Hydraulic jump (lab. scale)

Size: px
Start display at page:

Download "Hydraulic jump (lab. scale)"

Transcription

1 Hdraulic jump (lab. scale) x6-_ejhdxy Hdraulic jump (field scale) 45FauagdXw Downstream elevation (or Tail water) conditions are controlling the H.J. Upstream conditions defines the discharge and the supercritical regime

2 Momentum equation CV Hdraulic jump supercritical flow F> subcritical flow F< Definition: Momentum function M =h c + (h g c centroid of the area ) In a hdraulic jump the momentum is conserved and the onl external forces acting on the CS are the... pressure forces Momentum equation is applied: )when energ losses are unknown or unpredictable (tpicall for complex flow patterns) ) when CV is clearl identifiable (far from mess BC), 3) and when external forces are well defined at the BC

3 F ext d dt CV ρvd m v CS CV m v Out Out In In section CS section v F p F where : p Mom. Eq. xdirection with CV defined b sec and ρ( v v ) x F p F p F p ρgh h ρgh c c c ρgh g c h ρ ( c g ) For a rectangular section: h c / b for a rectangular sect. gb b gb M = M assuming hdrostatic pressure derivation 37 BB

4 RECTNGULR CHNNEL 8F b definition 0 (discard the negative solution) the higher F (the more supercritical the ups. flow) the larger will be / and the more dissipative will be the jump The length of the H.J. is determined experimentall: L ~ 6 (good approx.)

5 Momentum energ equation: estimate dissipation / / / / E E E E ; L F F g q g q E E E L given,, calculate c and define the supercritical condition F use the momentum equation to obtain use energ equation to estimate dissipation Let us make up an exercise:, b,? find (sequent depth)

6 M M Definition of the momentum function (rect. section): let us find the minimum Momentum dm/d b / b q g 0 q / g /3 gb gb 0 critical conditions q g q g F= minimum energ and momentum E L increases or decreases with F? E/ c =3/=.5 note that as F>> small, - increases and E loss increases E L F< F> on M/b= const keeping const and reaching the E () keeping const and reaching the E () Energ losses E L = E( )-E( )

7 Trapezoidal section BB 36, 38-39

8 TRPEZOIDL/CIRCULR CHNNELS Graphical solutions: enter with Z (given geometrical parameters m,b or d) obtain the sequent depth ratio: / (obviousl one of the two depths must be known) D 3D D vortices, persistent and inducing a larger blockage: is larger for a given F

9 Generic cross section M h c g let us find the minimum Momentum dm/d 0 d d h c d d ( h c ( h c ) ) d g d d d d ( 0 d) d d d d B g B 0 3 g critical conditions F V (gd) / F Realistic H.J dissipation and roughness 4 BB

10 Stilling basins SF stilling basin GOL: ) dissipate energ, reduce velocit and erosion in the downstream river reaches ) control the location of the hdraulic jump and its intensit 3) operate correctl for a wide range of discharges

11 T w T w Tailwater > HJ moves downstream Tailwater > HJ moves upstream Note that: if the HJ moves downstream, we would have extensive erosion on an erodible laer if HJ moves upstream, it would be submerged with limited energ dissipation. So how can we stabilize it? (F>>) (F<) sequent depths Tw = tailwater B.C. 8F The supercritical Froude number F is a ke term in the calculation of the sequent depths. HJ changes with F and thus the roughness characteristics of the stilling basins should depend on the Froude number

12 max block with w= spacing =.5w height sill=.5 Fr=3.0 TW=4.*3.99 =6.7 OK d=3.8 *3.99=5. OK Tpe II basin.5<fr < 4.5 Tpe III basin Fr > 4.5

13 Δb Δz design goal : match the sequent depth and the tailwater depth for all discharges what are the design degree of freedom? ) Δz ) widening Δb b increasing width, we lower the depth and increase the Froude number we aim at 4.5<F<9 to have a stable HJ (not wav, more controllable) unrealistic... often Tw depends on downstream conditions and it is independent of the discharge So, we work with MX

