AA242B: MECHANICAL VIBRATIONS

Size: px
Start display at page:

Download "AA242B: MECHANICAL VIBRATIONS"

Transcription

1 AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations: Theory and Applications to Structural Dynamics, Second Edition, Wiley, John & Sons, Incorporated, ISBN-13: / 50

2 AA242B: MECHANICAL VIBRATIONS 2 / 50 Outline 1 Linear Vibrations 2 Natural Vibration Modes 3 Orthogonality of Natural Vibration Modes 4 Modal Superposition Analysis 5 Spectral Expansions 6 Forced Harmonic Response 7 Response to External Loading 8 Mechanical Systems Excited Through Support Motion 2 / 50

3 AA242B: MECHANICAL VIBRATIONS 3 / 50 Linear Vibrations Equilibrium configuration q s (t) = q s (0) q s (t) = 0 } s = 1,, n (1) Recall the Lagrange equations of motion d ( ) T + T V D + Q s (t) = 0 dt q s q s q s q s where T = T 0 + T 1 + T 2 Recall the generalized gyroscopic forces F s = r=1 2 T 1 q s q r q r + T1 q s = r=1 ( 2 T 1 q s q r 2 T 1 q r q s ) q r, s = 1,, n Definition: the effective potential energy is defined as V = V T 0 The Lagrange equations of motion can be re-written as ( ) d T2 T 2 = Q s (t) V D + F s ( ) T1 dt q s q s q s q s t q s 3 / 50

4 AA242B: MECHANICAL VIBRATIONS 4 / 50 Linear Vibrations Recall that T 0(q, t) = 1 N 3 ( ) Uik 2 m k (q, t) (transport kinetic energy) 2 t k=1 i=1 N vk ( q) D = C k f k (γ)dγ (dissipation function) k=1 0 From the Lagrange equations of motion ( ) d T2 T 2 = Q s (t) V D + F s ( ) T1 dt q s q s q s q s t q s it follows that an equilibrium configuration exists if and only if 0 = Q s (t) V Q s (t) and V are function of q only and not q s explicitly dependent on time Q s (t) = 0 and V = V (q) At equilibrium Q s (t) = 0 and V q s = (V T 0) q s = 0, s = 1,, n 4 / 50

5 AA242B: MECHANICAL VIBRATIONS 5 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Consider first a system that does not undergo a transport or overall motion T = T 2 ( q) The equilibrium position is then given by Q s (t) = 0 and V q s = 0, s = 1,, n Assume next that this system is conservative E = T + V = cst Shift the origin of the generalized coordinates so that at equilibrium, q s = 0, s = 1,, n (in which case the q s represent the deviation from equilibrium) Since the potential energy is defined only up to a constant, choose this constant so that V(q s = 0) = 0 Now, suppose that a certain energy E(0) is initially given to the system in equilibrium 5 / 50

6 AA242B: MECHANICAL VIBRATIONS 6 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Definition: the equilibrium position (q s = 0, s = 1,, n) is said to be stable if E / E(0) < E, T (t) E(0) Consequences T + V = E = cst = E(0) V(t) = E(0) T (t)) 0 at a stable equilibrium position, the potential energy is at a relative minimum if E(0) is small enough, V(t) will be small enough and therefore deviations from the equilibrium position will be small enough 6 / 50

7 AA242B: MECHANICAL VIBRATIONS 7 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Linearization of T and V around an equilibrium position (q s = 0, V = 0) q s actually, this means obtaining a quadratic form of T and V in q and q so that the corresponding generalized forces are linear since q s(t) represent deviations from equilibrium, V can be expanded as follows V(q) = V(0) + = V(0) s=1 V q s q=0 q s s=1 r=1 s=1 r=1 2 V q s q r q=0 q sq r + O(q 3 ) 2 V q s q r q=0 q sq r + O(q 3 ) since the potential energy is defined only up to a constant, if this constant is chosen so that V(0) = 0, then a second-order approximation of V(q) is given by V(q) = 1 2 s=1 r=1 2 V q s q r q=0 q sq r, for q 0 7 / 50

8 AA242B: MECHANICAL VIBRATIONS 8 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Stiffness matrix let K = [k sr ] where k sr = k rs = 2 V q s q r q=0 = V(q) = 1 2 qt Kq > 0, for q 0 K is symmetric positive (semi-) definite 8 / 50

9 AA242B: MECHANICAL VIBRATIONS 9 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Recall that T 2 = 1 2 N 3 s=1 r=1 k=1 i=1 T 2(q, q) = T 2(0, 0) s=1 r= s=1 r=1 = 1 2 s=1 r=1 m k U ik q s U ik q r q s q r (relative kinetic energy) s=1 T 2 q s q=0, q=0 q s + 2 T 2 q s q r q=0, q=0 q s q r + T 2 q s q=0, q=0 q s s=1 s=1 r=1 2 T 2 q s q r q=0, q=0 q s q r + O(q 3, q 3 ) 2 T 2 q s q r q=0, q=0 q s q r + O(q 3, q 3 ) 2 T 2 q s q r q=0, q=0 q s q r 9 / 50

10 AA242B: MECHANICAL VIBRATIONS 10 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Hence, a second-order approximation of T 2 ( q) is given by T 2 ( q) = 1 2 qt M q > 0, for q 0 where[ M = m sr = m rs = 2 T 2 U ik q=0 = m k q s q r q s k=1 i=1 is the mass matrix and is symmetric positive definite N 3 q=0 U ik q r q=0 ] 10 / 50

11 AA242B: MECHANICAL VIBRATIONS 11 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Free-vibrations about a stable equilibrium position of a conservative system that does not undergo a transport or overall motion (T 0 = T 1 = 0) d dt ( T2 q s ) T 2 = V q s q s = d (M q) 0 = Kq dt = M q + Kq = 0 11 / 50

