The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider.

Size: px
Start display at page:

Download "The wind-driven models of Stommel and Munk employed a linearization involving a small parameter, the Rossby number, which we need to reconsider."

Transcription

1 Equatorial twists to mid-latitude dnamics As we saw or Stommel s or Munk s wind-driven gres and or Sverdrup s balance, there was no particular problem with the equator. In act, Stommel solved his gre or no rotation o the earth at all. But we do need to return to the barotropic potential vorticit balance and discuss one aspect (involving lineariation) that is dierent in equatorial dnamics. The wind-driven models o Stommel and Munk emploed a lineariation involving a small parameter, the Rossb number, which we need to reconsider. Recall ζ [ u / L] h [ h] [ H [ ] H [ H ] + ζ ] [ + h H 1 + ( u / L) ][ ] [ 1 + ( h / H ) H R [ u / L] << 1, and [ h / H ] << 1 ], i Clearl near the equator, becomes arbitraril small and this deinition o the Rossb number leads one to suspect that the low cannot be linear. However, we can i this b recogniing that or stead lows: ζ = β ; [ β ], [ u/ L ] d 2 [ + ς] = vβ + ( uς + vς ) [ βu][1 + ( u/ βl )] dt 2 d + ζ βu 1 + ( u/ βl ) βu i [ ] [ ][ ] [ ], dt H + h H 1 + ( h / H ) H E R u L << and h H << 2 [ / β ] 1, [ / ] 1 For equatorial dnamics a new parameter R E must be small or the low to be linear in the same sense as or mid-latitudes. This is somewhat less stringent than or mid-latitudes. Tr putting some values into the two dierent

2 Rossb numbers and see which one is larger. Recall the deinition o β. At the equator it has a value o approimatel (ms) -1. The equations o motion near the equator can be written using the equatorial β-plane as ollows: du dt dv dt = g, ρ u v w + + =, d dt βv = + βu = ru +, ρ ρ rv + ρ ρ + u + v t + w Stead, linear low near the equator demands that terms with (d/dt) are set to ero. The irst two equations then reduce to the ollowing: βv = ru + ρ ρ + βu = rv + ρ ρ At the equator, the let hand sides o both o the above must vanish. This results in a balance in which ver near the surace, where the pressure gradient is small, the currents are down-wind. Where the pressure gradient is larger than the wind orcing, the currents are then down-pressure gradient. While Stommel (196, DSR) seems to have been the onl one to eplore this or the case in which the wind stress is onal and uniorm with latitude, this balance lies at the heart o the description o surace and subsurace lows at the equator, and the simpliied eplanation or the equatorial undercurrent (EUC) in Ocean Circulation. We will look urther along these lines shortl.

3 The EUC occurs at a depth where horiontal pressure gradients (higher pressure on western sides o the basins due to westward wind stress at the surace piling up water) drive an eastward low at depth. It also can appl to the meridional (north/south) lows: at the surace, where wind stress is blowing to the north across the equator, there is a surace low in the direction o the wind (South Equatorial Current, SEC), but at depth, pressure gradients ma drive an opposing low to the south. Indeed, there is evidence or mean meridional slopes o the sea surace across the equator, with generall higher sea surace height to the north as a consequence o positive meridional wind stress at the equator. Recall that the ITCZ is, in the mean, located to the north o the equator. The second equation above has been used to calculate a geostrophic onal velocit AT the equator. (Jerlov, 1953, Tellus) was the irst eplore this balance. It can be most simpl stated b neglecting the eects o riction (proportional to r ) as ollows. Let u = u g + u. In the second momentum equation above, we now have + ) g ρβ ( u + u = p + I we take the derivative o both sides o the above and evaluate it at the equator (=), this equation becomes + ρβu + ρβu g = p = + This balance assumes that = p + and that u is inite. The irst o these three equations is oten used to calculate geostrophic low at the equator, but the additional two constraints are usuall ignored. This is discussed urther b Joce (right, that s me!, 1988, JPO). A recent (as et unpublished) stud o Sverdrup dnamics in the equatorial Paciic b Kessler can be ound on the web at