14 example case in which both the sequent depth and the tailwater change with discharge, in a different wa (note that the tailwater is a given b.c., level imposed b valle) case : =Tw at max discharge doubling the width, we reduce the difference between and Tw at all discharges case B: <Tw at max discharge, impling that at MX the HJ will be moving upstream, towards the structure (reduced dissipation, but avoid erosionok) To be safe and keep the HJ in the basin it is often recommended to have Tw=. so 0% larger EXMPLE BB

15 Tidal bores Surges (unstead hdraulic jumps) note: the B.C. V depends on the gate closure (total shut off in the case of V =0) momentum ) (V continuit g V V V V s s Demonstration BB

16 BRIDGE PIERS F ext / M M LGEBR q g 4 q g 4 c d av gs

Experiment 7 Energy Loss in a Hydraulic Jump

Experiment 7 Energy Loss in a Hydraulic Jump Experiment 7 Energ Loss in a Hdraulic Jump n Purpose: The purpose of this experiment is to examine the transition from supercritical (rapid) flow to subcritical (slow) flow in an open channel and to analze

More information

Water Flow in Open Channels

Water Flow in Open Channels The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics - ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows

More information

Prof. B.S. Thandaveswara. A short horizontal reach of a prismatic channel is considered. Further, the external

Prof. B.S. Thandaveswara. A short horizontal reach of a prismatic channel is considered. Further, the external Hdraulics 9. Speciic Force short horizontal reach o a prismatic channel is considered. Further, the external rictional orce and the eect o weight component o water can be considered as negligible. Then

More information

Chapter 3.8: Energy Dissipators. By Dr. Nuray Denli Tokyay

Chapter 3.8: Energy Dissipators. By Dr. Nuray Denli Tokyay Chapter 3.8: Energy Dissipators By Dr. Nuray Denli Tokyay 3.1 Introduction A stilling basin is a short length of paved channel placed at the foot of a spillway or any other source of supercritical flow

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

28.2 Classification of Jumps

28.2 Classification of Jumps 28.2 Classification of Jumps As mentioned earlier, the supercritical flow Froude number influences the characteristics of the hydraulic jump. Bradley and Peterka, after extensive experimental investigations,

More information

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow.

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. P10.5 Water flows down a rectangular channel that is 4 ft wide and ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. Solution: Convert the flow rate from 15,000 gal/min

More information

NOTES ON OPEN CHANNEL FLOW

NOTES ON OPEN CHANNEL FLOW NOTES ON OPEN CHANNEL FLOW Prof. Marco Pilotti DICATAM, niversità degli Studi di Brescia Profili di moto permanente in un canale e in una serie di due canali - Boudine, 86 OPEN CHANNEL FLOW: uniform motion

More information

Local energy losses at positive and negative steps in subcritical open channel flows

Local energy losses at positive and negative steps in subcritical open channel flows Local energ losses at positive and negative steps in subcritical open channel flows Nura Denli Toka and A Burcu Altan-Sakara* Middle East Technical niversit, Department of Civil Engineering, 63, Ankara,

More information

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Hydraulics Prof. Dr. Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 04 Gradually Varied Flow Lecture No. # 07 Rapidly Varied Flow: Hydraulic Jump

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Open-Channel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Non-uniform Flow *Not on

More information

EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS

EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS Tenth International Water Technology Conference, IWTC1 6, Alexandria, Egypt 19 EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS Kassem Salah El-Alfy Associate Prof., Irrigation

More information

Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April.

Guo, James C.Y. (1999). Critical Flow Section in a Collector Channel, ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April. Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 15, No. 4, April. CRITICAL FLOW SECTION IN A COLLECTOR CHANNEL By James C.Y. Guo, PhD, P.E.

