Resistance in Open Channel Hydraulics

Size: px
Start display at page:

Download "Resistance in Open Channel Hydraulics"

Transcription

1 Resistance in Open Channel Hdraulics I Manning and Chez equations are compared e = R S CR S n R R C= = n n 1 6 R C= n For laminar low: K R R e1 VR = VR K= 2 2 8gSR 8gVR S 8gR S 8g But K= = = R V V V C 2 8g C = Re1 K VR 8g I R e1 = C 2 14 R e1 For triangular Smooth Channel (Reer: Chow) 24 R e1 For Rectangular Smooth Channel (Reer: Chow) e1 Sand Roughness Fixed to Flume Bed (Photograph - Thandaeswara)

2 Laminar Flow with Roughness 60 or a 90 V shape channel. Roughness mm R e1 33 R e Reerence: "Chow Ven Te- Open Channel Hdraulics", Mc Graw Hill Compan, International student edition, 1959, page R e1 24 R e Laminar Transitional Turbulent R e1 Variation o riction coeicient with Renolds number Re1( = R ) in smooth channels

3 Reerence: "Chow Ven Te- Open Channel Hdraulics", Mc Graw Hill Compan, International student edition, 1959, page cm Varwick 25 cm R e1 33 Re1 60 Re Varwick cm Laminar Transitional Turbulent Re1 Variation o riction coeicient with Renolds number Re1 in rough channels Rectangular Channel - Rough low (Roughness = ) ( = R ) Bazin conducted experiment using (500 measurements were made at greatest care) (1) Grael embedded in cement. (2) Unpolished wood roughened b transerse wooden strip (i) 27 mm long 10 mm high 10 mm spacing. (ii) 27 mm 10 mm at 50 mm spacing. 3) Cement lining 4) Unpolished wood I the behaior o n and C is to be inestigated then a number o basic deinitions regarding the tpes o hdrodnamic low must be recalled. Flow can be diided into

4 (i) Hdro dnamicall smooth turbulent low (ii) Hdro dnamicall Rough turbulent low (iii) Hdro dnamicall transition turbulent low. The boundar laer δ or low past a lat plate is gien b 1/ 2 δ Vx o = 5 Laminar x 1/ 5 δ Vx o 7 = turbulent Re 2 10 logarthmic elocit law holds x > V 99% V δ δ δ0 Pseudo boundar Turbulent Transitional region Viscous sub laer Velocit Velocit distribution

5 Smooth kc = 5 kc is critical roughness height k is roughness height k c = 100 or aerage condition δ k δ0 δ0 δ0 k k kc (a) Smooth kc (b) wa kc Dierent surace roughness (c) rough

6 Viscous sublaer ks (i) Hdrodnamicall smooth turbulent low (R e ) ks Viscous sublaer (ii) Hdrodnamicall transition low (R e, k s /) ks Viscous sublaer (iii) Hdrodnamicall rough turbulent low (k s /) For hdro dnamicall smooth condition, iscous sub laer submerges the roughness elements. For hdro dnamicall transitional case the roughness element are partl exposed with reerence to iscous sub laer. For hdro dnamicall rough turbulent low the roughness elements are completel exposed aboe the iscous sub laer. For hdro dnamicall rough turbulent low resistance is a unction o Renolds number and the roughness height. K s I we deine R e = shear Renolds number. ; and τo = grs =. ρ

7 The low is classiied as ollows: K s < 4 Hdrodnamicall smooth K s 4 < < 100 Hdrodnamicall transition K s > 100 Hdrodnamicall ull deeloped turbulent low Summar o Velocit-Proile Equations or Boundar laers with dp 0 dx = Zone Smooth Walls Rough Walls Law o the wall Uniersal equations Laminar sub laer 4 < = ( δ ) - Buer zone 4< < 30 to Logarithmi c zone (also called turb ulent laer) > 30 to 70 < 0.15 δ Velocit-deect law Inner region 0.15 δ < (oerlaps with logarithmi c wall law) Outer region 0.15 δ < (approxim ate ormula) (3000 < R e < 70,000) - outer region = A log + B 5.6 log = Power Law = 8.74 k = A log + B k = 5.6 log + B B= (roughness size, shape and distribution) V = A log + B δ V = 5.6 log δ 1 7 V = A log δ V = 8.6 log δ - A and B are constants.

