i =,,...n. (.) These equations can be solved using the methods described in Lecture. The solutions can be superposed via the mode decomposition assumption u(t) = Φ η(t) to get the physical response. The method is straightforward. Two technical difficulties remain. First, how are modal damping factors picked? Second, what is the error incurred by the decoupling assumption?.5.. Damping Factor Guessing One time honored approach is educated guessing. This is of course the only possibility if (a) little is known about the damping level and sources and (b) there are no experimental results; for example the structure only exists on paper. The structural engineer then makes recourse to experience with similar systems. With an air of authority she says: No problema. Let s assign % to modes through 5, % to modes 6 through 0, and 4% to all higher ones. Done. There is some method in the madness. First, damping factors of well constructed structures are typically small compared to unity: to 5% is typical. Second, damping generally increases with frequency, the reason being that more hysteresis cycles take place within a fixed time interval. Third, the effect of light damping is not significant on the response unless the force (or base motion) happens to excite a resonance; so the difference between, say, % and % may be well within modeling uncertainty. Note that this procedure directly delivers a diagonal C g rather than C. If it is desirable to obtain C a posteriori, one may use the following relations,the second of which assumes M g = I: C = Φ T C g Φ = M Φ C g Φ T M = n i= ξ i φ i (Mφ i )(Mφ i ) T. (.) Taking account of mode orthogonality gives the useful relation φ T i Cφ i = ξ i ω i. (.3) 8

9 .9 DAMPED MATRIX EOM.6. Diagonalization by Modal Projection This method assumed that the C matrix of a n-dof system has already been constructed from the model data, as in the EOM example (?). Compute the vibration modes of the undamped system and orthonormalize them with respect to the mass matrix. Let those modes be denoted as usual by φ i, i =,...n. Compute the projection of C on each mode via c i = φt i C φ i φi T, φ i i =,...n. (.4) The diagonalized damping matrix is taken to be C g = diag[c i ] = diag[ξ i ω i M i ]. (.5) The last expression implicitly defines the damping ratio ξ i assigned to the i th mode to be ξ i = c i /( ω i M i ). This construction effectively ignores modal cross coupling. In numerical analysis, the expression (.4) is called the Rayleigh Quotient (RQ) of matrix C with respect to the φ i vector. For this reason, this technique may be also called RQ-diagonalization..7. Diagonalization by Proportional Damping This diagonalization procedure is widely used for civil structures, especially for seismic response calculations. The viscous damping matrix C is directly defined as a linear combination of the mass and stiffness matrix: C = a 0 M + a K. (.6) Here a 0 and a are selected constants of appropriate physical dimensions. The method is called proportional damping in the literature. Applying the modal matrix congruential transformation to this C results in C g = Φ T C Φ = diag[c r ] = diag[a 0 + a ω i ] = diag[ξ i ω i ], (.7) whence the effective modal damping ratio is ξ i = ( ) a0 + a ω i. (.8) ω i Choosing the damping ratio for two modes of different frequencies and solving (.8) for a 0 and a yields C from (.6). In practice the stiffness proportional term is more physically relevant (because, as previously noted, damping usually increases with frequency). Thus structural engineers tend to adjust the choice of those frequencies so that ξ i is roughly minimized for the lowest frequency mode..8. Remainder of Lecture The reminder of this lecture just presents the spring-mass-dashpot example sytem of previous lectures. For various damping levels, this is solved exactly (as a coupled system, by direct numerical integration) and also modally, with a particular damping-matrix-diagonalization method. The results are compared for various damping levels. 9

