Introduction to Vibration. Professor Mike Brennan

Size: px
Start display at page:

Download "Introduction to Vibration. Professor Mike Brennan"

Transcription

1 Introduction to Vibration Professor Mie Brennan

2 Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions

3 Fundamentals For free vibration to occur we need mass m stiffness The other vibration quantity is damping c

4 Fundamentals - potential and inetic energy

5 Fundamentals - damping

6 Fundamental definitions A xt () x Asin( t) t T T 2f (radians/second) Period T 2 Frequency f 1 T (seconds) (cycles/second) (Hz)

7 Phase A xt () t x Asin( t) x Asin( t ) Green curve lags the blue curve by radians 2

8 Harmonic motion A x( t) angular displacement t t One cycle of motion 2π radians

9 + imaginary - real + imaginary e Complex number representation b of harmonic motion A a Euler s Equation j cos x a jsin jb + real So x Acos x A cos x j Ae magnitude jasin jsin phase magnitude x A a b phase tan ba

10 Relationship between circular motion in the complex plane with harmonic motion Imaginary part sine wave Real part cosine wave

11 Free Vibration System vibrates at its natural frequency xt () t x Asin( t) n Natural frequency

12 Forced Vibration System vibrates at the forcing frequency xt () ft () xt () t x Asin( t) f Forcing frequency

13 Mechanical Systems Systems maybe linear or nonlinear input excitation system output response Linear Systems 1. Output frequency = Input frequency 2. If the magnitude of the excitation is changed, the response will change by the same amount 3. Superposition applies

14 Linear system Mechanical Systems Linear system Same frequency as input Magnitude change Phase change Output proportional to input

15 Linear system Mechanical Systems input excitation b a M system output response, y y Ma Mb M( a b)

16 Nonlinear system Mechanical Systems Nonlinear system output comprises frequencies other than the input frequency output not proportional to input

17 Nonlinear systems Mechanical Systems Generally system dynamics are a function of frequency and displacement Contain nonlinear springs and dampers Do not follow the principle of superposition

18 Mechanical Systems Nonlinear systems example: nonlinear spring f hardening spring x For a linear system f x force f linear softening spring displacement x

19 Mechanical Systems Nonlinear systems example: nonlinear spring Pea-to-pea vibration (approximately linear) force f Pea-to-pea vibration (nonlinear) Static displacement displacement x stiffness f x

20 Degrees of Freedom The number of independent coordinates required to describe the motion is called the degrees-of-freedom (dof) of the system Single-degree-of-freedom systems Independent coordinate

21 Degrees of Freedom Single-degree-of-freedom systems x Independent coordinate m

22 Spring Idealised Elements f1 2 f x1 x2 no mass is the spring constant with units N/m f x x f x x f f 1 2

23 Idealised Elements Addition of Spring Elements Series 1 2 total total is smaller than the smallest stiffness 1 Parallel total total is larger than the largest stiffness

24 Idealised Elements Addition of Spring Elements - example f R x T stiffness f x Is T in parallel or series with R? Series!!

25 Viscous damper c Idealised Elements f1 2 f x1 x2 no mass no elasticity c is the damping constant with units Ns/m f c x x f c x x f f 1 2 Rules for addition of dampers is as for springs

26 Viscous damper Idealised Elements f1 2 m x f f f mx 1 2 f mx f 2 1 rigid m is mass with units of g Forces do not pass unattenuated through a mass

27 Free vibration of an undamped SDOF system Undeformed spring System equilibrium position m System vibrates about its equilibrium position

28 Free vibration of an undamped SDOF system System at equilibrium position Extended position m m mx m mx x x 0 inertia force stiffness force

29 Simple harmonic motion The equation of motion is: m where n m x mx x x x m x x is the natural frequency of the system 2 n The motion of the mass is given by x X sin t o n

30 Simple harmonic motion Real Notation Complex Notation m x Displacement x X sin t o Velocity x X cos t Acceleration n n o n 2 n o n x j nt Xe j nt x jn Xe 2 j x X sin t n x Xe n t

31 Simple harmonic motion Imag x x Real t x

32 Free vibration effect of damping m c x The equation of motion is mx cx x 0 inertia force damping force stiffness force

33 Free vibration effect of damping x Xe nt time x Xe nt sin t d d T d 2 d Damping ratio Td Damping period Phase angle

34 Free vibration effect of damping The underdamped displacement of the mass is given by x Xe nt sin t d Exponential decay term Oscillatory term = Damping ratio = c 2m 0 1 n = Undamped natural frequency = m n d = Damped natural frequency = = Phase angle n 1 2