More information

Study of Hydraulic Jump Length Coefficient with the Leap Generation by Canal Gate Model

Study of Hydraulic Jump Length Coefficient with the Leap Generation by Canal Gate Model American Journal of Civil Engineering 017; 5(3): 148-154 http://www.sciencepublishinggroup.com/j/ajce doi: 10.11648/j.ajce.0170503.14 ISSN: 330-879 (Print); ISSN: 330-8737 (Online) Study of Hydraulic Jump

More information

CHAPTER 1. Problem 1: (a) Trapezoidal channel with side slopes m 1 and m 2 y y

CHAPTER 1. Problem 1: (a) Trapezoidal channel with side slopes m 1 and m 2 y y CHPTER Problem : (a) Trapeoidal channel with side slopes m and m ( b + m + m ) T b + ( m ) + m + P b + + m + m D / T R / P (b) Trapeoidal channel with one vertical side Set m and m m in the equations given

More information

Chapter 4: Non uniform flow in open channels

Chapter 4: Non uniform flow in open channels Chapter 4: Non uniform flow in open channels Learning outcomes By the end of this lesson, students should be able to: Relate the concept of specific energy and momentum equations in the effect of change

More information

3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH

3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH 3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH Critical Depth in Non-Rectangular Channels Consider an irregular channel: da w dd dd d Specific energy is defined as: E

More information

What about water... What about open channel flow... Continuity Equation. HECRAS Basic Principles of Water Surface Profile Computations

What about water... What about open channel flow... Continuity Equation. HECRAS Basic Principles of Water Surface Profile Computations What about water... HECRA Basic Principles o Water urace Proile Computations b G. Parodi WR ITC The Netherlands Incompressible luid must increase or decrease its velocit and depth to adjust to the channel

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

VARIED FLOW IN OPEN CHANNELS

VARIED FLOW IN OPEN CHANNELS Chapter 15 Open Channels vs. Closed Conduits VARIED FLOW IN OPEN CHANNELS Fluid Mechanics, Spring Term 2011 In a closed conduit there can be a pressure gradient that drives the flow. An open channel has

More information

Lateral Inflow into High-Velocity Channels

Lateral Inflow into High-Velocity Channels Lateral Inflow into High-Velocity Channels by Richard L. Stockstill PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) investigates lateral flow discharging into a high-velocity channel.

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Hydraulics Part: Open Channel Flow

Hydraulics Part: Open Channel Flow Hydraulics Part: Open Channel Flow Tutorial solutions -by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of

More information

Formation Of Hydraulic Jumps On Corrugated Beds

Formation Of Hydraulic Jumps On Corrugated Beds International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol:10 No:01 37 Formation Of Hydraulic Jumps On Corrugated Beds Ibrahim H. Elsebaie 1 and Shazy Shabayek Abstract A study of the effect

More information

FORMATION OF HYDRAULIC JUMPS ON CORRUGATED BEDS

FORMATION OF HYDRAULIC JUMPS ON CORRUGATED BEDS International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 10 No: 01 40 FORMATION OF HYDRAULIC JUMPS ON CORRUGATED BEDS Ibrahim H. Elsebaie 1 and Shazy Shabayek Abstract A study of the

More information

Open-channel hydraulics

Open-channel hydraulics Open-channel hydraulics STEADY FLOW IN OPEN CHANNELS constant discharge, other geometric and flow characteristics depended only on position Uniform flow Non-uniform flow S; y; v const. i i 0 i E y 1 y

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction

Module 1 : The equation of continuity. Lecture 4: Fourier s Law of Heat Conduction 1 Module 1 : The equation of continuit Lecture 4: Fourier s Law of Heat Conduction NPTEL, IIT Kharagpur, Prof. Saikat Chakrabort, Department of Chemical Engineering Fourier s Law of Heat Conduction According

More information

Pressure Fluctuation around Chute Blocks of SAF Stilling Basins

Pressure Fluctuation around Chute Blocks of SAF Stilling Basins J. Agr. Sci. Tech. (2010) Vol. 12: 203-212 Pressure Fluctuation around Chute Blocks of SAF Stilling Basins J. Farhoudi 1 *, S. M. Sadat-Helbar 1, and N. Aziz 2 ABSTRACT Geometry of the chute blocks in

More information

CEE 3310 Open Channel Flow, Nov. 26,

CEE 3310 Open Channel Flow, Nov. 26, CEE 3310 Open Channel Flow, Nov. 6, 018 175 8.10 Review Open Channel Flow Gravity friction balance. y Uniform Flow x = 0 z = S 0L = h f y Rapidly Varied Flow x 1 y Gradually Varied Flow x 1 In general

