Prof. B.S. Thandaveswara. A short horizontal reach of a prismatic channel is considered. Further, the external

Size: px
Start display at page:

Download "Prof. B.S. Thandaveswara. A short horizontal reach of a prismatic channel is considered. Further, the external"

Transcription

1 Hdraulics 9. Speciic Force short horizontal reach o a prismatic channel is considered. Further, the external rictional orce and the eect o weight component o water can be considered as negligible. Then ( ) ( ) γ β V-βV g =P-P +Wsinθ-P I θ = 0, and P = 0 and also i β = β =, then the momentum equation simpliies can be written as γ V V = P P g The hdrostatic pressure orces P and P are respectivel P = γz and P = γz in which z and z are the distances to the centroids below the surace o low o the respective water low areas ( and ). _ z lso,v = and V =. Then, the momentum equation reduces to g centroid rom ree surace + z = + z g The two sides o the above equation are analogous and, hence, ma be generall expressed or an channel geometr as = + z g The irst term is the rate o change o momentum o the low passing through the channel section per unit weight o water, and the second term is the orce per unit weight o water. Since both terms are essentiall orce per unit weight o water, their sum is known as the speciic orce indicated as. ccordingl, it ma be expressed as =. This means that the speciic orces o sections and are equal, provided that Indian Institute o Technolog adras

2 Hdraulics the external orces and the weight eect o water in the reach between the two sections can be ignored. 9.. The momentum Function - Rectangular channels The general situation is shown in Figure in which there ma or ma not be an energ loss between sections and, and there ma or ma not be some obstacle on which there is a drag orce P. In Figure the direction o P is that o the orce exerted b the obstacle on the low. It is this orce (not the drag on the obstacle) which is to be considered in the momentum equation. P Flow P P Deinition Sketch - omentum Equation I there are an blu bod oering resistance orce (P ) to low then P - = γ The orce P should include the rictional resistance due to boundar surace, and weight o the blu bod. The ollowing are some o the particular cases that occur in the ield.energ loss E = 0, P 0 (the sluice gate). E 0, P = 0 (the simple hdraulic jump) 3. E 0, P 0 (the hdraulic jump with its ormation assisted b some obstructions in the low such as dentated sill (Forced hdraulic jump) Sequent depths o Normal Hdraulic jump Indian Institute o Technolog adras

3 Hdraulics I P = 0 then the speciic orce equations can be simpliied as ( ) q = g q ie.., = ( + g ) `The substitution q = v leads to v = ( + g ) v or = F = + g which is the well- known equation o the normal hraulic jump (NHJ). The Froude number F plas a ke role. The above equation is quadratic in /, whose solution is given b = + 8F and = + 8F In general, there are three independent quantities, and knowing two o them initiall third one can be calculated. The downstream control can create appropriate conditions to orm the jump. The corresponding depths and are known as conjugate or sequent depths. 9.. Speciic Force Diagram The diagram shows the variation o the depth against the speciic orce or a given channel section and discharge, is called speciic - orce diagram. This curve has two limbs C and BC. The limb BC approaches the horizontal axis asmptoticall toward the right. The limb C rises upward and extends indeinitel to the right. For a given value o the speciic orce, the curve has two possible depths and. These two depths constitute the initial and sequent depths o a hdraulic jump (see box). t point C the speciic orce is minimum at the critical depth (see box). Indian Institute o Technolog adras

4 Hdraulics 3 C Speciic-orce Speciic-orce diagram B C is the point o minimum speciic orce or a given discharge This corresponds to critical depth, C is the sub critical limb, BC is the super critical limb. For a given speciic energ there are two depths (Points, and 3 respectivel) known as sequent depths. The dierence between points and 3 represent minus the speciic orce at point 3. =speciic orce at point The phenomenon o the hdraulic jump occurs when low changes rom supercritical to sub critical low. Indian Institute o Technolog adras