35 Free vibration effect of damping x t t Undamped ζ=0 Underdamped ζ<1 Critically damped ζ=1 Overdamped ζ>1

36 Degrees-of-freedom Single-degree-of-freedom system m x 1 Multi-degree-of-freedom (lumped parameter systems) N modes, N natural frequencies m m m m x 1 x 2 x 3 x 4

37 Degrees-of-freedom Infinite number of degrees-of-freedom (Systems having distributed mass and stiffness) beams, plates etc. Example - beam Mode 1 Mode 2 Mode 3

38 Free response of multi-degree-of-freedom systems Example - Cantilever 1 X + 2 xt t 4

39 m c Response of a SDOF system to harmonic excitation Fsint x x () t f x () p t Steady-state Forced vibration t t x ( t) x ( t) p f t

40 Steady-state response of a SDOF system to harmonic excitation m c F sint x The equation of motion is mx cx x Fsint The displacement is given by x X sint o where X is the amplitude is the phase angle between the response and the force

41 Frequency response of a SDOF system m c Fsint x The amplitude of the response is given by X o F m c Applied force Inertia force F 2 mx o Stiffness force Damping force cx o Xo The phase angle is given by 1 c tan 2 m

42 Frequency response of a SDOF system j t Fe The equation of motion is m c x mx cx x Fe jt The displacement is given by x j t Xe This leads to the complex amplitude given by X 1 X or F m jc F 1 2 n j2 n Where 2 n m and c 2 m Complex notation allows the amplitude and phase information to be combined into one equation

43 Frequency response functions Receptance X 1 2 F m jc Other frequency response functions (FRFs) are Accelerance = Mobility = Acceleration Force Velocity Force Force Apparent Mass = Acceleration Force Impedance = Velocity Force Dynamic Stiffness = Displacement

44 Representation of frequency response data Log receptance 1 Increasing damping n Log frequency phase -90 Increasing damping

45 Vibration control of a SDOF system j t Fe X o 1 F m c m x c Low frequency 0 Frequency Regions X F 1 Stiffness controlled o Resonance X F c Damping controlled 2 m o 1 High frequency 2 n Mass controlled 2 Xo F 1 m Log X o F 1 Stiffness controlled Damping controlled Mass controlled Log frequency

46 Representation of frequency response data Recall X 1 1 F 1 2 n j2 n This includes amplitude and phase information. It is possible to write this in terms of real and imaginary components. 2 X 1 1 n 1 2 n j 2 2 F n n 1 n 2 n real part imaginary part

47 Real and Imaginary parts of FRF Re X F n frequency Im X F

48 Real and Imaginary parts of FRF Real and Imaginary components can be plotted on one diagram. This is called an Argand diagram or Nyquist plot 1 Re X F Increasing frequency n Im X F

49 3D Plot of Real and Imaginary parts of FRF Im X F Re X F frequency

50 Summary Basic concepts Mass, stiffness and damping Introduction to free and forced vibrations Role of damping Frequency response functions Stiffness, damping and mass controlled frequency regions

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high

More information

Mobility and Impedance Methods. Professor Mike Brennan

Mobility and Impedance Methods. Professor Mike Brennan Mobility and Impedance Methods Professor Mike Brennan ibration control ibration Problem Understand problem Modelling (Mobility and Impedance Methods) Solve Problem Measurement Mobility and Impedance The

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 One degree of freedom systems in real life 2 1 Reduction of a system to a one dof system Example

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 7 SOLUTIONS Fall 2010 PROBLEM 1: Given the mass matrix and two undamped natural frequencies for a general two degree-of-freedom system with a symmetric stiffness matrix, find the stiffness

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

18.12 FORCED-DAMPED VIBRATIONS

18.12 FORCED-DAMPED VIBRATIONS 8. ORCED-DAMPED VIBRATIONS Vibrations A mass m is attached to a helical spring and is suspended from a fixed support as before. Damping is also provided in the system ith a dashpot (ig. 8.). Before the

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

WEEKS 8-9 Dynamics of Machinery

WEEKS 8-9 Dynamics of Machinery WEEKS 8-9 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and

More information

e jωt = cos(ωt) + jsin(ωt),

e jωt = cos(ωt) + jsin(ωt), This chapter introduces you to the most useful mechanical oscillator model, a mass-spring system with a single degree of freedom. Basic understanding of this system is the gateway to the understanding

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao

CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao CE 6701 Structural Dynamics and Earthquake Engineering Dr. P. Venkateswara Rao Associate Professor Dept. of Civil Engineering SVCE, Sriperumbudur Difference between static loading and dynamic loading Degree