8 Table shows elocit distributions or dierent conditions Blasius equation or smooth low Smooth pipe low Nikurads e Rough pipe Nikurads e White and Colebroo k ormula VR VR Pipe low equation Re = Open channel low Re = upto R 0.25 e <10 C= R mks units or g = m/sec e Re Re 0.25 =2log R e Re 8g Re > 10 C = 4 2g log 251. C ( ) 1 = 0.86 ln Re = ln d 1 /d o 2.51 = 0.86 ln Re o 1/8 2 C = log Re 8g 251. C R C = log C e R 8g C = 2 log e C g C = 2 log 8g C = -2 log s 14.83R 12R ks k g + 8g Re Suggested modiication to equation is C ks 2.5 = -2 log + 8g 12R Re [ASCE Task Force Committee 1963]. R is hdraulic mean radius, 4R = Diameter o pipe. In open channel low ollowing aspects come into picture R (, K, C,N, F,U) e (1) (2) (3) In which R e is the Renolds number, K is the Relatie Roughness, C Shape actor o the cross-section, N is the Non- uniormit o the channel both in proile and in plan, F is the Froude number, U is the degree o unsteadiness. In the aboe equation, the irst term corresponds to, Surace Resistance (Friction), the second term corresponds to wae resistance and the third term corresponds to Non uniormit due to acceleration/ deceleration in low.

9 Surace Resistance: To be accounted based on Karman - Prandtl - elocit distribution. The constant in resistance equation is due to the numerical integration, and is a unction o shape o the cross-section. C 1 R = =A log +B 2g ' For circular section A = 2.0, B = For rectangular section: A = 2, B = (or large ratio o width/depth) It has remained customar to delineate roughness in terms o the equialent sand grain dimensions k s. For its proper description, howeer, a statistical characteristic such as surace texture requires a series o lengths or length deriaties, though the signiicance o successie terms in the series rapidl approach a minimum. Morris classiied the low into three categories namel (1) isolated roughness low, (2) Wake intererence low, and (3) Quasi smooth low. The igure proides the necessar details. k s s Isolated - roughness low (k/s) - Form drag dominates The wake and the ortex are dissipated beore the next element is reached. The ratio o (k/s) is a signiicant parameter or this tpe o low

10 k s Wake intererence low (/s) s s When the roughness elements are placed closer, the wake and the ortex at each element will interere with those deeloped b the ollowing element and results in complex orticit and turbulent mixing. The height o the roughness is not important, but the spacing becomes an important parameter. The depth '' controls the ertical extent o the surace region o high leel turbulence. (/s) is an important correlating parameter. k j j j j s s s k is surace roughness height s is the spacing o the elements j is the grooe width is the depth o low Quasi smooth low - k/s or j/s becomes signiicant acts as Pseudo wall Quasi smooth low is also known as skimming low. The roughness elements are so closed placed. The luid that ills in the grooe acts as a pseudo wall and hence low essentiall skims the surace o roughness elements. In such a low (k/s) or (j/s) pla a signiicant role. Concept o three basic tpes o rough surace low k, j, s should describe the characteristics o roughness in one dimensional situations is Areal concentration o or densit distribution o roughness elements. (ater Moris).

11 Areal concentration or Densit Distribution Roughness Elements Spheres Schlichting, Spatial distribution o roughness O'Loughlin and Mcdonald (1964) Cubes arranged as in (1) abd (2) also sand grains (2.5 mm dia)cemented to the bed. Koloseus (1958) and Koloseus and Daidian (1965) conducted experiments using Cubical Roughness Smmetrical diamond shaped pattern.