More information

Flow Characteristics and Modelling of Head-discharge Relationships for Weirs

Flow Characteristics and Modelling of Head-discharge Relationships for Weirs Chapter 8 Flow Characteristics and Modelling of Head-discharge Relationships for Weirs 8.1 Introduction In Chapters 5 and 7, the formulations of the numerical models for the simulations of flow surface

More information

Gradually Varied Flow I+II. Hydromechanics VVR090

Gradually Varied Flow I+II. Hydromechanics VVR090 Gradually Varied Flow I+II Hydromechanics VVR090 Gradually Varied Flow Depth of flow varies with longitudinal distance. Occurs upstream and downstream control sections. Governing equation: dy dx So Sf

More information

Influence of cross channel depth variation on ship wave patterns

Influence of cross channel depth variation on ship wave patterns Dept. of Math. Universit of Oslo Mechanics and Applied Mathematics No. ISSN 9 3 August Influence of cross channel depth variation on ship wave patterns T. Torsvik 3, G. Pedersen and K. Dsthe 1 1 Department

More information

Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing

Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing Cavitation occurs whenever the pressure in the flow of water drops to the value of the pressure of the saturated water vapour, pv (at the prevailing temperature); cavities filled by vapour, and partly

More information

BACKWATERRISE DUE TO FLOW CONSTRICTION BY BRIDGE PIERS

BACKWATERRISE DUE TO FLOW CONSTRICTION BY BRIDGE PIERS Thirteenth International Water Technology Conference, IWTC 1 009, Hurghada, Egypt BACKWATERRISE DUE TO FLOW CONSTRICTION BY BRIDGE PIERS Kassem Salah El-Alfy Prof. Dr., Irrigation &Hydraulics Dept., Faculty

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 5 Channel Transitions Lecture - 1 Channel Transitions Part 1 Welcome back

More information

Saudi Journal of Civil Engineering

Saudi Journal of Civil Engineering Saudi Journal of Civil Engineering A Publication by Scholars Middle East Publishers, Dubai, United Arab Emirates ISSN 2523-2657 (Print) ISSN 2523-2231 (Online) Influence of Gravel Beds on Erosion of Sand

More information

EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP

EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 255 EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP O. S. Rageh Irrigation & Hydraulics Dept., Faculty of

More information

A note on critical flow section in collector channels

A note on critical flow section in collector channels Sādhan ā, Vol. 26, Part 5, October 2001, pp. 439 445. Printed in India A note on critical flow section in collector channels 1. Introduction SUBHASISH DEY Department of Civil Engineering, Indian Institute

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

LECTURE NOTES - III. Prof. Dr. Atıl BULU

LECTURE NOTES - III. Prof. Dr. Atıl BULU LECTURE NOTES - III «FLUID MECHANICS» Istanbul Technical University College of Civil Engineering Civil Engineering Department Hydraulics Division CHAPTER KINEMATICS OF FLUIDS.. FLUID IN MOTION Fluid motion

More information

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Open Channel Flow Part 2. Ch 10 Young, notes, handouts Open Channel Flow Part 2 Ch 10 Young, notes, handouts Uniform Channel Flow Many situations have a good approximation d(v,y,q)/dx=0 Uniform flow Look at extended Bernoulli equation Friction slope exactly

More information

CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows

CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows School of Civil Engineering at the University of Queensland CIVL4120/7020 Advanced open channel hydraulics and design - Tutorial (1) Unsteady open channel flows Attendance to tutorials is very strongly

More information

Beaver Creek Corridor Design and Analysis. By: Alex Previte

Beaver Creek Corridor Design and Analysis. By: Alex Previte Beaver Creek Corridor Design and Analysis By: Alex Previte Overview Introduction Key concepts Model Development Design Accuracy Conclusion Refresh v = Beaver Creek Site = Wittenberg Introduction Low head

More information

2.5 Constant potential vorticity flow from a wide basin: Gill s model.

2.5 Constant potential vorticity flow from a wide basin: Gill s model. 2.5 Constant potential vorticity flow from a wide basin: Gill s model. The Whitehead, Leetma and Knox (WLK) model discussed in the previous section was followed three years hence by a much more elaborate