5 Hdraulics inimum value o speciic orce: The speciic orce to be o a minimum value then the irst derivation o with d d d( z) respect to should be zero, i.e. = - + = 0 d g d d For a change die in the depth, the corresponding change d( z) click in the static moment o the water area becomes d( z) simpliies as d d = - + = 0 d g d d. Then the above equation Since, d / d = T, / = V, and / T = D. the above equation reduces to V D = g This is the criterion or the critical low condition (Froude number =). Thereore, the depth at the minimum value o the speciic orce is the critical depth. In other words the speciic orce is minimum or the given discharge at the critical state o low Comparison between speciic orce and speciic energ For a given speciic energ E, the speciic - energ curve indicates two possible depths, namel, a low stage in the supercritical low region and a high stage in the sub critical low region. For a given value o, the speciic-orce curve also indicates two possible depths, namel, an initial depth in the supercritical region and a sequent depth in the sub critical low region. I the low stage and the initial depth are both equal to. Then the sequent depth is alwas less than the high stage. Furthermore, the energ content E or the depth is less than the energ content E or the depth. Hence, in order to maintain a constant value o, the depth o low ma be changed rom to which results in loss o speciic energ is E= E E. Indian Institute o Technolog adras

6 Hdraulics 0 Sluice 0 0 gate E c 0 c c E E Hdraulic Speciic-orce jump Speciic-energ diagram diagram Hdraulic jump at sluice gate outlet E P P d _ z T d P P B C P" P Centroid C Note: c 0 E 0 45 or a channel E o zero or small E E (a) (b) (c) slope Speciic-orce curve supplemented with speciic-energ curve. (a) Speciic-energ curve; (b) channel section; (c) speciic-orce curve c P Specic energ diagram. Given E as initial depth (point P ). Initial depth is super critical depth.. Corresponding to E the alternate depth on sub critical limb P 3. The sequent depth due to hdraulic jump is and the corresponding speciic Speciic orce diagram. Corresponding to initial depth speciic orce is (Point P). Initial depth is super critical depth.. Corresponding to alternate depth the speciic orce is point P. 3. The corresponding speciic orce or the sequent depth is. In other words or Normal Hdraulic Jump, the upstream and downstream speciic orces are the same. 4. The speciic orce corresponding to sequent depth is indicated b the point P. Indian Institute o Technolog adras

7 Hdraulics In Hdraulic jump energ loss takes place. The depth corresponding to given E at high stage is known as alternate depth to and vice versa. Whereas the depths due to jump are known as sequent depths., are sequent depths., are alternate depths. Indian Institute o Technolog adras

Experiment 7 Energy Loss in a Hydraulic Jump

Experiment 7 Energy Loss in a Hydraulic Jump Experiment 7 Energ Loss in a Hdraulic Jump n Purpose: The purpose of this experiment is to examine the transition from supercritical (rapid) flow to subcritical (slow) flow in an open channel and to analze

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

28.2 Classification of Jumps

28.2 Classification of Jumps 28.2 Classification of Jumps As mentioned earlier, the supercritical flow Froude number influences the characteristics of the hydraulic jump. Bradley and Peterka, after extensive experimental investigations,

More information

Hydraulic jump (lab. scale)

Hydraulic jump (lab. scale) Hdraulic jump (lab. scale) http://www.outube.com/watch?v=c x6-_ejhdxy Hdraulic jump (field scale) http://www.outube.com/watch?v=h 45FauagdXw Downstream elevation (or Tail water) conditions are controlling

More information

Water Flow in Open Channels

Water Flow in Open Channels The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics - ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows

More information

What about water... What about open channel flow... Continuity Equation. HECRAS Basic Principles of Water Surface Profile Computations

What about water... What about open channel flow... Continuity Equation. HECRAS Basic Principles of Water Surface Profile Computations What about water... HECRA Basic Principles o Water urace Proile Computations b G. Parodi WR ITC The Netherlands Incompressible luid must increase or decrease its velocit and depth to adjust to the channel

More information

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

VARIED FLOW IN OPEN CHANNELS

VARIED FLOW IN OPEN CHANNELS Chapter 15 Open Channels vs. Closed Conduits VARIED FLOW IN OPEN CHANNELS Fluid Mechanics, Spring Term 2011 In a closed conduit there can be a pressure gradient that drives the flow. An open channel has

More information

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 04 Gradually Varied Flow Lecture No. # 07 Rapidly Varied Flow: Hydraulic Jump