12 4 Spheres 3 Cubes Sand ks Eectie roughness as a unction o orm pattern, and concentration o roughness elements. (Assuming high Renolds number) 10 Nikuradse λ Areal concentration Schlichting (1936) - Sphere spacing Koloseus (1958) Koloseus and Daidian (1965) Cubical Roughness Smmetrical diamond shaped pattern O'Loughlin and Mcdonald (1964) Cubes arranged as in 1 and in 2. Also sand grains centered to the sand grains (2.5 m diameter) ks 1 Sand λ Areal concentration Logarithmic plot o data rom igure at low concentration Open channel resistance (ater H. Rouse, 1965)

13 b 1.5 F = V d = 3b 3b Froude number, F Resistance o a bridge pier in a wide channel, ater Kobus and Newsham 1.5 S = 5 D CD 0.5 D V d D d = 30 S Froude number, F Variation o pier resistance with lateral spacing "S"

14 /b = 1/16 ζ 0.2 /b = 1/8 2b 0.1 /b = 1/ b b Froude number, F Loss at one o a series o channel bends ater Haet Some o the important Reerences: (i) Task orce on riction actors in open channels Proc. ASCE JI. o Hd. Dn. Vol. 89., No. H2, March 1963, pp (ii) Rouse Hunter, "Critical analsis o open channel resistance", Proceedings o ASCE Journal o Hdraulic diision, Vol.91, Hd 4, pp 1-25, Jul 1965 and discussion pp , No. 1965, March 1966, pp 387 to 409. Schlichting, "Boundar laer theor", Mc Graw Hill Publication Open Channel Resistance There is an optimal area concentration 15% to 25% which produces greater relatie resistance. 1 R A log B DhS + h is the roughness height, S is the areal concentration (<15%), D is the constant which depends on shape and arrangement o the roughness elements. For sanded surace: D = 21 and B = 2.17 The existence o ree surace makes it diicult to assume logarthmic elocit distribution and to integrate oer the entire area o low or dierent cross-sectional shapes. The

15 lograthmic elocit distribution can be integrated onl or the wide rectangular and circular sections. Eect o boundar non-uniormit is normall ignored and particularl so or graduall aried low proile computation. The dependence on Froude number is clearl seen in case o pier. In case o unstead lows such as loods, it is assumed that the inertial eects are small in comparison with resistance. Hence, the resistance o stead uniorm low at the same depths and elocit is taken to be alid. Where the Froude number exceeds unit, the surace has instabilit in the orm o roll waes. Earlier ormulae or determining C (or details reer to Historical deelopment o Empirical relationships) 1. G.K. Formula (MKS) 2. Bazin s Formula 1897 (MKS) 3. Powell Formula (1950) FPS while using Powell ormula C must be multiplied b to get C in m 1/2 s Paloskii Formula (1925) Manning equation is applicable to ull deeloped turbulent rough low. Slope o the straight line is 1:3

16 n 1/3 ks g g C R 2 C ks k s 1/3 ks R I we replace k b diameter o the grain size (d) d R s 1/3 8g 8g R C = = d or MKS units g = m/s R R C = = d d R or C = d R n = C 1 n = d = d A number o empirical methods to relate n diameter o the particle are adanced. 1 Strickler (1923) 2 Henderson's interpretation o Strickler's ormula 3a Raudkii (1976) 3b Raudkii (1976) 3c Raudkii (1976) 4 Garde and Ranga Raju n = d [ d in m ] This is not applicable to mobile n = d [ d in eet ] 50 n = d [ d in m ] bed n = d65 [ d in mm ] d 65 = 65 % o the material b n = d [ d in eet ] 65 weight smaller. 1/ 6 n = d50 [ d in eet ] ( ) ( ) 5 Subramana n = d [ d in m ] 6 Meer and Peter and Muller 50 = = ( 50 ) n = d, d is in 'm' [ ] 90 n = d d in m (Signiicant proportion o coarse grained material)

17 7 Simons and Sentrrk (1976) 8 Lane and Carbon (1953) n = d [ d in mm ] n= d (d in inches and d 75 = 75% o the 75 material b weight is smaller) 8) Consider = g R S ks 4 < < 100 Transition low R R n = but C = C d R d 1 n = = d = d (d in m) R (. ) Conditon or ull deeloped rough low k s n = 100 d = = n n 1 g R S Assuming 6 6 ( ) 6 ( ) = m /s g = m/s n R S n RS