More information

HYDRAULICS OF RIGID BOUNDARY BASINS

HYDRAULICS OF RIGID BOUNDARY BASINS HYDRAULICS OF RIGID BOUNDARY BASINS Frederick J. Watts, University of Idaho; and Daryl B. Simons, Colorado State University The mechanics of flow in a particular type of energy dissipator is investigated

More information

Part 2: Introduction to Open-Channel Flow SPRING 2005

Part 2: Introduction to Open-Channel Flow SPRING 2005 Part : Introduction to Open-Cannel Flow SPRING 005. Te Froude number. Total ead and specific energy 3. Hydraulic jump. Te Froude Number Te main caracteristics of flows in open cannels are tat: tere is

More information

Dr. Muhammad Ali Shamim ; Internal 652

Dr. Muhammad Ali Shamim ; Internal 652 Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051-904765; Internal 65 Channel Tranistions A channel transition is defined as change in channel cross section e.g. change in channel width and/or channel

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Analysis location of pressure fluctuation in hydraulic jump over roughened bed with negative step

Analysis location of pressure fluctuation in hydraulic jump over roughened bed with negative step Bulletin of Environment, Pharmacolog and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 3 (4) March 04: 03-0 04 Academ for Environment and Life Sciences, India Online ISSN 77-808 Journal s URL:http://www.bepls.com

More information

COMPARISON OF LABORATORY AND FIELD MEASUREMENTS OF BRIDGE PIER SCOUR

COMPARISON OF LABORATORY AND FIELD MEASUREMENTS OF BRIDGE PIER SCOUR COMPARISON OF LABORATORY AND FIELD MEASUREMENTS OF BRIDGE PIER SCOUR LEE, SEUNGOH, STURM, T. W., School of Civil and Environ. Engrg., Georgia Institute of Technology Atlanta, GA 30332-0512 USA GOTVALD,

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic

More information

NOTES ON OPEN CHANNEL FLOW

NOTES ON OPEN CHANNEL FLOW NOTES ON OPEN CANNEL FLOW Prof. Marco Pilotti Facoltà di Ingegneria, Università degli Studi di Brescia Profili di moto permanente in un canale e in una serie di due canali - Boudine, 86 OPEN CANNEL FLOW:

More information

Hydraulic Design of Energy Dissipators for Culverts and Channels HEC 14 September 1983 Metric Version

Hydraulic Design of Energy Dissipators for Culverts and Channels HEC 14 September 1983 Metric Version Hydraulic Design of Energy Dissipators for Culverts and Channels HEC 14 September 1983 Metric Version Welcome to HEC 14 - Hydraulic Design of Energy Dissipators for Culverts and Channels Table of Contents

More information

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK OPEN CHANNEL FLOW Numerical Methods and Computer Applications Roland Jeppson TECHNISCHE INFORMATlONSBiBUOTHEK UNIVERSITATSB'BUOTHEK HANNOVER Si. i. CRC Press Taylor &.Francis Group Boca Raton London New

More information

EFFECT OF MULTI-GATES REGULTATORS OPERATIONS ON DOWNSTREAM SCOUR PATTERN UNDER SUBMERGED FLOW CONDITIONS

EFFECT OF MULTI-GATES REGULTATORS OPERATIONS ON DOWNSTREAM SCOUR PATTERN UNDER SUBMERGED FLOW CONDITIONS Eleventh International Water Technology Conference, IWTC 007 Sharm El-Sheikh, Egypt EFFECT OF MULTI-GATES REGULTATORS OPERATIONS ON DOWNSTREAM SCOUR PATTERN UNDER SUMERGED FLOW CONDITIONS A.M. Negm, G.M.

More information

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time).