10 Lecture : MODAL ANALYSIS OF MDOF FORCED DAMPED SYSTEMS (a) (b) Static equilibrium position k c F = k u s. F = c u d u = u (t) u = u (t) Static equilibrium position k Mass m c Mass m s s F = k (u u ) F = m u.. I d F x F d.. F = c (u u ) F = m u.. I Figure.. Two-DOF, forced, damped spring-mass example system: (a) configuration, (b) DFBD..9. Damped matrix EOM Consider again the two-dof mass-spring-dashpot example system of Lecture 9. This is reproduced in Figure. for convenience. The physical-coordinate EOM in detailed matrix notation are [ ] [ ][ ] [ ][ ] [ ] m 0 ][ü c + c + c u k + k + k u p =. (.9) 0 m ü c c u k k u p Suppose m =, m =, k = 6, k = 3, c = c = c, p = 0, and p = F cos t, in which c (a dashpot coefficient), (excitation frequency of harmonic force), and F (harmonic force amplitude) are for the moment kept as free parameters. Then [ ] [ ][ ] [ ][ ] [ ] 0 ][ü c c u 9 3 u =. (.0) 0 ü c c u 3 3 u F cos t The data matrices and vectors are [ ] [ ] [ ] [ ] 0 c c M =, C =, K =, p =. (.) 0 c c 3 3 F cos t The undamped circular natural frequencies and associated modal matrix (orthonormalized with respect to the mass matrix) were obtained in Lecture 0 and are reproduced here for convenience: ω = 3 3 [ ], ω = 6, Φ = [ φ φ ] = =. (.)

11 . COMPARISON OF EXACT VERSUS DIAGONALIZED RESPONSES With the foregoing choice of Φ, the generalized matrices and forces are [ ] c M g = Φ T 0 3 c M Φ = = I, C 0 g = Φ T C Φ = 3 c 3, 5c [ ] [ ] (.3) 6 K g = Φ T 3/ 0 K Φ = = diag[3/, 6], f(t) = Φ T p(t) = F 0 6 cos t The modal EOM in terms of the amplitudes η (t) and η (t) collected in vector η, are η(t) + C g η(t) + diag[3/, 6] η(t) = f(t). (.4) Since C g is not diagonal if c > 0, the modal EOM (.4) are coupled through that matrix..0. Diagonalization By Energy Balance, aka RQ Disgonalization We will investigate the following Rayleigh quotient (RQ) diagonalization technique [ Cg RQ = diag[c RQ, C RQ C RQ ] 0 ] = 0 C RQ, C RQ = φt Cφ φ T φ = c 5, C RQ = φt Cφ φ T φ = 5c. (.5) This relation is obtained by equating the energy dissipated by damping over one cycle. Replacing C g with C RQ g gives the RQ modal EOM [ c η(t) + diag 5, 5c ] η(t) + diag[3/, 6] η(t) = f(t). (.6) These now decouple to η (t) + c 5 η (t) + 3 η (t) = F cos t, η (t) + 5c 6 η (t) + 6η (t) = F cos t. 3 (.7) The effective modal damping factors are ξ RQ = c 5(ω ) = c, ξrq = 5c (ω ) 3 = c. (.8) Ther IC required for solving the ODE (.7) are, from Lecture 0, η(0) = Φ T M u(0) and η(0) = Φ T M u(0), and replacing numbers: [ ] 6 [ ][ ] (u (0) + u (0)) η0 η 0 = = 6 η 0 0 u (0) = 6 0 u (0) (u (0) u (0)), [ ] 6 [ ][ ] ( u (0) + u (0)) (.9) η0 η 0 = = 6 η 0 0 u (0) = 6 0 u (0) ( u (0) u (0)), Once the solutions η RQ (t) and η RQ are obtained thay can be combined via the modal matrix as u RQ (t) = Φ η RQ to produce the response in physical coordinates. Do not confuse with the Rayleigh damping, also known as proportional damping, approach. Same name, different matrices.

12 Lecture : MODAL ANALYSIS OF MDOF FORCED DAMPED SYSTEMS.. Comparison of Exact Versus Diagonalized Responses This will be demonstrated in class using Mathematica from a laptop if there is time, else it will be skipped. The damping level will be varied as well as the IC and forcing function.

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

A Guide to linear dynamic analysis with Damping

A Guide to linear dynamic analysis with Damping A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Review of Basics of Mechanical Vibrations Lecture - 2 Introduction

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

Dynamic Modelling of Mechanical Systems

Dynamic Modelling of Mechanical Systems Dynamic Modelling of Mechanical Systems Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering g IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD Hints of the Last Assignment

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual *****

SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual ***** SHAKING TABLE DEMONSTRATION OF DYNAMIC RESPONSE OF BASE-ISOLATED BUILDINGS ***** Instructor Manual ***** A PROJECT DEVELOPED FOR THE UNIVERSITY CONSORTIUM ON INSTRUCTIONAL SHAKE TABLES http://wusceel.cive.wustl.edu/ucist/

