Reduction in number of dofs

Size: px
Start display at page:

Download "Reduction in number of dofs"

Transcription

1 Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole set of dof, some error is introduced. he retained dof are called master dof (masters) and the eliminated ones slave dof (slaves). he number of masters is the size of the reduced system. Masters can be chosen to minimize the loss of accuracy Guyan reduction is a commen method of reduction. 1

2 Guyan Reduction Assumption: inertia forces on the slave dof are negligible compared to elastic forces on them. his implies that the terms in the mass matrix (multiplied by ω ) corresponding to the slaves are negligible compared to the terms in the stiffness matrix. Considering the equilibrium equation of an undamped system under free vibration: [ K ω M] D = Eq. (*) Partitioning the matrices according to masters D m and slaves D s, K K K mm ms ms K ss ω M M mm ms M M ms ss D D m s =

3 3 Master-Slave ransformation Implementing the assumption in the partitioned equation, = D D M M K K K K s m ms mm ss ms ms mm ω he second row then gives where over-bars have been omitted since master-slave transformation is not restricted to free vibration. hen, the entire dof set D can be expressed in terms of the masters:

4 Reduced Eigenproblem he j th column of matrix multiplies the j th master dof. If the j th master dof is unity while the other master dof are zero, the j th column of gives the static displacement of the structural dof (namely the j th master dof itself and the slaves). If D is substituted in Eq (*) (two slides back), [ ω ] K = M Dm Pre-multiplying by gives the reduced eigenproblem 4

5 Reduced Forced-Vibration Problem he general equilibrium equation under forcing can also be reduced. hat is, we can transform M D + CD + KD = and obtain the reduced equation R(t) where M D + C D + K D = r m r m Cr = C and Rr = r m Rr (t) R One criterion for choosing masters is that dof having large mass to stiffness ratio are likely candidates. 5

6 Reduction Example he FE model shown has two dof with the eigenproblem equation stated below. We wish to reduce the model to a single dof. We note that m 11 /k 11 =156c/1 while m /k =4c/4=c. Hence the first dof (v ) is chosen as the master. 6

7 Example (cont.) he submatrices K ss, etc. are scalars now: K ss = 4EI/L, K ms = - 6EI/L Hence, from the slave is written in terms of the master as he eigenproblem equation of the reduced system is his gives the only frequency obtainable from the reduced system: 1 % higher than with the full system. 7

8 Modal Equations In the Guyan reduction, the full set of displacements (dof) were expressed in terms of a subset of the full set. A system can also be reduced by expressing the displacements as a linear combination of a subset of the system vibration modes. his can be viewed as an example of a Ritz approximation. o do this, it s convenient to scale (normalize) the modes as Consider the eigenproblem written for mode i : [ ] M Di K = ω i 8

9 Premultiplying by D i Eigenvalues [ K ω ] D = i M D = D KD D i i M Di i ω i i i Using the normalization equation ω = D KD for i = 1,..., n ; n = i i i no of dof We can write the above for n modes and gather all of them in a matrix equation: ω 1... ω = D D 1 K D [ D... ] 1 9

10 Modal Matrix he off-diagonal terms of the product on the right hand side above are zero in light of the orthogonality of the modes, that is, hen we define the modal matrix to be the union of the modes of the system: Rewriting the equation on the previous slide where ω is the diagonal matrix of eigenvalues (spectral matrix). 1

11 Mode Superposition An arbitrary displacement can be written as a linear combination of the vibration modes: where z i is the fraction of mode i that contributes to D. he above is a transformation and we can write it for the three kinematic quantities as z i are called principal or modal coordinates. 11

12 ransformed Equilibrium Equations Substituting the above transformations into M D + CD + KD = R(t) we get the transformed equilibrium equation If proportional damping is used, C φ is diagonal: C = αi βω φ + All of the coefficient matrices on the left side of the transformed equation are then diagonal and the n equations are uncoupled. 1

13 Modal Damping Modal damping is an alternative to proportional damping and works well when damping is small. In modal damping, we replace C φ above by another diagonal ξ i ω i ξi matrix of entries where is the damping ratio for mode i. he n equations are again uncoupled and we can write n scalar equations, which are the modal equations: φ = where is the i th column of φ, the modal matrix. i D i Note that the equilibrium equation of a sdof system (Eq. 9.-) takes the same form if it is divided by m and manipulated. 13