12 AA242B: MECHANICAL VIBRATIONS 12 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Consider next the more general case of a system in steady motion (a transported system) whose equilibrium configuration defined by V q s = (V T 0) q s = 0, s = 1,, n corresponds ( ) to the balance of forces ( ) deriving from a potential V T0 and centrifugal forces q s q s It is an equilibrium configuration in the sense that q s which represent here the generalized velocities relative to a steady motion are zero but the system is not idle 12 / 50

13 AA242B: MECHANICAL VIBRATIONS 13 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Linearizations effective potential energy V effective stiffness matrix K where K = mutual kinetic energy T 1 = where F = = V (q) = 1 2 qt K q > 0, for q 0 [ ( ) ] ksr 2 T 0 = k sr q=0 q s q r N 3 s=1 k=1( i=1 T 1 q s (0) + q s s=1 2 T 1 q r q=0 q s s=1 r=1 [ f sr = 2 T 1 q s q r q=0 U ik t m U ik k q s = q s ] r=1 s=1 q s T 1 q s (q) 2 T 1 q sq r q=0 q r + O(q 2 ) q sq r T 1(q, q) = q T Fq ) 13 / 50

14 AA242B: MECHANICAL VIBRATIONS 14 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Equations of free-vibration around an equilibrium configuration the equilibrium configuration generated by a steady motion remains stable as long as V = V T 0 0 this corresponds to the fact that K remains positive definite in the neighborhood of such a configuration, the equations of motion (for a conservative system undergoing transport or overall motion) are d dt ( T2 where F s = q s ) T2 q s }{{} 0 r=1 = Q s(t) }{{} 0 V q s D q s }{{} 0 ( ) 2 T 1 2 T 1 q r = (F T F) q q s q r q r q s M q + G q + K q = 0 +F s ( ) T1 t q s }{{} 0 where G = F F T = G T is the gyroscopic coupling matrix 14 / 50

15 AA242B: MECHANICAL VIBRATIONS 15 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Example X = (a + x) cos Ωt Y = (a + x) sin Ωt v 2 = Ẋ 2 + Ẏ 2 = (a + x) 2 Ω 2 + ẋ 2 V = 1 2 kx 2 T 0 = 1 2 Ω2 m(a + x) 2 T 1 = 0 T 2 = 1 2 mẋ 2 V = 1 2 kx Ω2 m(a + x) 2 equilibrium configuration V x = 0 = kx Ω2 m(a + x) = 0 = x eq = Ω2 ma k Ω 2 m the system becomes unstable for Ω 2 = k m k = 2 V = k Ω 2 m system is unstable for Ω 2 k x 2 m 15 / 50

16 AA242B: MECHANICAL VIBRATIONS 16 / 50 Natural Vibration Modes Free-vibration equations: M q + Kq = 0 q(t) = q a e iωt (K ω 2 M)q a = 0 det (K ω 2 M) = 0 If the system has n degrees of freedom (dofs), M and K are n n matrices n eigenpairs (ω 2 i, q a i ) Rigid body mode(s): ω 2 j = 0 Kq aj = 0 For a rigid body mode, V(q aj ) = 1 2 qt a j Kq aj = 0 16 / 50

17 AA242B: MECHANICAL VIBRATIONS 17 / 50 Orthogonality of Natural Vibration Modes Distinct Frequencies Consider two distinct eigenpairs (ωi 2, q a i ) and (ωj 2, q a j ) q T a j Kq ai = q T a j ωi 2 Mq ai (2) q T a i Kq aj = q T a i ωj 2 Mq aj (3) Because M and K are symmetric (2) (3) T 0 = (ω 2 i ω 2 j )q aj T Mq ai since ω 2 i ω 2 j q aj T Mq ai = 0 and q aj T Kq ai = 0 17 / 50

18 AA242B: MECHANICAL VIBRATIONS 18 / 50 Orthogonality of Natural Vibration Modes Distinct Frequencies Physical interpretation of the orthogonality conditions q aj T Mq ai = 0 q aj T ( ω 2 i Mq ai ) = (ω 2 i Mq ai ) T q aj = 0 which implies that the virtual work produced by the inertia forces of mode i during a virtual displacement prescribed by mode j is zero q aj T Kq ai = 0 (Kq ai ) T q aj = 0 which implies that the virtual work produced by the elastic forces of mode i during a virtual displacement prescribed by mode j is zero 18 / 50

19 AA242B: MECHANICAL VIBRATIONS 19 / 50 Orthogonality of Natural Vibration Modes Distinct Frequencies Rayleigh quotient Kq ai = ω 2 i Mq ai q ai T Kq ai = ω 2 i q ai T Mq ai ω 2 i = q a i T Kq ai q ai T Mq ai γ i = generalized stiffness coefficient of mode i (measures the contribution of mode i to the elastic deformation energy) µ i = generalized mass coefficient of mode i (measures the contribution of mode i to the kinetic energy) Since the amplitude of q ai is determined up to a factor only γ i and µ i are determined up to a constant factor only Mass normalization q aj T Mq ai = δ ij q aj T Kq ai = ω 2 i δ ij = γ i µ i 19 / 50

20 AA242B: MECHANICAL VIBRATIONS 20 / 50 Orthogonality of Natural Vibration Modes Degeneracy Theorem What happens if a multiple circular frequency is encountered? Theorem: to a multiple root ω 2 p of the system Kx = ω 2 Mx corresponds a number of linearly independent eigenvectors {q ai } equal to the root multiplicity 20 / 50