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

NOTES ON OPEN CHANNEL FLOW

NOTES ON OPEN CHANNEL FLOW NOTES ON OPEN CHANNEL FLOW Prof. Marco Pilotti DICATAM, niversità degli Studi di Brescia Profili di moto permanente in un canale e in una serie di due canali - Boudine, 86 OPEN CHANNEL FLOW: uniform motion

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

THEORY AND GEOMETRY COMPARISON AMONG INCLINED FREE - OVER SILL - REPELLED HYDRAULIC JUMPS

THEORY AND GEOMETRY COMPARISON AMONG INCLINED FREE - OVER SILL - REPELLED HYDRAULIC JUMPS ABSTRACT THEORY AND GEOMETRY COMPARISON AMONG INCLINED FREE - OVER SILL - REPELLED HYDRAULIC JUMPS J. D. Demetriou In this study, which is based on recent laboratory measurements by the author and further

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow.

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. P10.5 Water flows down a rectangular channel that is 4 ft wide and ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. Solution: Convert the flow rate from 15,000 gal/min

More information

Resistance in Open Channel Hydraulics

Resistance in Open Channel Hydraulics 16.3.1 Resistance in Open Channel Hdraulics I Manning and Chez equations are compared e1 2 3 1 1 1 2 0 = 2 2 0 1 R S CR S n 21 1-3 2 6 R R C= = n n 1 6 R C= n For laminar low: K R R e1 VR = VR K= 2 2 8gSR

More information

8.3 Design of Base Plate for Thickness

8.3 Design of Base Plate for Thickness 8.3 Design o Base Plate or Thickness 8.3.1 Design o base plate or thickness (Elastic Design) Upto this point, the chie concern has been about the concrete oundation, and methods o design have been proposed

More information

EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP

EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 255 EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP O. S. Rageh Irrigation & Hydraulics Dept., Faculty of

More information

Conservation of Mechanical Energy 8.01

Conservation of Mechanical Energy 8.01 Conservation o Mechanical Energy 8.01 Non-Conservative Forces Work done on the object by the orce depends on the path taken by the object Example: riction on an object moving on a level surace F riction

More information

Lateral Inflow into High-Velocity Channels

Lateral Inflow into High-Velocity Channels Lateral Inflow into High-Velocity Channels by Richard L. Stockstill PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) investigates lateral flow discharging into a high-velocity channel.

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance We begin by returning to our system o equations or low o a layer o uniorm density on a rotating earth. du dv h + [ u( H + h)] + [ v( H t y d

More information

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun.

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun. International Journal o Scientiic & Engineering search, Volume 7, Issue 12, December-16 348 ISSN 2229-18 NUMERICAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER RECTANGULAR PERFORATED FIN Abstract Kuldeep

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

CEE 3310 Open Channel Flow, Nov. 26,

CEE 3310 Open Channel Flow, Nov. 26, CEE 3310 Open Channel Flow, Nov. 6, 018 175 8.10 Review Open Channel Flow Gravity friction balance. y Uniform Flow x = 0 z = S 0L = h f y Rapidly Varied Flow x 1 y Gradually Varied Flow x 1 In general

More information

Hydraulics Part: Open Channel Flow

Hydraulics Part: Open Channel Flow Hydraulics Part: Open Channel Flow Tutorial solutions -by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of

More information

Gradually Varied Flow I+II. Hydromechanics VVR090

Gradually Varied Flow I+II. Hydromechanics VVR090 Gradually Varied Flow I+II Hydromechanics VVR090 Gradually Varied Flow Depth of flow varies with longitudinal distance. Occurs upstream and downstream control sections. Governing equation: dy dx So Sf

More information

Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

More information

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU LECTURE NOTES - VIII «LUID MECHNICS» Istanbul Technical Universit College of Civil Engineering Civil Engineering Department Hdraulics Division CHPTER 8 DIMENSIONL NLYSIS 8. INTRODUCTION Dimensional analsis

More information

3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH

3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH 3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH Critical Depth in Non-Rectangular Channels Consider an irregular channel: da w dd dd d Specific energy is defined as: E

More information

( 1) ( 2) ( 1) nan integer, since the potential is no longer simple harmonic.