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time). 56 Review Drag & Lift Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! 8. Open-Channel Flow Pipe/duct flow closed, full,

More information

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by:

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by: CEE 10 Open Channel Flow, Dec. 1, 010 18 8.16 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y = 1 + y 1 1 + 8Fr 1 8.17 Rapidly Varied Flows

More information

THEORY AND GEOMETRY COMPARISON AMONG INCLINED FREE - OVER SILL - REPELLED HYDRAULIC JUMPS

THEORY AND GEOMETRY COMPARISON AMONG INCLINED FREE - OVER SILL - REPELLED HYDRAULIC JUMPS ABSTRACT THEORY AND GEOMETRY COMPARISON AMONG INCLINED FREE - OVER SILL - REPELLED HYDRAULIC JUMPS J. D. Demetriou In this study, which is based on recent laboratory measurements by the author and further

More information

THE EFFECTS OF OBSTACLES ON SURFACE LEVELS AND BOUNDARY RESISTANCE IN OPEN CHANNELS

THE EFFECTS OF OBSTACLES ON SURFACE LEVELS AND BOUNDARY RESISTANCE IN OPEN CHANNELS Manuscript submitted to 0th IAHR Congress, Thessaloniki, 4-9 August 00 THE EFFECTS OF OBSTACLES ON SURFACE LEVELS AND BOUNDARY RESISTANCE IN OPEN CHANNELS J. D. FENTON Department of Civil and Environmental

More information

The Impulse-Momentum Principle

The Impulse-Momentum Principle Chapter 6 /60 The Impulse-Momentum Principle F F Chapter 6 The Impulse-Momentum Principle /60 Contents 6.0 Introduction 6. The Linear Impulse-Momentum Equation 6. Pipe Flow Applications 6.3 Open Channel

More information

Linear Analysis of Coupled Equations for Sediment Transport

Linear Analysis of Coupled Equations for Sediment Transport Theme B of the XXVII IAHR Congress, San Francisco, 1-15 August, 1997, 156-161. Linear Analysis of Coupled Equations for Sediment Transport YANTAO CUI and GARY PARKER St. Anthony Falls Laboratory, University

More information

Design of Stilling Basins using Artificial Roughness

Design of Stilling Basins using Artificial Roughness Design of Stilling Basins using Artificial Roughness N. AboulAtta 1, G. Ezizah 2, N. Yousif 3, S. Fathy 4 Abstract The stilling basins are commonly used to dissipate the energy and protect the downstream

More information

Open Channel Hydraulics

Open Channel Hydraulics 30 Open Channel Hydraulics Aldo Giorgini (deceased) Donald D. Gray West Virginia University 30. Definitions and Principles Classification of Flows Flow Regimes 30. Balance and Conservation Principles Conservation

More information

THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION

THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION Journal Engineering Science and Technology Vol. 11, No. 5 (2016) 745-754 School Engineering, Taylor s University THE EFFECT OF THICKNESS OF PILLAR IN THE CHANNEL BEND TO CHANGES THE COEFFICIENT OF SUPERELEVATION

More information

Open Channel Flow - General. Hydromechanics VVR090

Open Channel Flow - General. Hydromechanics VVR090 Open Channel Flow - General Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Jan 2014, Feb 2015 SYNOPSIS 1. Introduction and Applications 2. The History of Open Channel Flow 3. Flow Classification

More information

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir

MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq Shakir ISSN 2320-9100 11 International Journal of Advance Research, IJOAR.org Volume 1, Issue 8,August 2013, Online: ISSN 2320-9100 MODELING OF LOCAL SCOUR AROUND AL-KUFA BRIDGE PIERS Saleh I. Khassaf, Saja Sadeq

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

WATER INJECTION DREDGING by L.C. van Rijn

WATER INJECTION DREDGING by L.C. van Rijn WATER INJECTION DREDGING by L.C. van Rijn (info@leovanrijn-sediment.com) Description of method Almost all harbour basins suffer from the problem of siltation of sediments. Usually, the deposited materials

More information

IGHEM 2008 MILANO 3 rd -6 th September International Group for Hydraulic Efficiency Measurements

IGHEM 2008 MILANO 3 rd -6 th September International Group for Hydraulic Efficiency Measurements ENERGY LOSS EFFICIENCY MEASURED IN HYDRAULIC JUMPS WITHIN SLOPED CHANNELS J Demetriou* and D Dimitriou** *National Technical University of Athens, Greece School of Civil Engineering Hydraulics Laboratory

More information

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h.