21 AA242B: MECHANICAL VIBRATIONS 21 / 50 Modal Superposition Analysis n-dof system: M R n n, K R n, and q R n Coupled system of ordinary differential equations M q + Kq = 0 q(0) = q 0 q(0) = q 0 21 / 50

22 AA242B: MECHANICAL VIBRATIONS 22 / 50 Modal Superposition Analysis Natural vibration modes (eigenmodes) Kq ai = ωi 2 Mq ai, i = 1,, n Q = [q a1 q a2 { Q q an ] KQ = Ω 2 Q T MQ = I Truncated eigenbasis Ω 2 = ω ω 2 n Q r = [ { ] Q T q a1 q a2 q ar, r << n r KQr = Ω2 r (reduced stiffness matrix) Q T r MQr = Ir (reduced mass matrix) Ω 2 r = ω ω 2 r 22 / 50

23 AA242B: MECHANICAL VIBRATIONS 23 / 50 Modal Superposition Analysis Modal superposition: q = Q r y = r y i q ai where y = [y 1 y 2 y r ] T and y i is called the modal displacement i=1 Substitute in M q + Kq = 0 = MQ r ÿ + KQ r y = 0 = Q T r MQ r ÿ + Q T r KQ r y = 0 = I r ÿ + Ω 2 r y = 0 Uncoupled differential equations (modal equations) ÿ i + ω 2 i y i = 0, i = 1, r 23 / 50

24 AA242B: MECHANICAL VIBRATIONS 24 / 50 Modal Superposition Analysis ÿ i + ω 2 i y i = 0, i = 1, r Case 1: ω 2 i = 0 (rigid body mode) y i = a i t + b i Case 2: ωj 2 0 y j = c j cos ω j t + d j sin ω j t General case: r b rigid body modes q = r b r r b (a i t + b i )q ai + (c j cos ω j t + d j sin ω j t)q aj i=1 j=1 Initial conditions q(0) = q 0 = Qy(0) and q(0) = q 0 = Qẏ(0) 24 / 50

25 AA242B: MECHANICAL VIBRATIONS 25 / 50 Modal Superposition Analysis q 0 = Qy(0) and q 0 = Qẏ(0) = q T a i Mq 0 = q T a i MQy(0) From the orthogonality properties of the natural mode shapes (eigenvectors) it follows that q T a i Mq 0 = q T a i MQy(0) = q T a i Mq ai y i (0) = y i (0) y i (0) = q T a i Mq(0) Case 1: ω 2 i Case 2: ω 2 j Case 1: ω 2 i = 0 (rigid body mode) a i 0 + b i = q T a i Mq(0) b i = q T a i Mq(0) 0 c j 1 + d j 0 = q T a j Mq(0) c j = q T a j Mq(0) = 0 (rigid body mode) a i = q T a i M q(0) Case 2: ω 2 j 0 d j = q T a M q(0) j Thus, the general solution is q(t) = r b i=1 ([ ] ) q T a M q(0) t + q T i a Mq(0) q ai + i r r b j=1 ( q T a Mq(0) cos ω j t + q T j a M q(0) sin ω ) j t q aj j ω j 25 / 50

26 AA242B: MECHANICAL VIBRATIONS 26 / 50 Spectral Expansions = x R n, x = x R n, x = s=1 α s q as q T a Mx = j s=1 (q T as Mx ) q as = s=1 α s q T a Mq as = α j j s=1 q as ( q T as Mx ) = s=1 ( ( ) ) q as q T Mx = (q as as q T as )M x s=1 s=1 ( ) q as q T M = I as This is the same result as Q T MQ = I A given load p can be expanded in terms of the inertia forces generated by the eigenmodes, Mq aj as follows p = β j Mq aj q T a i p = j=1 β j q T a i Mq aj = β i j=1 = β i = q T a i p = modal participation factor p = j=1 ( ) q T a j p Mq aj 26 / 50

27 AA242B: MECHANICAL VIBRATIONS 27 / 50 Spectral Expansions ( ) Recall that q as q T M = I as s=1 Hence, A R n, A = n Aq as q T as M and A = n s=1 s=1 A = M M = n Mq as q T as M = n Mq as (Mq as ) T s=1 s=1 A = K K = n Kq as q T as M = n ω 2 s Mqas qt as M = s=1 s=1 q as q T as MA A = M 1 M 1 = n q as q T as MM 1 M 1 = q as q T as s=1 s=1 (because M is symmetric) n s=1 ω 2 s Mqas (Mqas )T A = K 1 K 1 = n q as q T as MK 1 = n q as (Mq as ) T K 1 K 1 q as q T as = s=1 s=1 ω 2 s=1 s 27 / 50

28 AA242B: MECHANICAL VIBRATIONS 28 / 50 Forced Harmonic Response M q + Kq = s a cos ωt q(0) = q 0 q(0) = q 0 Solution can be decomposed as q = q H (homogeneous) + q P (particular) q p = q a cos ωt q a = (K ω 2 M) 1 s a where (K ω 2 M) 1 is called the admittance or dynamic influence matrix The forced response is the part of the response that is synchronous to the excitation that is, q p 28 / 50

29 AA242B: MECHANICAL VIBRATIONS 29 / 50 Forced Harmonic Response Rigid body modes: { } u rb ai i=1 q a R n r b n r b, q a = α i u ai + β j q aj i=1 j=1 = s a = (K ω 2 M)q a = r b n r b α i (K ω 2 M)u ai + β j (K ω 2 M)q aj i=1 j=1 r b n r b = s a = α i ω 2 Mu ai + β j (ω 2 j ω 2 )Mq aj i=1 j=1 u T Premultiply by u T a s a j a α j = and premultiply by q T j ω 2 a β i = i r b = q a = i=1 u T n r a s a b i ω 2 ua + i j=1 q T a s r a b j (ωj 2 ω 2 ) qa = j i=1 q T a i s a (ω 2 i ω 2 ) u ai u T n r a b i + ω 2 j=1 q aj q T a j (ωj 2 s ω 2 a ) Since q a = (K ω 2 M) 1 s a = (K ω 2 M) 1 = 1 ω 2 r b i=1 n r b q aj q T u ai u T a j a + i ω 2 (4) j=1 j ω 2 29 / 50