18 Blasius equation ( R e <10 5 ) 1 = 2.0 log ( Re ) 2.51 R e C = 4 2g log ( 8g ) 2.51C Laminar low Smooth suraces R e 1 8 (C = Re, mks) ks = 100 do 2ks = 2R ks Transition zone Full rough zone 1 = C = 2.0 log ( 12R ) or Manning 8g ks Commercial suraces Sand coated surace (Nikuradse) Renolds number R e = 4 V R/ Modiied Mood Diagram showing the Behaior o the Chez C ater Henderson

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics o 3-D Wings D-2: Boundary Layer and Viscous Eects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I : List o Subjects

More information

Chapter 8 Laminar Flows with Dependence on One Dimension

Chapter 8 Laminar Flows with Dependence on One Dimension Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low Hele-Shaw low Poiseuille low Friction actor and Reynolds number

More information

Chapter 3 Water Flow in Pipes

Chapter 3 Water Flow in Pipes The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics - ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution

More information

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS (Adopted on 4 June 203) (Adopted on 4 June 203) ANNEX 8 (Adopted on 4 June 203) MSC 92/26/Add. Annex 8, page THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) o the Convention on the International

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

Aerodynamic Admittance Function of Tall Buildings

Aerodynamic Admittance Function of Tall Buildings Aerodynamic Admittance Function o Tall Buildings in hou a Ahsan Kareem b a alou Engineering Int l, Inc., 75 W. Campbell Rd, Richardson, T, USA b Nataz odeling Laboratory, Uniersity o Notre Dame, Notre

More information

CEE 3310 Open Channel Flow,, Nov. 18,

CEE 3310 Open Channel Flow,, Nov. 18, CEE 3310 Open Channel Flow,, Nov. 18, 2016 165 8.1 Review Drag & Lit Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! C D

More information

12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer 1d Model Civil and Surveying Sotware Version 7 Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 9 December 005 Revised: 10 January 006 8 February 007

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

5. Secondary Current and Spiral Flow

5. Secondary Current and Spiral Flow 5. Secondary Current and Spiral Flow The curve of constant velocity for rectangular and triangular cross-section obtained by Nikuradse are shown in Figures and 2. In all cases the velocities at the corners

More information

ERRATA. pp Appendix E.6 Add the following paragraph immediately before the last paragraph on p. 334:

ERRATA. pp Appendix E.6 Add the following paragraph immediately before the last paragraph on p. 334: Dear Customer: American Association o State Highwa and Transportation Oicials ERRATA John R. Njord, President Executie Director Utah Department o Transportation John Horsle Executie Director Due to errors

More information

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses). PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

More information

What about water... What about open channel flow... Continuity Equation. HECRAS Basic Principles of Water Surface Profile Computations

What about water... What about open channel flow... Continuity Equation. HECRAS Basic Principles of Water Surface Profile Computations What about water... HECRA Basic Principles o Water urace Proile Computations b G. Parodi WR ITC The Netherlands Incompressible luid must increase or decrease its velocit and depth to adjust to the channel

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Differential Equations

Differential Equations LOCUS Dierential Equations CONCEPT NOTES 0. Motiation 0. Soling Dierential Equations LOCUS Dierential Equations Section - MOTIVATION A dierential equation can simpl be said to be an equation inoling deriaties

More information

An Improved Expression for a Classical Type of Explicit Approximation of the Colebrook White Equation with Only One Internal Iteration

An Improved Expression for a Classical Type of Explicit Approximation of the Colebrook White Equation with Only One Internal Iteration International Journal o Hydraulic Engineering 06, 5(): 9-3 DOI: 0.593/j.ijhe.06050.03 An Improved Expression or a Classical Type o Explicit Approximation o the Colebrook White Equation with Only One Internal

More information

Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer.