14 Modal runcation z i are solved for from the modal equations, which are scalar equations, and the physical displacements (and other kinematic quantities, if necessary) are obtained from them: Important note: Not all of the n modes need be used in mode superposition. Usually we can use only the lowest several modes. Above we used D=φz which contained all the modes. Instead we can use his approach is called modal truncation. 14

15 Suitability of Mode Superposition With modal truncation, we need only a subset of the modal frequencies and mode shapes. How many modes to use depends on the problem. Few modes may suffice if the excitation frequency is low compared to the modal frequencies of the system when a sinusoidal forcing R(t) is used, the loading varies slowly in time, as in an earthquake loading. Many modes may be needed otherwise, for example, for shock loading. hen mode superposition may not be suitable. 15

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS Lecture Notes: STRUCTURAL DYNAMICS / FALL 2011 / Page: 1 FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS : : 0, 0 As demonstrated previously, the above Equation of Motion (free-vibration equation) has a solution

More information

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports.

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports. Outline of Multi-Degree-of-Freedom Systems (cont.) System Reduction. Truncated Modal Expansion with Quasi-Static Correction. Guyan Reduction. Vibration due to Movable Supports. Earthquake Excitations.

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES

LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES LECTURE 14: DEVELOPING THE EQUATIONS OF MOTION FOR TWO-MASS VIBRATION EXAMPLES Figure 3.47 a. Two-mass, linear vibration system with spring connections. b. Free-body diagrams. c. Alternative free-body

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016 Prof. Dr. Eleni Chatzi Lecture 4-09. March, 2016 Fundamentals Overview Multiple DOF Systems State-space Formulation Eigenvalue Analysis The Mode Superposition Method The effect of Damping on Structural

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in s

ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in s ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in system identification, finite element model updating,

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine May 24, 2010

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine   May 24, 2010 SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine Email: tomirvine@aol.com May 4, 010 Introduction The primary purpose of this tutorial is to present the Modal Transient method

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

Matrix Iteration. Giacomo Boffi.

Matrix Iteration. Giacomo Boffi. http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 12, 2016 Outline Second -Ritz Method Dynamic analysis of MDOF

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem

Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem Introduction Equations of dynamic equilibrium eigenvalue problem K x = ω M x The eigensolutions of this problem are written in

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

Computational Stiffness Method

Computational Stiffness Method Computational Stiffness Method Hand calculations are central in the classical stiffness method. In that approach, the stiffness matrix is established column-by-column by setting the degrees of freedom

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include

This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include Appendix D Theoretical Background This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include modal superposition component mode synthesis,

More information

Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems

Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems Venkatesh Deshmukh 1 Eric A. Butcher e-mail: ffeab@uaf.ediu Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 S. C. Sinha Nonlinear Systems Research Laboratory,

More information

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Yung-Chang Tan Graduate Student Research Assistant Matthew P. Castanier Assistant Research Scientist

More information

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction 1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction Lesson Objectives: 1) List examples of MDOF structural systems and state assumptions of the idealizations. 2) Formulate the equation of motion

More information

University of California at Berkeley Structural Engineering Mechanics & Materials Department of Civil & Environmental Engineering Spring 2012 Student name : Doctoral Preliminary Examination in Dynamics

More information

Design of Structures for Earthquake Resistance

Design of Structures for Earthquake Resistance NATIONAL TECHNICAL UNIVERSITY OF ATHENS Design of Structures for Earthquake Resistance Basic principles Ioannis N. Psycharis Lecture 3 MDOF systems Equation of motion M u + C u + K u = M r x g(t) where:

More information

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS ANALYSIS OF HIGHRISE BUILDING SRUCURE WIH SEBACK SUBJEC O EARHQUAKE GROUND MOIONS 157 Xiaojun ZHANG 1 And John L MEEK SUMMARY he earthquake response behaviour of unframed highrise buildings with setbacks

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

2C9 Design for seismic and climate changes. Jiří Máca

2C9 Design for seismic and climate changes. Jiří Máca 2C9 Design for seismic and climate changes Jiří Máca List of lectures 1. Elements of seismology and seismicity I 2. Elements of seismology and seismicity II 3. Dynamic analysis of single-degree-of-freedom

More information

TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION Revision A. By Tom Irvine February 25, 2008

TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION Revision A. By Tom Irvine   February 25, 2008 TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION Revision A By Tom Irvine Email: tomirvine@aol.com February 5, 008 Introduction Consider a base plate mass m and an avionics mass m modeled as two-degree-of-freedom.