30 AA242B: MECHANICAL VIBRATIONS 30 / 50 Forced Harmonic Response Which excitation s am will generate a harmonic response with an amplitude corresponding to q am? q am = (K ω 2 M) 1 s am s am = (K ω 2 M)q am = s am = Kq am ω 2 Mq am = (ωm 2 ω 2 )Mq am At resonance (ω 2 = ωm) 2 s am = 0 no force is needed to maintain once it is reached q am 30 / 50

31 AA242B: MECHANICAL VIBRATIONS 31 / 50 Forced Harmonic Response The inverse of an admittance is an impedance Z(ω 2 ) = (K ω 2 M) 31 / 50

32 AA242B: MECHANICAL VIBRATIONS 32 / 50 Forced Harmonic Response Application: substructuring (or domain decomposition) the dynamical behavior of a substructure is described by its harmonic response when forces are applied onto its interface boundaries a subsystem is typically described by K and M, has n 1 free dofs q 1, and is connected to the rest of the system by n 2 = n n 1 boundary dofs q 2 where the reaction forces are denoted here by g 2 ( ) ( ) ( ) Z11 Z 12 q1 0 = Z 21 Z 22 q 2 g 2 = Z 11q 1 + Z 12q 2 = 0 q 1 = Z 1 11 Z 12q 2 = (Z 22 Z 21Z 1 11 Z 12)q 2 = Z 22q 2 = g 2 Z 22 is the reduced impedance (reduced to the boundary) 32 / 50

33 AA242B: MECHANICAL VIBRATIONS 33 / 50 Forced Harmonic Response Spectral expansion of Z 22 look at Z 1 11 and let ( ω 2 i, qa i subsystem: from (4), it follows that Z 1 11 = apply twice the relation n 1 = Z 1 11 = K ω2 j=1 ) denote the n1 eigenpairs of the associated dynamical n 1 q aj q T a j ω j 2 ω 2 1 ω 2 j ω 2 = 1 ω 2 j j=1 ω 2 + ω j 2( ω2 j ω 2 ) q aj q T n a 1 q aj q T n j ω j 2( ω2 j ω 2 ) = a 1 j K ω2 ω 4 +ω 4 j=1 j j=1 q aj q T a j ω 4 j ( ω2 j ω 2 ) owing to the M 11-orthonormality of the modes and the spectral expansion of K 1 11, the above expression can further be written as Z 1 11 = K ω2 K 1 11 M11K ω4 = Z 22 = K 22 K 21K 1 11 K12 ω 2 [M 22 M 21K 1 11 ω 4 n 1 i=1 n 1 j=1 q aj q T a j ω 4 j ( ω2 j ω 2 ) K12 K21K 1 11 M12 + K21K 1 11 M11K 1 11 K12] [(K 21 ω 2 i M21) qa i ][(K21 ω2 i M21) qa i )]T ω 4 i ( ω2 i ω 2 ) 33 / 50

34 AA242B: MECHANICAL VIBRATIONS 34 / 50 Forced Harmonic Response Z22 = K 22 K 21 K 1 11 K 12 ω 2 [M 22 M 21 K 1 11 K 12 K 21 K 1 11 M 12 + K 21 K 1 11 M 11K 1 n 1 ω 4 [(K 21 ω i 2M 21) q ai ][(K 21 ω i 2M 21) q ai )] T ω i 4( ω2 i ω 2 ) i=1 11 K 12] The first term K 22 K 21 K 1 11 K 12 represents the stiffness of the statically condensed system The second term M 22 M 21 K 1 11 K 12 K 21 K 1 11 M 12 + K 21 K 1 11 M 11K 1 11 K 12 represents the mass of the subsystem statically condensed on the boundary The last term represents the contribution of the subsystem eigenmodes since it is generated by q ai q T a i (K 21 ω 2 i M 21) q ai is the dynamic reaction on the boundary 34 / 50

35 AA242B: MECHANICAL VIBRATIONS 35 / 50 Response to External Loading M q + Kq = p(t) q(0) = q 0 q(0) = q 0 General approach consider the simpler case where there is no rigid body mode eigenmodes (q ai, ωi 2 ), ωi 2 0, i = 1,, n modal superposition: q = Qy = n y i q ai i=1 substitute in equations of dynamic equilibrium = MQÿ + KQy = p(t) Q T MQÿ + Q T KQy = Q T p(t) modal equations ÿ i + ω 2 i y i = q T a i p(t), i = 1,, n y i (t) depend on two constants that can be obtained from the initial conditions q(0) = Qy(0), q(0) = Qẏ(0) y i(0), ẏ i (0) orthogonality conditions 35 / 50

36 AA242B: MECHANICAL VIBRATIONS 36 / 50 Response to External Loading Response to an impulsive force spring-mass system: m, k, ω 2 = k m impulsive force f (t): force whose amplitude could be infinitely large but which acts for a very short duration of time magnitude of impulse: I = τ+ɛ τ f (t)dt impulsive force = I δ(t) where δ is the delta function centered at t = 0 and satisfying ɛ 0 δ(t)dt = 1 36 / 50