( 1) ( 2) ( 1) nan integer, since the potential is no longer simple harmonic. . Anharmonic Oscillators Michael Fowler Landau (para 8) considers a simple harmonic oscillator with added small potential energy terms mα + mβ. We ll simpliy slightly by dropping the term, to give an equation

More information

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv

CJ57.P.003 REASONING AND SOLUTION According to the impulse-momentum theorem (see Equation 7.4), F t = mv Solution to HW#7 CJ57.CQ.003. RASONNG AND SOLUTON a. Yes. Momentum is a ector, and the two objects hae the same momentum. This means that the direction o each object s momentum is the same. Momentum is

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATE-FIN AND PIN-FIN HEAT SINKS

More information

SOE2156: Fluids Lecture 7

SOE2156: Fluids Lecture 7 Weirs and SOE2156: Fluids Lecture 7 Vee Vee Last lecture { assumed the channel was uniform (constant depth, shape, slope etc.) { steady uniform Found that : location of free surface to be determined 2

More information

Dr. Muhammad Ali Shamim ; Internal 652

Dr. Muhammad Ali Shamim ; Internal 652 Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051-904765; Internal 65 Channel Tranistions A channel transition is defined as change in channel cross section e.g. change in channel width and/or channel

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider.

The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider. Equatorial twists to mid-latitude dnamics As we saw or Stommel s or Munk s wind-driven gres and or Sverdrup s balance, there was no particular problem with the equator. In act, Stommel solved his gre or

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Uniform Flow in Open Channels

Uniform Flow in Open Channels 1 UNIT 2 Uniform Flow in Open Channels Lecture-01 Introduction & Definition Open-channel flow, a branch of hydraulics, is a type of liquid flow within a conduit with a free surface, known as a channel.

More information

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018 Internal Energy o a Gas Work Done by a Gas Special Processes The First Law o Thermodynamics p Diagrams The First Law o Thermodynamics is all about the energy o a gas: how much energy does the gas possess,

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

Real scale investigation of interaction between a supercritical flow and a bottom sill. 1: physical aspects and time-averaged pressures on sill

Real scale investigation of interaction between a supercritical flow and a bottom sill. 1: physical aspects and time-averaged pressures on sill Real scale investigation of interaction between a supercritical flow and a bottom sill. 1: physical aspects and time-averaged pressures on sill D. Borsani, E. Larcan, S. Mambretti & E. Orsi Dipartimento

More information

Pulling by Pushing, Slip with Infinite Friction, and Perfectly Rough Surfaces

Pulling by Pushing, Slip with Infinite Friction, and Perfectly Rough Surfaces 1993 IEEE International Conerence on Robotics and Automation Pulling by Pushing, Slip with Ininite Friction, and Perectly Rough Suraces Kevin M. Lynch Matthew T. Mason The Robotics Institute and School

More information

Paper-II Chapter- TS-equation, Maxwell s equation. z = z(x, y) dz = dx + dz = Mdx + Ndy. dy Now. = 2 z

Paper-II Chapter- TS-equation, Maxwell s equation. z = z(x, y) dz = dx + dz = Mdx + Ndy. dy Now. = 2 z aper-ii Chapter- S-equation, Maxwell s equation Let heorem: Condition o exact dierential: Where M Hence, z x dz dx and N Q. Derive Maxwell s equations z x z zx, z dx + dz Mdx + Nd z d Now 2 z x M N x x

More information

y,z the subscript y, z indicating that the variables y and z are kept constant. The second partial differential with respect to x is written x 2 y,z

y,z the subscript y, z indicating that the variables y and z are kept constant. The second partial differential with respect to x is written x 2 y,z 8 Partial dierentials I a unction depends on more than one variable, its rate o change with respect to one o the variables can be determined keeping the others ied The dierential is then a partial dierential

More information

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool)

ROAD MAP... D-1: Aerodynamics of 3-D Wings D-2: Boundary Layer and Viscous Effects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D-1: Aerodynamics o 3-D Wings D-2: Boundary Layer and Viscous Eects D-3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I : List o Subjects

More information

The effect of disturbances on the flows under a sluice gate and past an inclined plate

The effect of disturbances on the flows under a sluice gate and past an inclined plate J. Fluid Mech. (7), vol. 576, pp. 475 49. c 7 Cambridge University Press doi:.7/s7486 Printed in the United Kingdom 475 The effect of disturbances on the flows under a sluice gate and past an inclined