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

The Phasor Analysis Method For Harmonically Forced Linear Systems

The Phasor Analysis Method For Harmonically Forced Linear Systems The Phasor Analysis Method For Harmonically Forced Linear Systems Daniel S. Stutts, Ph.D. April 4, 1999 Revised: 10-15-010, 9-1-011 1 Introduction One of the most common tasks in vibration analysis is

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 1.2 Viscous damping Luc St-Pierre October 30, 2017 1 / 22 Summary so far We analysed the spring-mass system and found that its motion is governed by: mẍ(t) + kx(t) = 0 k y m x x

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics D 19 * 2018-2019 Sections D07 D11 & D14 1 1. INTRODUCTION CLASS 1 ODE: Course s Overarching Functions An introduction to the

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Vibrations: Second Order Systems with One Degree of Freedom, Free Response

Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

Some Aspects of Structural Dynamics

Some Aspects of Structural Dynamics Appendix B Some Aspects of Structural Dynamics This Appendix deals with some aspects of the dynamic behavior of SDOF and MDOF. It starts with the formulation of the equation of motion of SDOF systems.

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information

سایت آموزش مهندسی مکانیک

سایت آموزش مهندسی مکانیک http://www.drshokuhi.com سایت آموزش مهندسی مکانیک 1 Single-degree-of-freedom Systems 1.1 INTRODUCTION In this chapter the vibration of a single-degree-of-freedom system will be analyzed and reviewed. Analysis,

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

M A : Ordinary Differential Equations

M A : Ordinary Differential Equations M A 2 0 5 1: Ordinary Differential Equations Essential Class Notes & Graphics C 17 * Sections C11-C18, C20 2016-2017 1 Required Background 1. INTRODUCTION CLASS 1 The definition of the derivative, Derivative

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

ME 563 Mechanical Vibrations Lecture #1. Derivation of equations of motion (Newton-Euler Laws)

ME 563 Mechanical Vibrations Lecture #1. Derivation of equations of motion (Newton-Euler Laws) ME 563 Mechanical Vibrations Lecture #1 Derivation of equations of motion (Newton-Euler Laws) Derivation of Equation of Motion 1 Define the vibrations of interest - Degrees of freedom (translational, rotational,

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

for non-homogeneous linear differential equations L y = f y H

for non-homogeneous linear differential equations L y = f y H Tues March 13: 5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y P for non-homogeneous linear differential equations (so that you can use the general solution y = y P y = y x in this section...

More information

Differential Equations

Differential Equations Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

Introduction to Geotechnical Earthquake Engineering

Introduction to Geotechnical Earthquake Engineering Module 1 Introduction to Geotechnical Earthquake Engineering by Dr. Deepankar Choudhury Professor Department of Civil Engineering IIT Bombay, Powai, Mumbai 400 076, India. Email: dc@civil.iitb.ac.in URL:

More information

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

More information

Laboratory notes. Torsional Vibration Absorber

Laboratory notes. Torsional Vibration Absorber Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/1-11, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped

More information

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis

Chapter 1. Harmonic Oscillator. 1.1 Energy Analysis Chapter 1 Harmonic Oscillator Figure 1.1 illustrates the prototypical harmonic oscillator, the mass-spring system. A mass is attached to one end of a spring. The other end of the spring is attached to

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

Tuning TMDs to Fix Floors in MDOF Shear Buildings

Tuning TMDs to Fix Floors in MDOF Shear Buildings Tuning TMDs to Fix Floors in MDOF Shear Buildings This is a paper I wrote in my first year of graduate school at Duke University. It applied the TMD tuning methodology I developed in my undergraduate research

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

COMPLEX MODULUS AND DAMPING MEASUREMENTS USING RESONANT AND NON-RESONANT METHODS

COMPLEX MODULUS AND DAMPING MEASUREMENTS USING RESONANT AND NON-RESONANT METHODS COMPLEX MODULUS AND DAMPING MEASUREMENTS USING RESONANT AND NON-RESONANT METHODS S. Gade, K. Zaveri, H. Konstantin-Hansen and H. Herlufsen Briiel & Kjaer, Skodsborgvej 307,285O Naerum, Denmark ABSTRACT

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitude-modulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Outline of parts 1 and 2

Outline of parts 1 and 2 to Harmonic Loading http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 6 Outline of parts and of an Oscillator

More information

ME scope Application Note 28

ME scope Application Note 28 App Note 8 www.vibetech.com 3/7/17 ME scope Application Note 8 Mathematics of a Mass-Spring-Damper System INTRODUCTION In this note, the capabilities of ME scope will be used to build a model of the mass-spring-damper

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Dynamics of Structures: Theory and Analysis

Dynamics of Structures: Theory and Analysis 1. Free vibrations 2. Forced vibrations 3. Transient response 4. Damping mechanisms Dynamics of Structures: Theory and Analysis Steen Krenk Technical University of Denmark 5. Modal analysis I: Basic idea