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Final Exam December 11, 2017

Final Exam December 11, 2017 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage

More information

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016) AA 242B / ME 242B: Mechanical Vibrations (Spring 206) Solution of Homework #3 Control Tab Figure : Schematic for the control tab. Inadequacy of a static-test A static-test for measuring θ would ideally

More information

Module 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA

Module 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA The Lecture Contains: Development of an Active DVA Proof Mass Actutor Application of Active DVA file:///d /chitra/vibration_upload/lecture19/19_1.htm[6/25/2012 12:35:51 PM] In this section, we will consider

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

18. FAST NONLINEAR ANALYSIS. The Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis

18. FAST NONLINEAR ANALYSIS. The Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis 18. FAS NONLINEAR ANALYSIS he Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis 18.1 INRODUCION he response of real structures when subjected

More information

Lecture 9: Harmonic Loads (Con t)

Lecture 9: Harmonic Loads (Con t) Lecture 9: Harmonic Loads (Con t) Reading materials: Sections 3.4, 3.5, 3.6 and 3.7 1. Resonance The dynamic load magnification factor (DLF) The peak dynamic magnification occurs near r=1 for small damping

More information

Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties

Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties A.Q. Bhatti National University of Sciences and Technology (NUST),

More information

Collocated versus non-collocated control [H04Q7]

Collocated versus non-collocated control [H04Q7] Collocated versus non-collocated control [H04Q7] Jan Swevers September 2008 0-0 Contents Some concepts of structural dynamics Collocated versus non-collocated control Summary This lecture is based on parts

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

SEISMIC RESPONSE OF SINGLE DEGREE OF FREEDOM STRUCTURAL FUSE SYSTEMS

SEISMIC RESPONSE OF SINGLE DEGREE OF FREEDOM STRUCTURAL FUSE SYSTEMS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 377 SEISMIC RESPONSE OF SINGLE DEGREE OF FREEDOM STRUCTURAL FUSE SYSTEMS Ramiro VARGAS and Michel BRUNEAU

More information

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

More information

1.1 OBJECTIVE AND CONTENTS OF THE BOOK

1.1 OBJECTIVE AND CONTENTS OF THE BOOK 1 Introduction 1.1 OBJECTIVE AND CONTENTS OF THE BOOK Hysteresis is a nonlinear phenomenon exhibited by systems stemming from various science and engineering areas: under a low-frequency periodic excitation,

More information

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions k 2 Wheels roll without friction k 1 Motion will not cause block to hit the supports

More information

NUMERICAL MODELLING OF STORAGE RACKS SUBJECTED TO EARTHQUAKE

NUMERICAL MODELLING OF STORAGE RACKS SUBJECTED TO EARTHQUAKE ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, D.C. Charmpis, N.D. Lagaros, Y. Tsompanakis (eds.) Rethymno, Crete, Greece, 13 16

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao

CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao Associate Professor Dept. of Civil Engineering SVCE, Sriperumbudur Difference between static loading and dynamic loading Degree

More information

The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake

The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake Copyright 2013 Tech Science Press SL, vol.9, no.1, pp.23-36, 2013 The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake Yang Lu 1, Li Shi-Min 1, Cao Peng 2 and Shen Xin-Pu 1 Abstract:

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 5/Part A - 23 November,

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

Damping Matrix. Donkey2Ft

Damping Matrix. Donkey2Ft 1 Damping Matrix DonkeyFt Damping in a single-degree-of-freedom (SDOF) system is well studied. Whether the system is under-damped, over-damped, or critically damped is well known. For an under-damped system,

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

An Improved Computational Strategy for Vibration- Proof Structures Equipped with Nano-Enhanced Viscoelastic Devices

An Improved Computational Strategy for Vibration- Proof Structures Equipped with Nano-Enhanced Viscoelastic Devices An Improved Computational Strategy for Vibration- Proof Structures Equipped with Nano-Enhanced Viscoelastic Devices E. Ntotsios & A. Palmeri Loughborough University, United Kingdom SUMMARY: Viscoelastic

More information

( ) Chapter 3: Free Vibration of the Breakwater. 3.1 Introduction

( ) Chapter 3: Free Vibration of the Breakwater. 3.1 Introduction Chapter : Free Vibration of the Breakwater. Introduction Before conducting forcing analyses on the breakwater, a free vibration study is necessary. This chapter will describe the analysis conducted to