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic

More information

Local energy losses at positive and negative steps in subcritical open channel flows

Local energy losses at positive and negative steps in subcritical open channel flows Local energ losses at positive and negative steps in subcritical open channel flows Nura Denli Toka and A Burcu Altan-Sakara* Middle East Technical niversit, Department of Civil Engineering, 63, Ankara,

More information

Chapter 3.8: Energy Dissipators. By Dr. Nuray Denli Tokyay

Chapter 3.8: Energy Dissipators. By Dr. Nuray Denli Tokyay Chapter 3.8: Energy Dissipators By Dr. Nuray Denli Tokyay 3.1 Introduction A stilling basin is a short length of paved channel placed at the foot of a spillway or any other source of supercritical flow

More information

Estimation of the Vehicle Sideslip Angle by Means of the State Dependent Riccati Equation Technique

Estimation of the Vehicle Sideslip Angle by Means of the State Dependent Riccati Equation Technique Proceedings o the World Congress on Engineering 7 Vol II WCE 7, Jul 5-7, 7, London, U.K. Estimation o the Vehicle Sideslip Angle b Means o the State Dependent Riccati Equation Technique S. Strano, M. Terzo

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

We would now like to turn our attention to a specific family of functions, the one to one functions.

We would now like to turn our attention to a specific family of functions, the one to one functions. 9.6 Inverse Functions We would now like to turn our attention to a speciic amily o unctions, the one to one unctions. Deinition: One to One unction ( a) (b A unction is called - i, or any a and b in the

More information

Systems & Signals 315

Systems & Signals 315 1 / 15 Systems & Signals 315 Lecture 13: Signals and Linear Systems Dr. Herman A. Engelbrecht Stellenbosch University Dept. E & E Engineering 2 Maart 2009 Outline 2 / 15 1 Signal Transmission through a

More information

Part 2: Introduction to Open-Channel Flow SPRING 2005

Part 2: Introduction to Open-Channel Flow SPRING 2005 Part : Introduction to Open-Cannel Flow SPRING 005. Te Froude number. Total ead and specific energy 3. Hydraulic jump. Te Froude Number Te main caracteristics of flows in open cannels are tat: tere is

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

EDGES AND CONTOURS(1)

EDGES AND CONTOURS(1) KOM31 Image Processing in Industrial Sstems Dr Muharrem Mercimek 1 EDGES AND CONTOURS1) KOM31 Image Processing in Industrial Sstems Some o the contents are adopted rom R. C. Gonzalez, R. E. Woods, Digital

More information

1036: Probability & Statistics

1036: Probability & Statistics 1036: Probabilit & Statistics Lecture 4 Mathematical pectation Prob. & Stat. Lecture04 - mathematical epectation cwliu@twins.ee.nctu.edu.tw 4-1 Mean o a Random Variable Let be a random variable with probabilit

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Available online at ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a

Available online at   ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 83 (205 ) 34 349 7th International Conerence on Sustainability in Energy and Buildings Numerical investigation o counter low plate

More information

Flow Characteristics and Modelling of Head-discharge Relationships for Weirs

Flow Characteristics and Modelling of Head-discharge Relationships for Weirs Chapter 8 Flow Characteristics and Modelling of Head-discharge Relationships for Weirs 8.1 Introduction In Chapters 5 and 7, the formulations of the numerical models for the simulations of flow surface

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

Chapter 8 Conservation of Energy and Potential Energy

Chapter 8 Conservation of Energy and Potential Energy Chapter 8 Conservation o Energy and Potential Energy So ar we have analyzed the motion o point-like bodies under the action o orces using Newton s Laws o Motion. We shall now use the Principle o Conservation

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 112. Homework #4. Benjamin Stahl. February 2, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 112. Homework #4. Benjamin Stahl. February 2, 2015 UIERSIY OF CALIFORIA - SAA CRUZ DEPARME OF PHYSICS PHYS Homework #4 Benjamin Stahl February, 05 PROBLEM It is given that the heat absorbed by a mole o ideal gas in a uasi-static process in which both its

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

Phys 172 Exam 1, 2010 fall, Purdue University

Phys 172 Exam 1, 2010 fall, Purdue University Phs 17 Eam 1, 010 all, Purdue Universit What to bring: 1. Your student ID we will check it!. Calculator: an calculator as long as it does not have internet/phone connection 3. Pencils Eam will take place

More information

Chapter 4: Non uniform flow in open channels

Chapter 4: Non uniform flow in open channels Chapter 4: Non uniform flow in open channels Learning outcomes By the end of this lesson, students should be able to: Relate the concept of specific energy and momentum equations in the effect of change

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the inormation contained in the joint p.d. o two r.vs.