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L CHAPTER 4 FOURIER SERIES 1 S A B A R I N A I S M A I L Outline Introduction of the Fourier series. The properties of the Fourier series. Symmetry consideration Application of the Fourier series to circuit

More information

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 1: Applications of Oscillatory Motion Prof. WAN, Xin ( 万歆 ) inwan@zju.edu.cn http://zimp.zju.edu.cn/~inwan/ Outline The pendulum Comparing simple harmonic motion and uniform circular

More information

Vibrations of Single Degree of Freedom Systems

Vibrations of Single Degree of Freedom Systems Vibrations of Single Degree of Freedom Systems CEE 541. Structural Dynamics Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 16 This document describes free and forced

More information

Table of Contents. Preface... 13

Table of Contents. Preface... 13 Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

Chapter 3 Mathematical Methods

Chapter 3 Mathematical Methods Chapter 3 Mathematical Methods Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems 0 by D. W. Herrin Department of Mechanical Engineering Lexington, KY 40506-0503 Tel: 859-8-0609

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. Chapter 3 Mechanical Systems A. Bazoune 3.1 INRODUCION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENS Any mechanical system consists

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 7 Fall 2017 Free Undamped Vibration Follow Palm, Sect. 3.2, 3.3 (pp 120-138), 3.5 (pp 144-151), 3.8 (pp. 167-169) The equation

More information

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions .003 Engineering Dynamics Problem Set 10 with answer to the concept questions Problem 1 Figure 1. Cart with a slender rod A slender rod of length l (m) and mass m (0.5kg)is attached by a frictionless pivot

More information

General Information Mechanical Vibrations Lesson 1 Grade Breakdown: Midterm Exam 45% Final Exam 55% Homework and Quiz 5% (Extra)

General Information Mechanical Vibrations Lesson 1 Grade Breakdown: Midterm Exam 45% Final Exam 55% Homework and Quiz 5% (Extra) General Information Instructor: Name: Withit Chatlatanagulchai Office: 9/, 9th floor of Engineering Building Office Phone: -94-8555 ext 858 Mobile Phone: 83-9- E-mail: fengwtc@ku.ac.th Website: http://pirun.ku.ac.th/~fengwtc/

More information

A Guide to linear dynamic analysis with Damping

A Guide to linear dynamic analysis with Damping A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced

More information

Second Order Systems

Second Order Systems Second Order Systems independent energy storage elements => Resonance: inertance & capacitance trade energy, kinetic to potential Example: Automobile Suspension x z vertical motions suspension spring shock

More information

Engi Mechanical Vibrations 1. Consists of a mass, spring and possibly a damper.

Engi Mechanical Vibrations 1. Consists of a mass, spring and possibly a damper. Engi6933 - Mechanical Vibrations 1 1 Introduction 1.1 Definitions Vibration A motion that repeats itself after a time interval or oscillation (e.g. pendulum, plucked guitar string). Vibrating system Consists

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Class 18 Linear Harmonic Last Class We saw how motion in a circle is mathematically similar to motion in a straight line. We learned that there is a centripetal acceleration (and

More information

Module 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA

Module 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA The Lecture Contains: Development of an Active DVA Proof Mass Actutor Application of Active DVA file:///d /chitra/vibration_upload/lecture19/19_1.htm[6/25/2012 12:35:51 PM] In this section, we will consider

More information

Chapter 8: Frequency Domain Analysis

Chapter 8: Frequency Domain Analysis Chapter 8: Frequency Domain Analysis Samantha Ramirez Preview Questions 1. What is the steady-state response of a linear system excited by a cyclic or oscillatory input? 2. How does one characterize the

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course

Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course Finite Element Modules for Demonstrating Critical Concepts in Engineering Vibration Course Shengyong Zhang Assistant Professor of Mechanical Engineering College of Engineering and Technology Purdue University

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 8 Natural and Step Responses of RLC Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 8.1 Introduction to the Natural Response

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Lecture 9: Harmonic Loads (Con t)

Lecture 9: Harmonic Loads (Con t) Lecture 9: Harmonic Loads (Con t) Reading materials: Sections 3.4, 3.5, 3.6 and 3.7 1. Resonance The dynamic load magnification factor (DLF) The peak dynamic magnification occurs near r=1 for small damping

More information

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion 11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,

More information

Final Exam December 11, 2017

Final Exam December 11, 2017 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage

More information

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權 本教材內容主要取自課本 Physics for Scientists and Engineers with Modern Physics 7th Edition. Jewett & Serway. 注意 本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權 教材網址 : https://sites.google.com/site/ndhugp1 1 Chapter 15 Oscillatory Motion

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information