More information

Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts

Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts Why You Can t Ignore Those Vibration Fixture Resonances Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts SOUND AND VIBRATION March 1999 Vibration fixtures, at times, have resonant

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

THEORY OF VIBRATION ISOLATION

THEORY OF VIBRATION ISOLATION CHAPTER 30 THEORY OF VIBRATION ISOLATION Charles E. Crede Jerome E. Ruzicka INTRODUCTION Vibration isolation concerns means to bring about a reduction in a vibratory effect. A vibration isolator in its

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Some Aspects of Structural Dynamics

Some Aspects of Structural Dynamics Appendix B Some Aspects of Structural Dynamics This Appendix deals with some aspects of the dynamic behavior of SDOF and MDOF. It starts with the formulation of the equation of motion of SDOF systems.

More information

Part 6: Dynamic design analysis

Part 6: Dynamic design analysis Part 6: Dynamic design analysis BuildSoft nv All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or manual, for any purpose, without written

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information

Dynamic Soil Structure Interaction

Dynamic Soil Structure Interaction Dynamic Soil Structure Interaction Kenji MIURA, Dr. Eng. Professor Graduate School of Engineering Hiroshima University Dynamic Soil Structure Interaction Chapter 1 : Introduction Kenji MIURA, Dr. Eng.

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

Lecture 6 mechanical system modeling equivalent mass gears

Lecture 6 mechanical system modeling equivalent mass gears M2794.25 Mechanical System Analysis 기계시스템해석 lecture 6,7,8 Dongjun Lee ( 이동준 ) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee Lecture 6 mechanical system modeling

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 09 Characteristics of Single Degree - of -

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION IGC 2009, Guntur, INDIA NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION B. Manna Lecturer, Civil Engineering Department, National Institute of Technology, Rourkela 769008, India.

More information

ME8230 Nonlinear Dynamics

ME8230 Nonlinear Dynamics ME8230 Nonlinear Dynamics Lecture 1, part 1 Introduction, some basic math background, and some random examples Prof. Manoj Srinivasan Mechanical and Aerospace Engineering srinivasan.88@osu.edu Spring mass

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 1 Lecture - 10 Methods of Writing Equation of Motion (Refer

More information

Explosion Protection of Buildings

Explosion Protection of Buildings Explosion Protection of Buildings Author: Miroslav Mynarz Explosion Protection of Buildings Introduction to the Problems of Determination of Building Structure's Response 3 Classification of actions According

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using

Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Input-Output Peak Picking Modal Identification & Output only Modal Identification and Damage Detection of Structures using Time Frequency and Wavelet Techniquesc Satish Nagarajaiah Professor of Civil and

More information

MOOC QP Set 1 Principles of Vibration Control

MOOC QP Set 1 Principles of Vibration Control Section I Section II Section III MOOC QP Set 1 Principles of Vibration Control (TOTAL = 100 marks : 0 questions x 1 mark/question = 0 marks : 0 questions x marks/question = 40 marks : 8 questions x 5 marks/question

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

INVESTIGATION OF JACOBSEN'S EQUIVALENT VISCOUS DAMPING APPROACH AS APPLIED TO DISPLACEMENT-BASED SEISMIC DESIGN

INVESTIGATION OF JACOBSEN'S EQUIVALENT VISCOUS DAMPING APPROACH AS APPLIED TO DISPLACEMENT-BASED SEISMIC DESIGN 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 228 INVESTIGATION OF JACOBSEN'S EQUIVALENT VISCOUS DAMPING APPROACH AS APPLIED TO DISPLACEMENT-BASED

More information

Resonance and response

Resonance and response Chapter 2 Resonance and response Last updated September 20, 2008 In this section of the course we begin with a very simple system a mass hanging from a spring and see how some remarkable ideas emerge.