4 Equatorial Dnamics 11 To eamine the onal momentum balances at the equator, we will use the simpliied dnamics contained in = p + Z=h Z= Consider the igure at the right, which we alread have used in previous notes. I we think o ρ 1 ourselves looking at the equatorial Paciic Ocean (or eample) rom a point in the northern hemisphere, the sea surace slopes upwards to the west under the trades and the pcnocline underneath slopes oppositel so as to make or no ρ 2 Z= -H Z= -H or reduced pressure gradients at depth. In the upper laer, which can be in motion, we have p =ρ 1 gh. This is constant throughout the upper laer since the densit is assumed constant. I we integrate the above equation rom the ree surace to a depth within the upper laer, we obtain = ρ g( h ) h + ( = h) ( ), but 1 ( ) = r( ) u( ), where r( ) is the riction parameter, thus ru ( ) ( ) = ( = h) ρ gh ( h ) 1 I we knew something about r(), we could solve or the onal current variation with depth using the last o the equations above. Near the surace (=h), the second term on the right o the last equation is small and the low is in the direction o the surace stress (to the west since (h) is negative on the equator). This is the westward SEC. In this simple model, the vertical integral o the onal low must vanish since there is no source or inlow rom the sides or thru the bottom o the upper laer. Near the bottom o the upper laer, r() becomes small, approaches H, the second term on the right is larger than the irst and the low becomes positive (and possibl large). This is the EUC. The depth o no onal low (between the SEC and

5 EUC), called (= ) can be written down without knowledge o the riction parameter. = r( ) u( ) = ( = ) ρ1g( h ) h, or It is merel the depth where the surace stress eactl balances the horiontal pressure gradient. This can be solved or and estimated readil rom data. As ou will recall rom an earlier discussion, the variation o surace elevation h is much smaller than that o the upper laer depth H b a actor o ρ/ρ. So we could also simpli the above even more b replacing ρ 1 h b ρh and using a igure such as ig. 5.4 (p. 148 o 2 nd ed. tetbook). Let s tr putting in some numbers and seeing what we get. From the above, we can solve or. ( = )/ gh, or h/ << 1, 2.4 nt / m, 6 h.5 m / 9km =.56 1, thus 74 m, which is indeed much larger in magnitude than the sea surace elevation. This depth separates the westward lowing South Equatorial Current on the equator rom the eastward lowing Equatorial Undercurrent. It is not a bad estimate looking at the upper panel o ig. 5.5 in the tet. Observations o the Equatorial Ocean Because o the legac o the Tropical Ocean, Global Atmosphere (TOGA ) Program, we have learned a great deal about equatorial dnamics and the reasons or changes in the equatorial circulation. One such change, in which the trades weaken signiicantl across the Paciic Ocean, the thermocline slope is greatl reduced rom west to east, and the upwelling o cold water in the eastern Paciic Ocean is terminated, is something called El Niño. This is discussed in the tet. Because o the demonstrated human dimension o these changes, mainl due to changes in tropical precipitation, a real time monitoring sstem has been maintained in the tropical Paciic with data emploed in some predictive models o equatorial dnamics than can be

6 used to orecast the occurrence o El Niño and its opposite etreme, La Niña. Access to these data can be ound on the web at: An arra o moorings is in place in the Paciic as shown below: All o the blue dots represent surace moorings with atmospheric boundar laer and subsurace temperature and velocit measurement. On selected locations on the equator, moored ADCP (acoustic Doppler current proilers) collect current proiles in the upper ocean. All o the data are telemetered back and can be accessed in realtime. For eample, one can see the wind anomalies rom the mean seasonal ccle and SST (sea surace temperature) rom 8 October 22 (below). Winds are blowing towards a SST maimum in the western tropical Paciic and cold SSTs can be seen in the east. This is close to the normal condition since the anomalies are weak.

7 Other data can be seen showing the changes in SST and in surace dnamic height on the equator, the latter coming rom the moorings. In addition to the seasonal ccle o SST on the let, one can see interannual changes in the dnamic topograph at the sea surace (relative to 5 db) showing a large reduction in the sea surace height across the Paciic between, sa, March 21 and Sept. 22. A similar but less etensive arra is in place in the tropical Atlantic, called PIRATA ( ). The mooring arra is shown net.

8 Data are somewhat more diicult to access, and oten have gaps due to mooring ailure or damage rom vandalism. The arra is still considered a pilot arra, and there are ongoing discussions to make additions/changes. But compared to the rest o the ocean, the Paciic and Atlantic tropics are in MUCH better condition or data availabilit rom in situ instrumentation.