12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer. 1d Model Civil and Surveying Sotware Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 04 June 007 Revised: 3 August 007 (V8C1i) 04 February 008 (V8C1p)

More information

Prof. B.S. Thandaveswara. A short horizontal reach of a prismatic channel is considered. Further, the external

Prof. B.S. Thandaveswara. A short horizontal reach of a prismatic channel is considered. Further, the external Hdraulics 9. Speciic Force short horizontal reach o a prismatic channel is considered. Further, the external rictional orce and the eect o weight component o water can be considered as negligible. Then

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES

Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Charles Boncelet Probabilit Statistics and Random Signals" Oord Uniersit Press 06. ISBN: 978-0-9-0005-0 Chapter 8: MULTIPLE CONTINUOUS RANDOM VARIABLES Sections 8. Joint Densities and Distribution unctions

More information

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES EWTOS LAWS O OTIO AD RICTIOS STRAIGHT LIES ITRODUCTIO In this chapter, we shall study the motion o bodies along with the causes o their motion assuming that mass is constant. In addition, we are going

More information

Hydraulic validation of the LHC cold mass heat exchanger tube.

Hydraulic validation of the LHC cold mass heat exchanger tube. Hydraulic validation o te LHC cold mass eat excanger tube. LHC Project Note 155 1998-07-22 (pilippe.provenaz@cern.c) Pilippe PROVENAZ / LHC-ACR Division Summary Te knowledge o te elium mass low vs. te

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Exam 3 Review. F P av A. m V

Exam 3 Review. F P av A. m V Chapter 9: luids Learn the physics o liquids and gases. States o Matter Solids, liquids, and gases. Exam 3 Reiew ressure a ascal s rinciple change in pressure at any point in a conined luid is transmitted

More information

Water Flow in Open Channels

Water Flow in Open Channels The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics - ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows

More information

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION by Asterios Pantokratoras School o Engineering, Democritus University o Thrace, 67100

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Deinition A unction has an absolute maimum (or global maimum) at c i ( c) ( ) or all in D, where D is the domain o. The number () c is called

More information

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings International Journal o Mechanical Engineering and Applications 7; 5(): 6-67 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: -X (Print); ISSN: -48 (Online) Non-newtonian Rabinowitsch

More information

Chapter 7: Boundary Layer Theory

Chapter 7: Boundary Layer Theory Proessor Fred Stern Fall 17 1 Chapter 7: Boundar Laer Theor 7.1. Introduction: Boundar laer lows: Eternal lows around streamlined bodies at high Re have viscous (shear and no-slip) eects conined close

More information

FLUID MECHANICS. Lecture 7 Exact solutions

FLUID MECHANICS. Lecture 7 Exact solutions FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.

More information

Chapter 7: Boundary Layer Theory

Chapter 7: Boundary Layer Theory Proessor Fred Stern Fall 14 1 Chapter 7: Boundar Laer Theor 7.1. Introduction: Boundar laer lows: Eternal lows around streamlined bodies at high Re have viscous (shear and no-slip) eects conined close

More information

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in

Chapter 14 PROBLEM SOLUTIONS Since vlight v sound, the time required for the flash of light to reach the observer is negligible in Chapter 4 PRBLEM LUTN 4. ince light sound, the time required or the lash o light to reach the obserer is negligible in comparison to the time required or the sound to arrie. Thus, we can ignore the time

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Eighteenth International Water Technology Conference, IWTC18 Sharm ElSheikh, March 2015 REVIEW OF FRICTION FORMULAE IN OPEN CHANNEL FLOW

Eighteenth International Water Technology Conference, IWTC18 Sharm ElSheikh, March 2015 REVIEW OF FRICTION FORMULAE IN OPEN CHANNEL FLOW Eighteenth International Water Technoy Conference, IWTC8 Sharm ElSheih, 2-4 March 205 ABSTRACT REVIEW O RICTION ORMULAE IN OPEN CHANNEL LOW Zidan, Abdel Razi Ahmed Prof. of Hydraulics, aculty of Engineering,

More information

8.3 Design of Base Plate for Thickness

8.3 Design of Base Plate for Thickness 8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

Unified Architecture Level Energy-Efficiency Metric

Unified Architecture Level Energy-Efficiency Metric Uniied Architecture Leel nergy-iciency Metric Victor Zyuban BM Research Diision, T.J. Watson Research Center, Yorktown Heights, Y zyuban@us.ibm.com ABSTRACT The deelopment o power-eicient microprocessors