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering

Static & Dynamic. Analysis of Structures. Edward L.Wilson. University of California, Berkeley. Fourth Edition. Professor Emeritus of Civil Engineering Static & Dynamic Analysis of Structures A Physical Approach With Emphasis on Earthquake Engineering Edward LWilson Professor Emeritus of Civil Engineering University of California, Berkeley Fourth Edition

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Dynamic Response of Structures With Frequency Dependent Damping

Dynamic Response of Structures With Frequency Dependent Damping Dynamic Response of Structures With Frequency Dependent Damping Blanca Pascual & S Adhikari School of Engineering, Swansea University, Swansea, UK Email: S.Adhikari@swansea.ac.uk URL: http://engweb.swan.ac.uk/

More information

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau Final Exam Solution Dynamics 2 191157140 31-01-2013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

D && 9.0 DYNAMIC ANALYSIS

D && 9.0 DYNAMIC ANALYSIS 9.0 DYNAMIC ANALYSIS Introduction When a structure has a loading which varies with time, it is reasonable to assume its response will also vary with time. In such cases, a dynamic analysis may have to

More information

THE STATIC SUBSTRUCTURE METHOD FOR DYNAMIC ANALYSIS OF STRUCTURES. Lou Menglin* SUMMARY

THE STATIC SUBSTRUCTURE METHOD FOR DYNAMIC ANALYSIS OF STRUCTURES. Lou Menglin* SUMMARY 264 THE STATIC SUBSTRUCTURE METHOD FOR DYNAMIC ANALYSIS OF STRUCTURES Lou Mengl* SUMMARY In this paper, the static substructure method based on the Ritz vector direct superposition method is suggested

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017

Program System for Machine Dynamics. Abstract. Version 5.0 November 2017 Program System for Machine Dynamics Abstract Version 5.0 November 2017 Ingenieur-Büro Klement Lerchenweg 2 D 65428 Rüsselsheim Phone +49/6142/55951 hd.klement@t-online.de What is MADYN? The program system

More information

Introduction to Mechanical Vibration

Introduction to Mechanical Vibration 2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization Single-Degree-of-Freedom

More information

Response Analysis for Multi Support Earthquake Excitation

Response Analysis for Multi Support Earthquake Excitation Chapter 5 Response Analysis for Multi Support Earthquake Excitation 5.1 Introduction It is very important to perform the dynamic analysis for the structure subjected to random/dynamic loadings. The dynamic

More information

In this lecture you will learn the following

In this lecture you will learn the following Module 9 : Forced Vibration with Harmonic Excitation; Undamped Systems and resonance; Viscously Damped Systems; Frequency Response Characteristics and Phase Lag; Systems with Base Excitation; Transmissibility

More information

INVESTIGATION OF JACOBSEN'S EQUIVALENT VISCOUS DAMPING APPROACH AS APPLIED TO DISPLACEMENT-BASED SEISMIC DESIGN

INVESTIGATION OF JACOBSEN'S EQUIVALENT VISCOUS DAMPING APPROACH AS APPLIED TO DISPLACEMENT-BASED SEISMIC DESIGN 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 228 INVESTIGATION OF JACOBSEN'S EQUIVALENT VISCOUS DAMPING APPROACH AS APPLIED TO DISPLACEMENT-BASED

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 2 Simpul Rotors Lecture - 2 Jeffcott Rotor Model In the

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

More information

18. FAST NONLINEAR ANALYSIS. The Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis

18. FAST NONLINEAR ANALYSIS. The Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis 18. FAS NONLINEAR ANALYSIS he Dynamic Analysis of a Structure with a Small Number of Nonlinear Elements is Almost as Fast as a Linear Analysis 18.1 INRODUCION he response of real structures when subjected