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h. Uniform Flow in a Partly Full, Circular Pipe Fig. 10.6 shows a partly full, circular pipe with uniform flow. Since frictional resistance increases with wetted perimeter, but volume flow rate increases

More information

Real scale investigation of interaction between a supercritical flow and a bottom sill. 1: physical aspects and time-averaged pressures on sill

Real scale investigation of interaction between a supercritical flow and a bottom sill. 1: physical aspects and time-averaged pressures on sill Real scale investigation of interaction between a supercritical flow and a bottom sill. 1: physical aspects and time-averaged pressures on sill D. Borsani, E. Larcan, S. Mambretti & E. Orsi Dipartimento

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

New analytical formulation of the De Marchi model for zero height side. weir

New analytical formulation of the De Marchi model for zero height side. weir 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 New analytical formulation of the De Marchi model for zero height side weir Giovanni Michelazzo 1 Abstract One-dimensional modeling is often used to simulate the

More information

Experimental study of a round jet in cross-flow by means of PIV

Experimental study of a round jet in cross-flow by means of PIV Experimental stud of a round jet in cross-flow b means of PIV Gennaro Cardone, Francesco G. Nese and T. Astarita Dipartimento di Energetica TErmofluidodinamica applicata e Condizionamenti Ambientali DETEC,

More information

CONSERVATION OF ENERGY FOR ACONTINUUM

CONSERVATION OF ENERGY FOR ACONTINUUM Chapter 6 CONSERVATION OF ENERGY FOR ACONTINUUM Figure 6.1: 6.1 Conservation of Energ In order to define conservation of energ, we will follow a derivation similar to those in previous chapters, using

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

OPTIMAL WATERWAY PASSAGE IN SUBMERGED CURVED DEFLECTOR FOR MINIMIZATION OF LOCAL SCOUR

OPTIMAL WATERWAY PASSAGE IN SUBMERGED CURVED DEFLECTOR FOR MINIMIZATION OF LOCAL SCOUR Thirteenth International Water Technology Conference, IWTC 13 29, Hurghada, Egypt 1331 OPTIMAL WATERWAY PASSAGE IN SUBMERGED CURVED DEFLECTOR FOR MINIMIZATION OF LOCAL SCOUR Abdelazim M. Negm 1, Gamal

More information

Chapter 4 Transport of Pollutants

Chapter 4 Transport of Pollutants 4- Introduction Phs. 645: Environmental Phsics Phsics Department Yarmouk Universit hapter 4 Transport of Pollutants - e cannot avoid the production of pollutants. hat can we do? - Transform pollutants

More information

Verification on physical model of the erosion downstream of an asymmetrical stream flow

Verification on physical model of the erosion downstream of an asymmetrical stream flow Wasserbaukolloquium 2006: Strömungssimulation im Wasserbau 1 Dresdner Wasserbauliche Mitteilungen Heft 32 Verification on physical model of the erosion downstream of an asymmetrical stream flow G. Ciaravino,

More information

Evaluation of Scour Depth around Bridge Piers with Various Geometrical Shapes

Evaluation of Scour Depth around Bridge Piers with Various Geometrical Shapes Evaluation of Scour Depth around Bridge Piers with Various Geometrical Shapes Dr. P. D. Dahe * Department of Civil Engineering, SGGSIE&T, Vishnupuri, Nanded (Maharashtra) S. B. Kharode Department of Civil

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels DEPRTMENT OF CIVIL ND ENVIRONMENTL ENGINEERING Urban Drainage: Hydraulics Solutions to problem sheet 2: Flows in open channels 1. rectangular channel of 1 m width carries water at a rate 0.1 m 3 /s. Plot

More information

MODEL TEST AND HEC-2 FLOW ROUTING/ A Thesis Presented to. The Faculty of the. Fritz J. and Dolores H. Russ College of Engineering and Technology

MODEL TEST AND HEC-2 FLOW ROUTING/ A Thesis Presented to. The Faculty of the. Fritz J. and Dolores H. Russ College of Engineering and Technology 4 DETERMINING THE LOCATION OF HYDRAULIC JUMP BY L- MODEL TEST AND HEC-2 FLOW ROUTING/ A Thesis Presented to The Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Chapter 6 The Impulse-Momentum Principle