More information

Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS

Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS Watershed Sciences 6900 FLUVIAL HYDRAULICS & ECOHYDRAULICS WEEK Four Lecture 6 VELOCITY DISTRIBUTION Joe Wheaton FOR TODAY, YOU SHOULD HAVE READ 1 LET S GET ON WITH IT TODAY S PLAN VELOCITY DISTRIBUTIONS

More information

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID Rita Choudhury et al. / International Journal o Engineering Science and Technology (IJEST) HYDROAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID RITA CHOUDHURY Department

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

A REVIEW OF FRICTION FORMULAE IN OPEN CHANNEL FLOW

A REVIEW OF FRICTION FORMULAE IN OPEN CHANNEL FLOW International Water Technoy Journal, IWTJ Vol. 5 No., March 05 A REVIEW O RICTION ORMULAE IN OPEN CHANNEL LOW ABSTRACT Zidan, Abdel Razi Ahmed Prof. of Hydraulics, aculty of Engineering, El Mansoura University

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Two-dimensional analytical solution for compound channel flows with vegetated floodplains

Two-dimensional analytical solution for compound channel flows with vegetated floodplains Appl. Math. Mech. -Engl. Ed. 3(9), 2 3 (29) DOI:.7/s483-9-96-z c Shanghai University and Springer-Verlag 29 Applied Mathematics and Mechanics (English Edition) Two-dimensional analytical solution or compound

More information

NUMERICAL ANALYSES OF COLD-FORMED THIN-WALLED SECTIONS WITH CONSIDERATION OF IMPERFECTIONS DUE TO THE PRODUCTION PROCESS

NUMERICAL ANALYSES OF COLD-FORMED THIN-WALLED SECTIONS WITH CONSIDERATION OF IMPERFECTIONS DUE TO THE PRODUCTION PROCESS Advanced Steel Construction Vol. 5, No., pp. 151-163 (009) 151 NUMERICAL ANALYSES OF COLD-FORMED THIN-WALLED SECTIONS WITH CONSIDERATION OF IMPERFECTIONS DUE TO THE PRODUCTION PROCESS Albrecht Gehring

More information

Numerical Analysis of Heat Transfer in the Unsteady Flow of a non- Newtonian Fluid over a Rotating cylinder

Numerical Analysis of Heat Transfer in the Unsteady Flow of a non- Newtonian Fluid over a Rotating cylinder Bulletin of Environment, Pharmacolog and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 215: 318-323 214 Academ for Environment and Life Sciences, India Online ISSN 2277-188 Journal

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

Phase Changes Heat must be added or removed to change a substance from one phase to another. Phases and Phase Changes. Evaporation

Phase Changes Heat must be added or removed to change a substance from one phase to another. Phases and Phase Changes. Evaporation Applied Heat Transer Part One (Heat Phase Changes Heat must be added or remoed to change a substance rom one phase to another. Ahmad RAMAZANI S.A. Associate Proessor Shari Uniersity o Technology انتقال

More information

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center July 4-6 2012 London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez

More information

Submarine sand ripples formation in a viscous fluid: 2D and 3D linear stability analysis

Submarine sand ripples formation in a viscous fluid: 2D and 3D linear stability analysis Marine Sandwave and River Dune Dnamics 1 & April 4 - Enschede, the Netherlands Submarine sand ripples formation in a viscous fluid: D and 3D linear stabilit analsis V. Langlois (1) and A. Valance (1) Groupe

More information

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods

OUTLINE DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE 12/21/ Introduction 2. Base plates. 3. Anchor Rods DESIGN OF COLUMN BSE PLTES ND STEEL NCHORGE TO CONCRETE OUTLINE 1. Introduction 2. Base plates a. Material b. Design using ISC Steel Design Guide Concentric axial load xial load plus moment xial load plus

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

A note on critical flow section in collector channels

A note on critical flow section in collector channels Sādhan ā, Vol. 26, Part 5, October 2001, pp. 439 445. Printed in India A note on critical flow section in collector channels 1. Introduction SUBHASISH DEY Department of Civil Engineering, Indian Institute

More information

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU LECTURE NOTES - VIII «LUID MECHNICS» Istanbul Technical Universit College of Civil Engineering Civil Engineering Department Hdraulics Division CHPTER 8 DIMENSIONL NLYSIS 8. INTRODUCTION Dimensional analsis

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System Fin eiciency o the newly developed Compartmented Coil o a Single Coil Twin Fan System ABSTRACT In predicting the perormance o any cooling coil, HVAC designers ace multiold challenges in designing the system

More information

Figure 34: Coordinate system for the flow in open channels.