More information

In-Structure Response Spectra Development Using Complex Frequency Analysis Method

In-Structure Response Spectra Development Using Complex Frequency Analysis Method Transactions, SMiRT-22 In-Structure Response Spectra Development Using Complex Frequency Analysis Method Hadi Razavi 1,2, Ram Srinivasan 1 1 AREVA, Inc., Civil and Layout Department, Mountain View, CA

More information

A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis

A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis A pragmatic approach to including complex natural modes of vibration in aeroelastic analysis International Aerospace Symposium of South Africa 14 to 16 September, 215 Stellenbosch, South Africa Louw van

More information

LUMPED ELEMENT MULTIMODE MODELING BALANCED-ARMATURE RECEIVER WITH COMSOL

LUMPED ELEMENT MULTIMODE MODELING BALANCED-ARMATURE RECEIVER WITH COMSOL LUMPED ELEMENT MULTIMODE MODELING BALANCED-ARMATURE RECEIVER WITH COMSOL Wei Sun and Wenxiang Hu Nov. 3, 2016 Institute of Acoustics, Tongji University Excerpt from the Proceedings of the 2016 COMSOL Conference

More information

CHAPTER 14 FINITE ELEMENTS: DYNAMICS

CHAPTER 14 FINITE ELEMENTS: DYNAMICS 14.1 Introduction CHAPTER 14 FINITE ELEMENTS: DYNAMICS The chapter starts out with discussions of various mass matrix formulations. The 6dof lumped mass example from Chapter is used for the lumped mass

More information

ME scope Application Note 28

ME scope Application Note 28 App Note 8 www.vibetech.com 3/7/17 ME scope Application Note 8 Mathematics of a Mass-Spring-Damper System INTRODUCTION In this note, the capabilities of ME scope will be used to build a model of the mass-spring-damper

More information

MODEL REDUCTION USING GUYAN, IRS, AND DYNAMIC METHODS

MODEL REDUCTION USING GUYAN, IRS, AND DYNAMIC METHODS MODEL REDUCTION USING GUYAN, IRS, AND DYNAMIC METHODS Christopher C. Flanigan Manager, Advanced Test and Analysis SDRC Operations, Inc. 11995 El Camino Real, Suite 200 San Diego, California 92130 USA ABSTRACT

More information

Some Aspects of Structural Dynamics

Some Aspects of Structural Dynamics Appendix B Some Aspects of Structural Dynamics This Appendix deals with some aspects of the dynamic behavior of SDOF and MDOF. It starts with the formulation of the equation of motion of SDOF systems.

More information

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Exact Solutions Relation between Discrete and Distributed

More information

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS

NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS NONLINEAR STRUCTURAL DYNAMICS USING FE METHODS Nonlinear Structural Dynamics Using FE Methods emphasizes fundamental mechanics principles and outlines a modern approach to understanding structural dynamics.

More information

midas Civil Dynamic Analysis

midas Civil Dynamic Analysis Edgar De Los Santos Midas IT August 23 rd 2017 Contents: Introduction Eigen Value Analysis Response Spectrum Analysis Pushover Analysis Time History Analysis Seismic Analysis Seismic Analysis The seismic

More information

FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS

FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS A Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology in Civil Engineering By JYOTI PRAKASH SAMAL

More information

Outline of parts 1 and 2

Outline of parts 1 and 2 to Harmonic Loading http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 6 Outline of parts and of an Oscillator

More information

Seminar 6: COUPLED HARMONIC OSCILLATORS

Seminar 6: COUPLED HARMONIC OSCILLATORS Seminar 6: COUPLED HARMONIC OSCILLATORS 1. Lagrangian Equations of Motion Let consider a system consisting of two harmonic oscillators that are coupled together. As a model, we will use two particles attached

More information

A BEAM FINITE ELEMENT MODEL INCLUDING WARPING

A BEAM FINITE ELEMENT MODEL INCLUDING WARPING A BEAM FINITE ELEMENT MODEL INCLUDING WARPING Application to the dynamic and static analysis of bridge decks Diego Lisi Department of Civil Engineering of Instituto Superior Técnico, October 2011 ABSTRACT

More information

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016) AA 242B / ME 242B: Mechanical Vibrations (Spring 206) Solution of Homework #3 Control Tab Figure : Schematic for the control tab. Inadequacy of a static-test A static-test for measuring θ would ideally

More information

Multiple Degree of Freedom Systems. The Millennium bridge required many degrees of freedom to model and design with.