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance We begin by returning to our system o equations or low o a layer o uniorm density on a rotating earth. du dv h + [ u( H + h)] + [ v( H t y d

More information

ESCI 485 Air/sea Interaction Lesson 5 Oceanic Boundary Layer

ESCI 485 Air/sea Interaction Lesson 5 Oceanic Boundary Layer ESCI 485 Air/sea Interaction Lesson 5 Oceanic Boundar Laer References: Descriptive Phsical Oceanograph, Pickard and Emer Introductor Dnamical Oceanograph, Pond and Pickard Principles of Ocean Phsics, Apel

More information

The General Circulation of the Oceans

The General Circulation of the Oceans The General Circulation of the Oceans In previous classes we discussed local balances (Inertial otion, Ekman Transport, Geostrophic Flows, etc.), but can we eplain the large-scale general circulation of

More information

Ocean Dynamics. The Equations of Motion 8/27/10. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI dt = fv. dt = fu.

Ocean Dynamics. The Equations of Motion 8/27/10. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI dt = fv. dt = fu. Phsical Oceanograph, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Ocean Dnamics The Equations of Motion d u dt = 1 ρ Σ F Horizontal Equations: Acceleration = Pressure

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Ocean Dynamics. Equation of motion a=σf/ρ 29/08/11. What forces might cause a parcel of water to accelerate?

Ocean Dynamics. Equation of motion a=σf/ρ 29/08/11. What forces might cause a parcel of water to accelerate? Phsical oceanograph, MSCI 300 Oceanographic Processes, MSCI 5004 Dr. Ale Sen Gupta a.sengupta@unsw.e.au Ocean Dnamics Newton s Laws of Motion An object will continue to move in a straight line and at a

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

SIO 210 Final Exam Dec Name:

SIO 210 Final Exam Dec Name: SIO 210 Final Exam Dec 8 2006 Name: Turn off all phones, pagers, etc... You may use a calculator. This exam is 9 pages with 19 questions. Please mark initials or name on each page. Check which you prefer

More information

Lab 12: El Nino Southern Oscillation

Lab 12: El Nino Southern Oscillation Name: Date: OCN 104: Our Dynamic Ocean Lab 12: El Nino Southern Oscillation Part 1: Observations of the tropical Pacific Ocean during a normal year The National Oceanographic and Atmospheric Administration

More information

Ocean surface circulation

Ocean surface circulation Ocean surface circulation Recall from Last Time The three drivers of atmospheric circulation we discussed: Differential heating Pressure gradients Earth s rotation (Coriolis) Last two show up as direct

More information

Ocean-Atmosphere Interactions and El Niño Lisa Goddard

Ocean-Atmosphere Interactions and El Niño Lisa Goddard Ocean-Atmosphere Interactions and El Niño Lisa Goddard Advanced Training Institute on Climatic Variability and Food Security 2002 July 9, 2002 Coupled Behavior in tropical Pacific SST Winds Upper Ocean

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

lecture 10 El Niño and the Southern Oscillation (ENSO) Part I sea surface height anomalies as measured by satellite altimetry

lecture 10 El Niño and the Southern Oscillation (ENSO) Part I sea surface height anomalies as measured by satellite altimetry lecture 10 El Niño and the Southern Oscillation (ENSO) Part I sea surface height anomalies as measured by satellite altimetry SPATIAL STRUCTURE OF ENSO In 1899, the Indian monsoon failed, leading to drought

More information

39.1 Gradually Varied Unsteady Flow

39.1 Gradually Varied Unsteady Flow 39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in

More information

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used.

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used. SIO 210 Final Exam December 10, 2003 11:30 2:30 NTV 330 No books, no notes. Calculators can be used. There are three sections to the exam: multiple choice, short answer, and long problems. Points are given

More information

lecture 11 El Niño/Southern Oscillation (ENSO) Part II

lecture 11 El Niño/Southern Oscillation (ENSO) Part II lecture 11 El Niño/Southern Oscillation (ENSO) Part II SYSTEM MEMORY: OCEANIC WAVE PROPAGATION ASYMMETRY BETWEEN THE ATMOSPHERE AND OCEAN The atmosphere and ocean are not symmetrical in their responses

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 25 February 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

2/15/2012. Earth System Science II EES 717 Spring 2012

2/15/2012. Earth System Science II EES 717 Spring 2012 Earth System Science II EES 717 Spring 2012 1. The Earth Interior Mantle Convection & Plate Tectonics 2. The Atmosphere - Climate Models, Climate Change and Feedback Processes 3. The Oceans Circulation;