More information

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Laboratory notes. Torsional Vibration Absorber

Laboratory notes. Torsional Vibration Absorber Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/1-11, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped

More information

midas Civil Dynamic Analysis

midas Civil Dynamic Analysis Edgar De Los Santos Midas IT August 23 rd 2017 Contents: Introduction Eigen Value Analysis Response Spectrum Analysis Pushover Analysis Time History Analysis Seismic Analysis Seismic Analysis The seismic

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information

Simulating Two-Dimensional Stick-Slip Motion of a Rigid Body using a New Friction Model

Simulating Two-Dimensional Stick-Slip Motion of a Rigid Body using a New Friction Model Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. ICMIE 116 DOI: 10.11159/icmie16.116 Simulating Two-Dimensional

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Essential physics for game developers Introduction The primary issues Let s move virtual objects Kinematics: description

More information

A STUDY AND DEVELOPMENT OF SEMI-ACTIVE CONTROL METHOD BY MAGNETORHEOLOGICAL FLUID DAMPER IN BASE ISOLATED STRUCTURES

A STUDY AND DEVELOPMENT OF SEMI-ACTIVE CONTROL METHOD BY MAGNETORHEOLOGICAL FLUID DAMPER IN BASE ISOLATED STRUCTURES October -7,, Beijing, China A STUDY AND DEVELOPMENT OF SEMI-ACTIVE CONTROL METHOD BY MAGNETORHEOLOGICAL FLUID DAMPER IN BASE ISOLATED STRUCTURES Norio HORI, Yoko SAGAMI and Norio INOUE 3 Assistant Professor,

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE SCHOOL OF ENGINEERING

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE SCHOOL OF ENGINEERING THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE SCHOOL OF ENGINEERING A COMPUTATIONAL ANALYSIS OF THE FRICTION PENDULUM BASE ISLOATION SYSTEM MATTHEW HEID Spring 2012 A thesis submitted in partial

More information

In-Structure Response Spectra Development Using Complex Frequency Analysis Method

In-Structure Response Spectra Development Using Complex Frequency Analysis Method Transactions, SMiRT-22 In-Structure Response Spectra Development Using Complex Frequency Analysis Method Hadi Razavi 1,2, Ram Srinivasan 1 1 AREVA, Inc., Civil and Layout Department, Mountain View, CA

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

Effects of Mistuning on the Forced Response of Bladed Discs with Friction Dampers

Effects of Mistuning on the Forced Response of Bladed Discs with Friction Dampers Response of Bladed Discs with Friction Dampers E.P. Petrov and D.J. Ewins Mechanical Engineering Department Imperial College London, South Kensington Campus London, SW7 2AZ, United Kingdom y.petrov@imperial.ac.uk,

More information

Residual Force Equations

Residual Force Equations 3 Residual Force Equations NFEM Ch 3 Slide 1 Total Force Residual Equation Vector form r(u,λ) = 0 r = total force residual vector u = state vector with displacement DOF Λ = array of control parameters

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Lecture 25 Continuous System In the last class, in this, we will

More information

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS Nonlinear Structural Dynamics Using FE Methods emphasizes fundamental mechanics principles and outlines a modern approach to understanding structural dynamics.

More information

A NEW METHOD FOR VIBRATION MODE ANALYSIS

A NEW METHOD FOR VIBRATION MODE ANALYSIS Proceedings of IDETC/CIE 25 25 ASME 25 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference Long Beach, California, USA, September 24-28, 25 DETC25-85138

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 1 Lecture - 13 Undamped and Damped Systems II (Refer Slide

More information

. D CR Nomenclature D 1

. D CR Nomenclature D 1 . D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the

More information

An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation

An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation An Energy Dissipative Constitutive Model for Multi-Surface Interfaces at Weld Defect Sites in Ultrasonic Consolidation Nachiket Patil, Deepankar Pal and Brent E. Stucker Industrial Engineering, University

More information

F = ma, F R + F S = mx.

F = ma, F R + F S = mx. Mechanical Vibrations As we mentioned in Section 3.1, linear equations with constant coefficients come up in many applications; in this section, we will specifically study spring and shock absorber systems

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore

Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Stochastic Structural Dynamics Prof. Dr. C. S. Manohar Department of Civil Engineering Indian Institute of Science, Bangalore Lecture No. # 33 Probabilistic methods in earthquake engineering-2 So, we have

More information

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS

two structural analysis (statics & mechanics) APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2017 lecture STRUCTURAL ANALYSIS AND SYSTEMS APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2017 lecture two structural analysis (statics & mechanics) Analysis 1 Structural Requirements strength serviceability

More information