37 AA242B: MECHANICAL VIBRATIONS 37 / 50 Response to External Loading Response to an impulsive force (continue) dynamic equilibrium m τ+ɛ τ d u dt dt + k τ+ɛ τ udt = τ+ɛ τ f (t)dt = I assume that at t = τ, the system is at rest (u(τ) = 0 and u(τ) = 0) τ+ɛ τ+ɛ ü = A/ɛ üdt = A and udt = Aɛ 2 /6 hence τ τ τ+ɛ d u m τ dt dt τ+ɛ = I m u = I u = u(τ + ɛ) u(τ) = I m u(τ + ɛ) = I m udt = 0 u = 0 u(τ + ɛ) u(τ) = 0 u(τ + ɛ) = 0 τ the above equations provide initial conditions for the free-vibrations that start at the end of the impulsive load = u(t) = I mω sin ωt 37 / 50

38 AA242B: MECHANICAL VIBRATIONS 38 / 50 Response to External Loading Response to an impulsive force (continue) linear system superposition principle du = f (τ)dτ mω sin ω(t τ) u(t) = 1 mω t 0 f (τ) sin ω(t τ)dτ 38 / 50

39 AA242B: MECHANICAL VIBRATIONS 39 / 50 Response to External Loading Time-integration of the normal equations let p i (t) = q T a i p(t) = i-th modal participation factor modal or normal equation: ÿ i + ωi 2 y i = p i (t) y i (t) = yi H (t) + yi P (t), yi H = A i cos ω i t + B i sin ω i t the particular solution yi P (t) depends on the form of p i (t) however, the general form of a particular solution that satisfies the rest initial conditions is given by the Duhamel s integral y P i (t) = 1 t p i (τ) sin ω i (t τ)dτ ω i complete solution y i (t) = A i cos ω i t + B i sin ω i t + 1 t p i (t) sin ω i (t τ)dτ ω i 0 A i = y i (0), B i = ẏi(0) and y i (0) and ẏ i (0) can be determined from ω i the initial conditions q(0) and q(0) and the orthogonality conditions 0 39 / 50

40 AA242B: MECHANICAL VIBRATIONS 40 / 50 Response to External Loading Response truncation and mode displacement method computational efficiency q = Q r y = r y i q ai, r n what is the effect of modal truncation? consider the case where p(t) = g static load distribution i=1 φ(t) amplification factor for a system initially at rest (q(0) = 0 and q(0) = 0) y i (0) = q T a i Mq(0) = 0 and ẏ i (0) = q T a i M q(0) = 0 A i = B i = 0 = y i (t) = 1 ω i t = q(t) = 0 p i (τ) sin ω i (t τ)dτ = qt a i g ω i [ ] r q ai q T 1 a i g spatial factor ω i i=1 t 0 t 0 φ(τ) sin ω i (t τ)dτ φ(τ) sin ω i (t τ)dτ temporal factor 40 / 50

41 AA242B: MECHANICAL VIBRATIONS 41 / 50 Response to External Loading Response truncation and mode displacement method (continue) general solution for restrained structure initially at rest [ ] r = q(t) = q ai q T 1 t a i g φ(τ) sin ω i (t τ)dτ spatial factor ω i 0 i=1 temporal factor θ i (t) truncated response is accurate if neglected terms are small, which is true if: q T a i g is small for i = r + 1,, n g is well approximated in the range of Q r 1 t φ(τ) sin ω j (t τ)dτ is small for j > r, which depends on the ω j 0 frequency content of φ(t) φ(t) = 1 θ i (t) = 1 cos ω i t 0 for large circular frequencies ω i φ(t) = sin ωt θ i (t) = ω i sin ωt ω sin ω i t ω i (ωi 2 ω 2 ) 41 / 50

42 AA242B: MECHANICAL VIBRATIONS 42 / 50 Response to External Loading Mode acceleration method M q + Kq = p(t) Kq = p(t) M q apply truncated modal representation to the acceleration q(t) = Q r y(t) q(t) = Q r ÿ(t) = Kq = p(t) recall that r Mq ai ÿ i = q = K 1 p(t) i=1 and that for a system initially at rest r i=1 q ai ÿ ωi 2 i ÿ i + ω 2 i y i = q T a i p(t) (5) y i (t) = 1 t q T a ω i p(τ) sin ω i (t τ)dτ (6) i 0 (5) and (6) ÿ i (t) = q T a i ( p(t) ωi t 0 p(τ) sin ω i(t τ)dτ ) 42 / 50

43 AA242B: MECHANICAL VIBRATIONS 43 / 50 Response to External Loading Mode acceleration method (continue) r substitute in q(t) = K 1 q ai p(t) ÿ ωi 2 i = q(t) = r i=1 q ai q T a i ω i t 0 i=1 p(τ) sin ω i (t τ)dτ+ recall the spectral expansion K 1 = n = q(t) = r i=1 q ai q T a i ω i t 0 i=1 q ai q T a i ω 2 i ( p(τ) sin ω i (t τ)dτ + K 1 ( i=r+1 r i=1 q ai q T a i ω 2 i q ai q T a i ω 2 i which shows that the mode acceleration method complements the truncated mode displacement solution with the missing terms using the modal expansion of the static response ) ) p(t) p(t) 43 / 50

44 AA242B: MECHANICAL VIBRATIONS 44 / 50 Response to External Loading Direct time-integration methods for solving M q + Kq = p(t) q(0) = q 0 q(0) = q 0 will be covered towards the end of this course 44 / 50

45 AA242B: MECHANICAL VIBRATIONS 45 / 50 Mechanical Systems Excited Through Support Motion The general case ( ) q1 q = where q q 2 is prescribed 2 ( ) ( ) ( ) ( ) ( M11 M 12 q1 K11 K + 12 q1 0 = M 21 M 22 q 2 K 21 K 22 q 2 r 2 (t) The first equation gives M 11 q 1 + K 11 q 1 = K 12 q 2 M 12 q 2 q 1 (t) Substitute in second equation = r 2 (t) = K 21 q 1 + M 21 q 1 + K 22 q 2 + M 22 q 2 ) 45 / 50