Multiple Degree of Freedom Systems. The Millennium bridge required many degrees of freedom to model and design with. Multiple Degree of Freedom Systems The Millennium bridge required many degrees of freedom to model and design with. The first step in analyzing multiple degrees of freedom (DOF) is to look at DOF DOF:

More information

THE APPLICATION OF THE IRS AND BALANCED REALIZATION METHODS TO OBTAIN REDUCED MODELS OF STRUCTURES WITH LOCAL NON-LINEARITIES

THE APPLICATION OF THE IRS AND BALANCED REALIZATION METHODS TO OBTAIN REDUCED MODELS OF STRUCTURES WITH LOCAL NON-LINEARITIES Journal of Sound and Vibration (1996) 196(4), 453 468 THE APPLICATION OF THE IRS AND BALANCED REALIZATION METHODS TO OBTAIN REDUCED MODELS OF STRUCTURES WITH LOCAL NON-LINEARITIES M. I. FRISWELL Department

More information

A Guide to linear dynamic analysis with Damping

A Guide to linear dynamic analysis with Damping A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced

More information

The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures

The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures The sensitivity analysis of the translation and the rotation angle of the first-order mode shape of the joints in frame structures Yi Chen Yuan 1, Lin Li 2, Hongping Zhu 3 School of Civil Engineering and

More information

Part 1: Discrete systems

Part 1: Discrete systems Part 1: Discrete systems Introduction Single degree of freedom oscillator Convolution integral Beat phenomenon Multiple p degree of freedom discrete systems Eigenvalue problem Modal coordinates Damping

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Simple Modification of Proper Orthogonal Coordinate Histories for Forced Response Simulation

Simple Modification of Proper Orthogonal Coordinate Histories for Forced Response Simulation Simple Modification of Proper Orthogonal Coordinate Histories for Forced Response Simulation Timothy C. Allison, A. Keith Miller and Daniel J. Inman I. Review of Computation of the POD The POD can be computed

More information

USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES

USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES Engineering MECHANICS, Vol. 14, 2007, No. 1/2, p. 45 54 45 USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES Vladimír Zeman, Michal Hažman* Classical approach to complex dynamical

More information

Transient Response Analysis of Structural Systems

Transient Response Analysis of Structural Systems . 21 Transient Response Analysis of Structural Systems 21 1 Chapter 21: TRANSIENT RESPONSE ANALYSIS OF STRUCTURAL SYSTEMS 21 2 21.1 MODAL APPROACH TO TRANSIENT ANALYSIS Consider the following large-order

More information

822. Non-iterative mode shape expansion for threedimensional structures based on coordinate decomposition

822. Non-iterative mode shape expansion for threedimensional structures based on coordinate decomposition 822. Non-iterative mode shape expansion for threedimensional structures based on coordinate decomposition Fushun Liu, Zhengshou Chen 2, Wei Li 3 Department of Ocean Engineering, Ocean University of China,

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.3 VECTOR EQUATIONS VECTOR EQUATIONS Vectors in 2 A matrix with only one column is called a column vector, or simply a vector. An example of a vector with two entries

More information

Model reduction for structures with damping and gyroscopic effects

Model reduction for structures with damping and gyroscopic effects Model reduction for structures with damping and gyroscopic effects M.I. Friswell, J.E.. Penny and S.D. Garvey Department of Mechanical Engineering, University of Wales Swansea, Swansea SA2 8PP, UK School

More information

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem Appendix C Modal Analysis of a Uniform Cantilever with a Tip Mass C.1 Transverse Vibrations The following analytical modal analysis is given for the linear transverse vibrations of an undamped Euler Bernoulli

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson JUST THE MATHS UNIT NUMBER 9.9 MATRICES 9 (Modal & spectral matrices) by A.J.Hobson 9.9. Assumptions and definitions 9.9.2 Diagonalisation of a matrix 9.9.3 Exercises 9.9.4 Answers to exercises UNIT 9.9