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN EMU Physics Department www.aovgun.com Why Energy? q Why do we need a concept o energy? q The energy approach to describing motion is particularly useul

More information

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h.

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h. Uniform Flow in a Partly Full, Circular Pipe Fig. 10.6 shows a partly full, circular pipe with uniform flow. Since frictional resistance increases with wetted perimeter, but volume flow rate increases

More information

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System Fin eiciency o the newly developed Compartmented Coil o a Single Coil Twin Fan System ABSTRACT In predicting the perormance o any cooling coil, HVAC designers ace multiold challenges in designing the system

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

MAE 222 Mechanics of Fluids Final Exam with Answers January 13, Give succinct answers to the following word questions.

MAE 222 Mechanics of Fluids Final Exam with Answers January 13, Give succinct answers to the following word questions. MAE 222 Mechanics of Fluids Final Exam with Answers January 13, 1994 Closed Book Only, three hours: 1:30PM to 4:30PM 1. Give succinct answers to the following word questions. (a) Why is dimensional analysis

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Open-Channel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Non-uniform Flow *Not on

More information

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session

More information

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES EWTOS LAWS O OTIO AD RICTIOS STRAIGHT LIES ITRODUCTIO In this chapter, we shall study the motion o bodies along with the causes o their motion assuming that mass is constant. In addition, we are going

More information

Chapter 6 Reliability-based design and code developments

Chapter 6 Reliability-based design and code developments Chapter 6 Reliability-based design and code developments 6. General Reliability technology has become a powerul tool or the design engineer and is widely employed in practice. Structural reliability analysis

More information

57:020 Mechanics of Fluids and Transfer Processes CONSERVATION OF MASS, LINEAR MOMENTUM, AND ENERGY IN A SLUICE GATE FLOW. dt dt. d ( momentum.

57:020 Mechanics of Fluids and Transfer Processes CONSERVATION OF MASS, LINEAR MOMENTUM, AND ENERGY IN A SLUICE GATE FLOW. dt dt. d ( momentum. 57: Mechani of Fluids and Transfer Processes CONSERVATION OF MASS, LINEAR MOMENTUM, AND ENERGY IN A SLUICE GATE FLOW Purpose To measure the total piezometric pressure at various locations along a vertical

More information

Pre-AP Physics Chapter 1 Notes Yockers JHS 2008

Pre-AP Physics Chapter 1 Notes Yockers JHS 2008 Pre-AP Physics Chapter 1 Notes Yockers JHS 2008 Standards o Length, Mass, and Time ( - length quantities) - mass - time Derived Quantities: Examples Dimensional Analysis useul to check equations and to

More information

Linear Motion Test Review. 4. What does it mean when the sign of the acceleration is different than the sign of the velocity? Object is slowing down.

Linear Motion Test Review. 4. What does it mean when the sign of the acceleration is different than the sign of the velocity? Object is slowing down. Linear Motion Test Review 1. What is the slope o the graph o position versus time? LOOK IT UP IN YOUR NOTES 2. What is the slope o the graph o velocity versus time? LOOK IT UP IN YOUR NOTES 3. Name three

More information

Physics 20 Lesson 18 Pulleys and Systems

Physics 20 Lesson 18 Pulleys and Systems Physics 20 Lesson 18 Pulleys and Systes I. Pulley and syste probles In this lesson we learn about dynaics probles that involve several asses that are connected and accelerating together. Using the pulley

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer.

12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer. 1d Model Civil and Surveying Sotware Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 04 June 007 Revised: 3 August 007 (V8C1i) 04 February 008 (V8C1p)

More information

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by:

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by: CEE 10 Open Channel Flow, Dec. 1, 010 18 8.16 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y = 1 + y 1 1 + 8Fr 1 8.17 Rapidly Varied Flows

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information