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Turbulent Mean Flow Effects: Inclusion of Rotation

Turbulent Mean Flow Effects: Inclusion of Rotation Turbulent Mean Flow Effects: Inclusion of Rotation Ocean Edd L U H Horizontal Equation of Motion Du 1 1 f u h p Dt z where D u u u ' w' kz Dt t z Added horizontal Friction (eddies) u u 1 v u u p u u u

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 5 August 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

El Niño: How it works, how we observe it. William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory

El Niño: How it works, how we observe it. William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory El Niño: How it works, how we observe it William Kessler and the TAO group NOAA / Pacific Marine Environmental Laboratory The normal situation in the tropical Pacific: a coupled ocean-atmosphere system

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 23 April 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 24 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2 UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 2017-2018 OCEAN CIRCULATION ENV-5016A Time allowed: 2 hours Answer THREE questions Write each answer in a SEPARATE

More information

CHAPTER 7 Ocean Circulation Pearson Education, Inc.

CHAPTER 7 Ocean Circulation Pearson Education, Inc. CHAPTER 7 Ocean Circulation 2011 Pearson Education, Inc. Types of Ocean Currents Surface currents Deep currents 2011 Pearson Education, Inc. Measuring Surface Currents Direct methods Floating device tracked

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Surface Circulation. Key Ideas

Surface Circulation. Key Ideas Surface Circulation The westerlies and the trade winds are two of the winds that drive the ocean s surface currents. 1 Key Ideas Ocean water circulates in currents. Surface currents are caused mainly by

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter.

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. SIO 210 Problem Set 3 November 16, 2015 1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. (a) What is the name of this type of data display?_hovmöller

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

Ocean currents: some misconceptions and some dynamics

Ocean currents: some misconceptions and some dynamics Ocean currents: some misconceptions and some dynamics Joe LaCasce Dept. Geosciences October 30, 2012 Where is the Gulf Stream? BBC Weather Center Where is the Gulf Stream? Univ. Bergen news website (2011)

More information

Earth s Environmental System: Climate V2100. Midterm Exam. Wednesday March 12, 2003

Earth s Environmental System: Climate V2100. Midterm Exam. Wednesday March 12, 2003 Earth s Environmental System: Climate V2100 Midterm Exam Wednesday March 12, 2003 Please put your name at the top of each page If you sketch something, make it big and clear and label your axes Explain

More information

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton

Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q. 1 Q. 9 carry one mark each & Q. 10 Q. 22 carry two marks each. Q.1 The most abundant gas in the atmosphere among inert gases is (A) Helium (B) Argon (C) Neon (D) Krypton Q.2 The pair of variables that

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN Title CIRCULATION slide I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up

More information

I. Ocean Layers and circulation types

I. Ocean Layers and circulation types OCEAN CIRCULATION I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge amounts of energy to mix up the stable

More information

General Atmospheric Circulation

General Atmospheric Circulation General Atmospheric Circulation Take away Concepts and Ideas Global circulation: The mean meridional (N-S) circulation Trade winds and westerlies The Jet Stream Earth s climate zones Monsoonal climate

More information

Pacific HYCOM. E. Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, Luis Zamudio and Patrick J. Hogan

Pacific HYCOM. E. Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, Luis Zamudio and Patrick J. Hogan Pacific HYCOM E. Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, Luis Zamudio and Patrick J. Hogan Naval Research Laboratory, Stennis Space Center, MS Center for Ocean-Atmospheric Prediction Studies,

More information

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name:

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name: SIO 210 Final examination Wednesday, December 12, 2018 11:30-2:30 Eckart 227 Name: Please put your initials or name on each page, especially if you pull pages apart. Turn off all phones, ipods, etc. and

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 11 November 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 15 July 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017 ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 30 October 2017 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance

Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance Lecture 25: Ocean circulation: inferences from geostrophic and thermal wind balance November 5, 2003 Today we are going to study vertical sections through the ocean and discuss what we can learn about

More information

the 2 past three decades

the 2 past three decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2840 Atlantic-induced 1 pan-tropical climate change over the 2 past three decades 3 4 5 6 7 8 9 10 POP simulation forced by the Atlantic-induced atmospheric

More information

Name: Date: Hour: Comparing the Effects of El Nino & La Nina on the Midwest (E4.2c)