46 AA242B: MECHANICAL VIBRATIONS 46 / 50 Mechanical Systems Excited Through Support Motion Quasi-static response of q K 11 q 1 = K 12 q 2 0 = q qs 1 = K 1 11 K 12q 2 = Sq 2 Decompose q 1 = q qs 1 + z 1 = Sq 2 + z 1 ( ) ( q1 I S = q(t) = = 0 I q 2 ) ( z1 q 2 ) where z 1 represents the sole dynamics part of the response Substitute in the first dynamic equation and exploit above results = M 11 S q 2 + M 11 z 1 + K 11 q qs 1 + K 11z 1 = K 12 q 2 M 12 q 2 { M11 z = 1 + K 11 z 1 = g 1 (t) g 1 (t) = M 11 q qs 1 M 12 q 2 = (M 11 S + M 12 ) q 2 46 / 50

47 AA242B: MECHANICAL VIBRATIONS 47 / 50 Mechanical Systems Excited Through Support Motion Consider next the system fixed to the ground and solve the corresponding EVP K 11 x = ω 2 M 11 x Q = [ q ai ] = z 1 (t) = Qη(t) Solve M 11 z 1 + K 11 z 1 = g 1 (t) for z 1 (t) using the modal superposition technique 47 / 50

48 AA242B: MECHANICAL VIBRATIONS 48 / 50 Mechanical Systems Excited Through Support Motion Case of a global support acceleration q 2 (t) = u 2 φ(t), where u = [u 1 u 2 ] T denotes a rigid body mode decomposition of the solution into a rigid body motion and a relative displacement y [ ] [ ] [ ] q = q rb q1 u1 ÿ1 + ÿ = φ(t) + q 2 u 2 0 u 1 = Su 2 g 1(t) = (M 11Su 2 + M 12u 2)φ(t) = g 1(t) = (M 11u 1 + M 12u 2)φ(t) 48 / 50

49 AA242B: MECHANICAL VIBRATIONS 49 / 50 Mechanical Systems Excited Through Support Motion Method of additional masses (approximate method) suppose the system is subjected not to a specified q 2(t) but to an imposed ( ) 0 f(t) suppose that masses associated with q 2 are increased to M 22 + M 22 then ( ) ( ) M11 M 12 q1 M 21 M 22 + M 22 ) ( ) ( q1 K11 K 12 + q 2 K 21 K 22 by elimination one obtains q 2 = (M 22 + M 22) 1 (f(t) K 22q 2 K 21q 1 M 21 q 1) and q 2 = ( 0 f(t) M 11 q 1 + K 11q 1 = K 12q 2 M 12(M 22 + M 22 ) 1 (f(t) K 22q 2 K 21q 1 M 21 q 1) ) 49 / 50

50 AA242B: MECHANICAL VIBRATIONS 50 / 50 Mechanical Systems Excited Through Support Motion Method of additional masses (continue) therefore {M 11 M 12(M 22 + M 22 ) 1 M 21 } q 1 + = K 12q 2 M 12(M 22 + M 22 ) 1 (f(t) K 22q 2) {K 11 M 12(M 22 + M 22 ) 1 K 21 } q 1 now if (M 22 + M 22) 1 0 and if f(t) = (M 22 + M 22) q 2, one obtains M 11 q 1+K 11q 1 = K 12q 2 M 12 q 2 = M 11 q 1+M 12 q 2+K 11q 1+K 12q 2 = 0 which is the same equation as in the general case of excitation through support motion for M 22 very large, the response of the system with ground motion is the same as the response of the system with added lumped mass M 22 and the forcing function ( 0 (M 22 + M 22) q 2 ) ( 0 M 22 q 2 where q 2 is given apply same solution method as for problems of response to external loading ) 50 / 50

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 57 AA242B: MECHANICAL VIBRATIONS Dynamics of Continuous Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations: Theory

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 17 AA242B: MECHANICAL VIBRATIONS Solution Methods for the Generalized Eigenvalue Problem These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical

More information

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016) AA 242B / ME 242B: Mechanical Vibrations (Spring 206) Solution of Homework #3 Control Tab Figure : Schematic for the control tab. Inadequacy of a static-test A static-test for measuring θ would ideally

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Appendix A Equations of Motion in the Configuration and State Spaces

Appendix A Equations of Motion in the Configuration and State Spaces Appendix A Equations of Motion in the Configuration and State Spaces A.1 Discrete Linear Systems A.1.1 Configuration Space Consider a system with a single degree of freedom and assume that the equation

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports.

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports. Outline of Multi-Degree-of-Freedom Systems (cont.) System Reduction. Truncated Modal Expansion with Quasi-Static Correction. Guyan Reduction. Vibration due to Movable Supports. Earthquake Excitations.

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 5/Part A - 23 November,

More information

Some Aspects of Structural Dynamics

Some Aspects of Structural Dynamics Appendix B Some Aspects of Structural Dynamics This Appendix deals with some aspects of the dynamic behavior of SDOF and MDOF. It starts with the formulation of the equation of motion of SDOF systems.