Chapter 6 The Impulse-Momentum Principle Chapter 6 The Impulse-Momentum Principle 6. The Linear Impulse-Momentum Equation 6. Pipe Flow Applications 6.3 Open Channel Flow Applications 6.4 The Angular Impulse-Momentum Principle Objectives: - Develop

More information

31. Hydraulic Jumps in Sloping Channels

31. Hydraulic Jumps in Sloping Channels 3. Hydraulic Jumps in Sloping Channels Hydraulic jumps can occur in channels with larger bed slope that the gravitational forces acting on the flow must be included. The major problem in obtanining a useful

More information

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a

More information

MAE 222 Mechanics of Fluids Final Exam with Answers January 13, Give succinct answers to the following word questions.

MAE 222 Mechanics of Fluids Final Exam with Answers January 13, Give succinct answers to the following word questions. MAE 222 Mechanics of Fluids Final Exam with Answers January 13, 1994 Closed Book Only, three hours: 1:30PM to 4:30PM 1. Give succinct answers to the following word questions. (a) Why is dimensional analysis

More information

L. Pratt and J. Whitehead 7/14/ Parabolic Bottom

L. Pratt and J. Whitehead 7/14/ Parabolic Bottom 2.8 Parabolic Bottom Up to this point we have dealt strictly with channels with rectangular crosssections. The only allowable variation of bottom elevation has been in the longitudinal (y) direction. Although

More information

Block 3 Open channel flow

Block 3 Open channel flow Numerical Hydraulics Block 3 Open channel flow Markus Holzner Contents of the course Block 1 The equations Block Computation of pressure surges Block 3 Open channel flow (flow in rivers) Block 4 Numerical

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

Application of Energy Approach to Estimating Scour Depth

Application of Energy Approach to Estimating Scour Depth Nature and Science, (), 004, Zhang, et al, Application of Energy Approach Application of Energy Approach to Estimating Scour Depth Xiaodong Zhang 1, Zhiping Liu 1, Chuan Liang, Qiang Fu 3 (1. IWHR, Beijing

More information

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September -6, 01 Numerical simulation of hydrodynamic loading on submerged rectangular bridge decks

More information

On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems

On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems E.D. Fernández-Nieto a, C. Lucas b, T. Morales de Luna c,, S. Cordier

More information

Open Channel Flow - General. Open Channel Flow

Open Channel Flow - General. Open Channel Flow Open Channel Flow - General Hydromechanics VVR090 Open Channel Flow Open channel: a conduit for flow which has a free surface Free surface: interface between two fluids of different density Characteristics

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

INS 441E WATER RESOURCES COURSE PROJECT

INS 441E WATER RESOURCES COURSE PROJECT INS 441E WATER RESOURCES COURSE PROJECT DESCRIPTIVE LEAFLET 1. Introduction it is desired to construct a SEDIMENT DETENTION DAM in order to keep the sediment carried from the basin before it reaches the

More information

Estimation of the Minimum Floor Length Downstream Regulators under Different Flow Scenarios

Estimation of the Minimum Floor Length Downstream Regulators under Different Flow Scenarios International Science Index, Civil and Environmental Engineering Vol:6, No:8, 01 waset.org/publication/7144 Abstract The correct design of the regulators structure requires complete prediction of the ultimate

More information

A STUDY OF HYDRAULIC JUMP IN A SLOPING CHANNEL WITH ABRUPT DROP ASFIA SULTANA

A STUDY OF HYDRAULIC JUMP IN A SLOPING CHANNEL WITH ABRUPT DROP ASFIA SULTANA A STUDY OF HYDRAULIC JUMP IN A SLOPING CHANNEL WITH ABRUPT DROP ASFIA SULTANA A thesis submitted to the Department of Water Resources Engineering in partial fulfillment of the requirements for the degree

More information

Development of drop number performance for estimate hydraulic jump on vertical and sloped drop structure

Development of drop number performance for estimate hydraulic jump on vertical and sloped drop structure International Journal of the Physical Sciences Vol. 5(), pp. 678-687, 8 September, 00 Available online at http://www.academicjournals.org/ijps ISSN 99-950 00 Academic Journals Full Length Research Paper

More information