Figure 34: Coordinate system for the flow in open channels. OE466 redging Processes 5. SCOUR 5.. Steady uniform flow in open channels This chapter is written with a view to bottom scour. The main outcome is the scour velocity as a function of the particle diameter.

More information

Incompressible Viscous Flows

Incompressible Viscous Flows Incompressible Viscous Flows Q. Choose the crect answer (i) The maximum velocit of a one-dimensional incompressible full developed viscous flow between two fixed parallel plates is 6m/s. The mean velocit

More information

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATE-FIN AND PIN-FIN HEAT SINKS

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA

LINEAR SUPERPOSITION AND INTERFERENCE PHENOMENA CHAPTER 7 THE PRINCIPE OF INEAR SUPERPOSITION AND INTERFERENCE PHENOMENA ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) I we add pulses and 4 as per the principle o linear superposition, the resultant is

More information

CRITICAL MASS FLOW RATE THROUGH CAPILLARY TUBES

CRITICAL MASS FLOW RATE THROUGH CAPILLARY TUBES Proceedings o the ASME 010 rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conerence FESM-ICNMM010 August 1-5, 010, Montreal, Canada Proceedings o ASME 010 rd Joint US-European

More information

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium Comments on Magnetohydrodynamic Unsteady Flow o A Non- Newtonian Fluid Through A Porous Medium Mostaa A.A.Mahmoud Department o Mathematics, Faculty o Science, Benha University (358), Egypt Abstract The

More information

Heat-fluid Coupling Simulation of Wet Friction Clutch

Heat-fluid Coupling Simulation of Wet Friction Clutch 3rd International Conerence on Mechatronics, Robotics and Automation (ICMRA 2015) Heat-luid Coupling Simulation o Wet Friction Clutch Tengjiao Lin 1,a *, Qing Wang 1, b, Quancheng Peng 1,c and Yan Xie

More information

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun.

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun. International Journal o Scientiic & Engineering search, Volume 7, Issue 12, December-16 348 ISSN 2229-18 NUMERICAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER RECTANGULAR PERFORATED FIN Abstract Kuldeep

More information

Available online at ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a

Available online at   ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 83 (205 ) 34 349 7th International Conerence on Sustainability in Energy and Buildings Numerical investigation o counter low plate

More information

NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM

NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2117-2128 2117 Introduction NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM by Habib-Ollah

More information

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur

Module 2. The Science of Surface and Ground Water. Version 2 CE IIT, Kharagpur Module The Science of Surface and Ground Water Lesson Sediment Dynamics in Alluvial Rivers and Channels Instructional Objectives On completion of this lesson, the student shall be able to learn the following:.

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer Second Order Slip Flow o Cu-Water Nanoluid Over a Stretching Sheet With Heat Transer RAJESH SHARMA AND ANUAR ISHAK School o Mathematical Sciences, Faculty o Science and Technology Universiti Kebangsaan

More information

Filtration. Praktikum Mechanical Engineering. Spring semester ML F16 Tel.:

Filtration. Praktikum Mechanical Engineering. Spring semester ML F16 Tel.: Praktikum Mechanical Engineering Spring semester 2018 Filtration Supervisor: Davide Stucchi ML F16 stucchid@ptl.mavt.ethz.ch Tel.: 044 632 25 05 1 1 Table o Contents 1 TABLE OF CONTENTS... 2 2 INTRODUCTION...