More information

Vibrations Qualifying Exam Study Material

Vibrations Qualifying Exam Study Material Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550, Fall 2011 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Damped Harmonic Oscillator

Damped Harmonic Oscillator Damped Harmonic Oscillator Wednesday, 23 October 213 A simple harmonic oscillator subject to linear damping may oscillate with exponential decay, or it may decay biexponentially without oscillating, or

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem

Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem Introduction Equations of dynamic equilibrium eigenvalue problem K x = ω M x The eigensolutions of this problem are written in

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems Free Vibration of Single-Degree-of-Freedom (SDOF) Systems Procedure in solving structural dynamics problems 1. Abstraction/modeling Idealize the actual structure to a simplified version, depending on the

More information

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES 2010/2 PAGES 1 8 RECEIVED 21. 9. 2009 ACCEPTED 20. 1. 2010 Y. KOLEKOVÁ, M. PETRONIJEVIĆ, G. SCHMID SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES ABSTRACT

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Math 1302, Week 8: Oscillations

Math 1302, Week 8: Oscillations Math 302, Week 8: Oscillations T y eq Y y = y eq + Y mg Figure : Simple harmonic motion. At equilibrium the string is of total length y eq. During the motion we let Y be the extension beyond equilibrium,

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

Matrix Iteration. Giacomo Boffi.

Matrix Iteration. Giacomo Boffi. http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 12, 2016 Outline Second -Ritz Method Dynamic analysis of MDOF

More information

Truncation Errors Numerical Integration Multiple Support Excitation

Truncation Errors Numerical Integration Multiple Support Excitation Errors Numerical Integration Multiple Support Excitation http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 10,

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 One degree of freedom systems in real life 2 1 Reduction of a system to a one dof system Example

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem Appendix C Modal Analysis of a Uniform Cantilever with a Tip Mass C.1 Transverse Vibrations The following analytical modal analysis is given for the linear transverse vibrations of an undamped Euler Bernoulli

More information

This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include

This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include Appendix D Theoretical Background This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include modal superposition component mode synthesis,

More information

! 4 4! o! +! h 4 o=0! ±= ± p i And back-substituting into the linear equations gave us the ratios of the amplitudes of oscillation:.»» = A p e i! +t»»

! 4 4! o! +! h 4 o=0! ±= ± p i And back-substituting into the linear equations gave us the ratios of the amplitudes of oscillation:.»» = A p e i! +t»» Topic 6: Coupled Oscillators and Normal Modes Reading assignment: Hand and Finch Chapter 9 We are going to be considering the general case of a system with N degrees of freedome close to one of its stable

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Substructuring using Impulse Response Functions for Impact Analysis

Substructuring using Impulse Response Functions for Impact Analysis Proceedings of the IMAC-XXVIII February 1 4, 21, Jacksonville, Florida USA 21 Society for Experimental Mechanics Inc. Substructuring using Impulse Response Functions for Impact Analysis Daniel J. Rixen

More information

Final Exam December 11, 2017

Final Exam December 11, 2017 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage

More information

L = 1 2 a(q) q2 V (q).

L = 1 2 a(q) q2 V (q). Physics 3550 Motion near equilibrium - Small Oscillations Relevant Sections in Text: 5.1 5.6, 11.1 11.3 Motion near equilibrium 1 degree of freedom One of the most important situations in physics is motion

More information

Time integration and the Trefftz Method, Part II Second-order and hyperbolic problems

Time integration and the Trefftz Method, Part II Second-order and hyperbolic problems ime integration and the refftz Method, Part II Second-order and hyperbolic problems JA eixeira de Freitas Departamento de Engenharia Civil e Arquitectura, Instituto Superior écnico echnical University

More information

Multiple Degree of Freedom Systems. The Millennium bridge required many degrees of freedom to model and design with.

Multiple Degree of Freedom Systems. The Millennium bridge required many degrees of freedom to model and design with. Multiple Degree of Freedom Systems The Millennium bridge required many degrees of freedom to model and design with. The first step in analyzing multiple degrees of freedom (DOF) is to look at DOF DOF:

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Tomi Johnson 1 Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II Prepare full solutions to the problems with a self assessment of your progress on a cover

More information

Outline of parts 1 and 2

Outline of parts 1 and 2 to Harmonic Loading http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 6 Outline of parts and of an Oscillator

More information

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get Assignment 6 Goldstein 6.4 Obtain the normal modes of vibration for the double pendulum shown in Figure.4, assuming equal lengths, but not equal masses. Show that when the lower mass is small compared

More information

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load 1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load Nader Mohammadi 1, Mehrdad Nasirshoaibi 2 Department of Mechanical

More information

A Complex Power Approach to Characterise Joints in Experimental Dynamic Substructuring

A Complex Power Approach to Characterise Joints in Experimental Dynamic Substructuring A Complex Power Approach to Characterise Joints in Experimental Dynamic Substructuring Emiel Barten 20-12-2013 1 A Complex Power Approach to Characterise Joints in Experimental Dynamic Substructuring Experimental

More information

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas) Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in

More information

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES Hilary Term 008. Prof. G.G.Ross Question Sheet : Normal Modes [Questions marked with an asterisk (*) cover topics also covered by the unstarred

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

Dynamic Soil Structure Interaction

Dynamic Soil Structure Interaction Dynamic Soil Structure Interaction Kenji MIURA, Dr. Eng. Professor Graduate School of Engineering Hiroshima University Dynamic Soil Structure Interaction Chapter 1 : Introduction Kenji MIURA, Dr. Eng.