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2

on the figure. Someone has suggested that, in terms of the degrees of freedom x1 and M. Note that if you think the given 1.2 1) A two-story building frame is shown below. The mass of the frame is assumed to be lumped at the floor levels and the floor slabs are considered rigid. The floor masses and the story stiffnesses are

More information

Simulating Two-Dimensional Stick-Slip Motion of a Rigid Body using a New Friction Model

Simulating Two-Dimensional Stick-Slip Motion of a Rigid Body using a New Friction Model Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. ICMIE 116 DOI: 10.11159/icmie16.116 Simulating Two-Dimensional

More information

2.010 Fall 2000 Solution of Homework Assignment 1

2.010 Fall 2000 Solution of Homework Assignment 1 2. Fall 2 Solution of Homework Assignment. Compact Disk Player. This is essentially a reprise of Problems and 2 from the Fall 999 2.3 Homework Assignment 7. t is included here to encourage you to review

More information

THE subject of the analysis is system composed by

THE subject of the analysis is system composed by MECHANICAL VIBRATION ASSIGNEMENT 1 On 3 DOF system identification Diego Zenari, 182160, M.Sc Mechatronics engineering Abstract The present investigation carries out several analyses on a 3-DOF system.

More information

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way.

Normal modes. where. and. On the other hand, all such systems, if started in just the right way, will move in a simple way. Chapter 9. Dynamics in 1D 9.4. Coupled motions in 1D 491 only the forces from the outside; the interaction forces cancel because they come in equal and opposite (action and reaction) pairs. So we get:

More information

Automated Multi-Level Substructuring CHAPTER 4 : AMLS METHOD. Condensation. Exact condensation

Automated Multi-Level Substructuring CHAPTER 4 : AMLS METHOD. Condensation. Exact condensation Automated Multi-Level Substructuring CHAPTER 4 : AMLS METHOD Heinrich Voss voss@tu-harburg.de Hamburg University of Technology AMLS was introduced by Bennighof (1998) and was applied to huge problems of

More information

CHAPTER 12 TIME DOMAIN: MODAL STATE SPACE FORM

CHAPTER 12 TIME DOMAIN: MODAL STATE SPACE FORM CHAPTER 1 TIME DOMAIN: MODAL STATE SPACE FORM 1.1 Introduction In Chapter 7 we derived the equations of motion in modal form for the system in Figure 1.1. In this chapter we will convert the modal form

More information

Damping Matrix. Donkey2Ft

Damping Matrix. Donkey2Ft 1 Damping Matrix DonkeyFt Damping in a single-degree-of-freedom (SDOF) system is well studied. Whether the system is under-damped, over-damped, or critically damped is well known. For an under-damped system,

More information

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD P. WŁUKA, M. URBANIAK, T. KUBIAK Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź,

More information

EML4507 Finite Element Analysis and Design EXAM 1

EML4507 Finite Element Analysis and Design EXAM 1 2-17-15 Name (underline last name): EML4507 Finite Element Analysis and Design EXAM 1 In this exam you may not use any materials except a pencil or a pen, an 8.5x11 formula sheet, and a calculator. Whenever

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Lecture 25 Continuous System In the last class, in this, we will

More information

Dynamic Stress Analysis of a Bus Systems

Dynamic Stress Analysis of a Bus Systems Dynamic Stress Analysis of a Bus Systems *H. S. Kim, # Y. S. Hwang, # H. S. Yoon Commercial Vehicle Engineering & Research Center Hyundai Motor Company 772-1, Changduk, Namyang, Whasung, Kyunggi-Do, Korea

More information

SECTIONS 5.2/5.4 BASIC PROPERTIES OF EIGENVALUES AND EIGENVECTORS / SIMILARITY TRANSFORMATIONS

SECTIONS 5.2/5.4 BASIC PROPERTIES OF EIGENVALUES AND EIGENVECTORS / SIMILARITY TRANSFORMATIONS SECINS 5/54 BSIC PRPERIES F EIGENVUES ND EIGENVECRS / SIMIRIY RNSFRMINS Eigenvalues of an n : there exists a vector x for which x = x Such a vector x is called an eigenvector, and (, x) is called an eigenpair

More information