More information

Sediment transport and river bed evolution

Sediment transport and river bed evolution 1 Chapter 1 Sediment transport and river bed evolution 1.1 What is the sediment transport? What is the river bed evolution? System of the interaction between flow and river beds Rivers transport a variety

More information

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 Q1. Using Cheng s formula estimate the settling velocity of a sand particle of diameter 1 mm in: (a) air; (b) water. Q2. Find the critical Shields parameter diameter

More information

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal o Engineering Research (AJER) 2015 American Journal o Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-7, pp-33-40.ajer.org Research Paper Open Access The

More information

Conservation of Mechanical Energy 8.01

Conservation of Mechanical Energy 8.01 Conservation o Mechanical Energy 8.01 Non-Conservative Forces Work done on the object by the orce depends on the path taken by the object Example: riction on an object moving on a level surace F riction

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

Chapter 4: Properties of Pure Substances. Pure Substance. Phases of a Pure Substance. Phase-Change Processes of Pure Substances

Chapter 4: Properties of Pure Substances. Pure Substance. Phases of a Pure Substance. Phase-Change Processes of Pure Substances Chapter 4: roperties o ure Substances ure Substance A substance that has a ixed chemical composition throughout is called a pure substance such as water, air, and nitrogen A pure substance does not hae

More information

Uniform Channel Flow Basic Concepts Hydromechanics VVR090

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations

More information

EFFECTS OF HEAT AND MASS TRANSFER FLOW OF A JEFFREY FLUID THROUGH A VERTICAL DEFORMABLE POROUS STRATUM

EFFECTS OF HEAT AND MASS TRANSFER FLOW OF A JEFFREY FLUID THROUGH A VERTICAL DEFORMABLE POROUS STRATUM International Journal o Mechanical Engineering and Technolog (IJMET) Volume 9, Issue, October 8, pp. 8 35, Article ID: IJMET_9 Available online at http://www.iaeme.com/ijmet/issues.asp?jtpe=ijmet&vtpe=9&itpe=

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 218, Pittsburgh, Pennsylvania Channel Structure Inluence on the Thermal-Hydraulic Perormance o Zigzag PCHE Yichao Gao Wenkai

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

HEADLOSS ESTIMATION. Mekanika Fluida 1 HST

HEADLOSS ESTIMATION. Mekanika Fluida 1 HST HEADLOSS ESTIMATION Mekanika Fluida HST Friction Factor : Major losses Laminar low Hagen-Poiseuille Turbulent (Smoot, Transition, Roug) Colebrook Formula Moody diagram Swamee-Jain 3 Laminar Flow Friction

More information

15. Physics of Sediment Transport William Wilcock

15. Physics of Sediment Transport William Wilcock 15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions

More information

Natural convection in a vertical strip immersed in a porous medium

Natural convection in a vertical strip immersed in a porous medium European Journal o Mechanics B/Fluids 22 (2003) 545 553 Natural convection in a vertical strip immersed in a porous medium L. Martínez-Suástegui a,c.treviño b,,f.méndez a a Facultad de Ingeniería, UNAM,

More information

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg

Used to estimate energy loss due to friction in pipe. D = internal diameter of pipe (feet) L = length of pipe (feet) Penn State-Harrisburg Module b: Flow in Pipes Darcy-Weisbac Robert Pitt University o Alabama and Sirley Clark Penn State-Harrisburg Darcy-Weisbac can be written or low (substitute V Q/A, were A (π/4)d in te above equation):

More information

The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider.

The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider. Equatorial twists to mid-latitude dnamics As we saw or Stommel s or Munk s wind-driven gres and or Sverdrup s balance, there was no particular problem with the equator. In act, Stommel solved his gre or

More information

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

Optimum design of high frequency transformer for compact and light weight switch mode power supplies (SMPS)

Optimum design of high frequency transformer for compact and light weight switch mode power supplies (SMPS) Optimum design o high requenc transormer or compact and light weight switch mode power supplies (SMS Karampoorian. H. R api. Gh Vahedi. A Zadehgol. A Islamic Azad Uniersit o Khorramabad, Iran Iran Uniersit

More information

Tangent Line Approximations

Tangent Line Approximations 60_009.qd //0 :8 PM Page SECTION.9 Dierentials Section.9 EXPLORATION Tangent Line Approimation Use a graphing utilit to graph. In the same viewing window, graph the tangent line to the graph o at the point,.

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER Muhammad Khairul Anuar Mohamed 1, Norhaizah Md Sari 1, Abdul Rahman Mohd Kasim 1, Nor Aida Zuraimi

More information