More information

Finite element analysis of rotating structures

Finite element analysis of rotating structures Finite element analysis of rotating structures Dr. Louis Komzsik Chief Numerical Analyst Siemens PLM Software Why do rotor dynamics with FEM? Very complex structures with millions of degrees of freedom

More information

Solution of Vibration and Transient Problems

Solution of Vibration and Transient Problems . 9 Solution of Vibration and Transient Problems 9 Chapter 9: SOLUTION OF VIBRATION AND TRANSIENT PROBLEMS 9 9. MODAL APPROACH TO TRANSIENT ANALYSIS Consider the following large-order finite element model

More information

Transient Response Analysis of Structural Systems

Transient Response Analysis of Structural Systems . 21 Transient Response Analysis of Structural Systems 21 1 Chapter 21: TRANSIENT RESPONSE ANALYSIS OF STRUCTURAL SYSTEMS 21 2 21.1 MODAL APPROACH TO TRANSIENT ANALYSIS Consider the following large-order

More information

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

More information

Cardan s Coupling Shaft as a Dynamic Evolutionary System

Cardan s Coupling Shaft as a Dynamic Evolutionary System American Journal of Modern Physics and Application 2017; 4(2): 6-11 http://www.openscienceonline.com/journal/ajmpa Cardan s Coupling Shaft as a Dynamic Evolutionary System Petr Hrubý 1, Zdeněk Hlaváč 2,

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Explosion Protection of Buildings

Explosion Protection of Buildings Explosion Protection of Buildings Author: Miroslav Mynarz Explosion Protection of Buildings Introduction to the Problems of Determination of Building Structure's Response 3 Classification of actions According

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Lagrange s Equations of Motion and the Generalized Inertia

Lagrange s Equations of Motion and the Generalized Inertia Lagrange s Equations of Motion and the Generalized Inertia The Generalized Inertia Consider the kinetic energy for a n degree of freedom mechanical system with coordinates q, q 2,... q n. If the system

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Laboratory notes. Torsional Vibration Absorber

Laboratory notes. Torsional Vibration Absorber Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/1-11, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped

More information

Design of Structures for Earthquake Resistance

Design of Structures for Earthquake Resistance NATIONAL TECHNICAL UNIVERSITY OF ATHENS Design of Structures for Earthquake Resistance Basic principles Ioannis N. Psycharis Lecture 3 MDOF systems Equation of motion M u + C u + K u = M r x g(t) where:

More information

Rigid Body Kinetics :: Virtual Work

Rigid Body Kinetics :: Virtual Work Rigid Body Kinetics :: Virtual Work Work-energy relation for an infinitesimal displacement: du = dt + dv (du :: total work done by all active forces) For interconnected systems, differential change in

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES

USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES Engineering MECHANICS, Vol. 14, 2007, No. 1/2, p. 45 54 45 USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES Vladimír Zeman, Michal Hažman* Classical approach to complex dynamical

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

Mobility and Impedance Methods. Professor Mike Brennan

Mobility and Impedance Methods. Professor Mike Brennan Mobility and Impedance Methods Professor Mike Brennan ibration control ibration Problem Understand problem Modelling (Mobility and Impedance Methods) Solve Problem Measurement Mobility and Impedance The

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

Dynamic Response of Structures With Frequency Dependent Damping

Dynamic Response of Structures With Frequency Dependent Damping Dynamic Response of Structures With Frequency Dependent Damping Blanca Pascual & S Adhikari School of Engineering, Swansea University, Swansea, UK Email: S.Adhikari@swansea.ac.uk URL: http://engweb.swan.ac.uk/

More information

Response Analysis for Multi Support Earthquake Excitation

Response Analysis for Multi Support Earthquake Excitation Chapter 5 Response Analysis for Multi Support Earthquake Excitation 5.1 Introduction It is very important to perform the dynamic analysis for the structure subjected to random/dynamic loadings. The dynamic

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Second order linear equations

Second order linear equations Second order linear equations Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Second order equations Differential

More information

Vibration Dynamics and Control

Vibration Dynamics and Control Giancarlo Genta Vibration Dynamics and Control Spri ringer Contents Series Preface Preface Symbols vii ix xxi Introduction 1 I Dynamics of Linear, Time Invariant, Systems 23 1 Conservative Discrete Vibrating

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Damped harmonic motion

Damped harmonic motion Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of under-damping,

More information

Introduction to Geotechnical Earthquake Engineering

Introduction to Geotechnical Earthquake Engineering Module 1 Introduction to Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in URL:

More information

Using Simulink to analyze 2 degrees of freedom system

Using Simulink to analyze 2 degrees of freedom system Using Simulink to analyze 2 degrees of freedom system Nasser M. Abbasi Spring 29 page compiled on June 29, 25 at 4:2pm Abstract A two degrees of freedom system consisting of two masses connected by springs

More information

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine May 24, 2010

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine   May 24, 2010 SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine Email: tomirvine@aol.com May 4, 010 Introduction The primary purpose of this tutorial is to present the Modal Transient method

More information

Seminar 6: COUPLED HARMONIC OSCILLATORS

Seminar 6: COUPLED HARMONIC OSCILLATORS Seminar 6: COUPLED HARMONIC OSCILLATORS 1. Lagrangian Equations of Motion Let consider a system consisting of two harmonic oscillators that are coupled together. As a model, we will use two particles attached

More information

Dynamic Loads CE 543. Examples. Harmonic Loads

Dynamic Loads CE 543. Examples. Harmonic Loads CE 543 Structural Dynamics Introduction Dynamic Loads Dynamic loads are time-varying loads. (But time-varying loads may not require dynamic analysis.) Dynamics loads can be grouped in one of the following

More information

Today s goals So far Today 2.004

Today s goals So far Today 2.004 Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the open-loop poles/zeros to the closed-loop poles Moving the closed-loop poles around Today Proportional

More information

Contents i. Contents

Contents i. Contents Contents i Contents 7 SEISMIC LOADS Commentary 7. Estimation of Seismic Loads.............................. 7.. Seismic load and design earthquake motion.................. 4 7..2 Idealization of building

More information

University of California at Berkeley Structural Engineering Mechanics & Materials Department of Civil & Environmental Engineering Spring 2012 Student name : Doctoral Preliminary Examination in Dynamics

More information