Name: Date: Hour: Comparing the Effects of El Nino & La Nina on the Midwest (E4.2c) Purpose: Comparing the Effects of El Nino & La Nina on the Midwest (E4.2c) To compare the effects of El Nino and La Nina on the Midwest United States. Background Knowledge: The El Nino-Southern Oscillation

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

NOTES AND CORRESPONDENCE. El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico

NOTES AND CORRESPONDENCE. El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico 2713 NOTES AND CORRESPONDENCE El Niño Southern Oscillation and North Atlantic Oscillation Control of Climate in Puerto Rico BJÖRN A. MALMGREN Department of Earth Sciences, University of Göteborg, Goteborg,

More information

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature.

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature. Lecture 6: The Ocean General Circulation and Climate Basic Ocean Current Systems Upper Ocean surface circulation Basic Structures Mixed Layer Wind-Driven Circulation Theories Thermohaline Circulation Ocean

More information

Where is all the water?

Where is all the water? Where is all the water? The distribution of water at the Earth's surface % of total Oceans 97.25 Ice caps and glaciers 2.05 Groundwater 0.68 Lakes 0.01 Soils 0.005 Atmosphere (as vapour) 0.001 Rivers 0.0001

More information

Seasonal Climate Watch January to May 2016

Seasonal Climate Watch January to May 2016 Seasonal Climate Watch January to May 2016 Date: Dec 17, 2015 1. Advisory Most models are showing the continuation of a strong El-Niño episode towards the latesummer season with the expectation to start

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

Rory Bingham, Peter Clarke & Phil Moore

Rory Bingham, Peter Clarke & Phil Moore The physical processes underlying interannual variations in global mean sea level as revealed by Argo and their representation in ocean models Rory Bingham, Peter Clarke & Phil Moore Newcastle University

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015 ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 9 November 2015 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS (Adopted on 4 June 203) (Adopted on 4 June 203) ANNEX 8 (Adopted on 4 June 203) MSC 92/26/Add. Annex 8, page THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) o the Convention on the International

More information

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere.

Name Date Class. growth rings of trees, fossilized pollen, and ocean. in the northern hemisphere. Lesson Outline LESSON 2 A. Long-Term Cycles 1. A(n) climate cycle takes much longer than a lifetime to complete. a. To learn about long-term climate cycles, scientists study natural records, such as growth

More information

Forced and internal variability of tropical cyclone track density in the western North Pacific

Forced and internal variability of tropical cyclone track density in the western North Pacific Forced and internal variability of tropical cyclone track density in the western North Pacific Wei Mei 1 Shang-Ping Xie 1, Ming Zhao 2 & Yuqing Wang 3 Climate Variability and Change and Paleoclimate Working

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Please be ready for today by:

Please be ready for today by: Please be ready for today by: 1. HW out for a stamp 2. Paper and pencil/pen for notes 3. Be ready to discuss what you know about El Nino after you view the video clip What is El Nino? El Nino Basics El

More information

Annual cycle of equatorial zonal currents in the Pacific

Annual cycle of equatorial zonal currents in the Pacific JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C8, 3093, 10.1029/2000JC000711, 2002 Annual cycle of equatorial zonal currents in the Pacific Noel Keenlyside 1 Department of Mathematics and Statistics,

More information

MPACT OF EL-NINO ON SUMMER MONSOON RAINFALL OF PAKISTAN

MPACT OF EL-NINO ON SUMMER MONSOON RAINFALL OF PAKISTAN MPACT OF EL-NINO ON SUMMER MONSOON RAINFALL OF PAKISTAN Abdul Rashid 1 Abstract: El-Nino is the dominant mod of inter- annual climate variability on a planetary scale. Its impact is associated worldwide

More information

b. The boundary between two different air masses is called a.

b. The boundary between two different air masses is called a. NAME Earth Science Weather WebQuest Part 1. Air Masses 1. Find out what an air mass is. http://okfirst.mesonet.org/train/meteorology/airmasses.html a. What is an air mass? An air mass is b. The boundary

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency ENSO Outlook by JMA Hiroyuki Sugimoto El Niño Monitoring and Prediction Group Climate Prediction Division Outline 1. ENSO impacts on the climate 2. Current Conditions 3. Prediction by JMA/MRI-CGCM 4. Summary

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

Boundary Layers: Homogeneous Ocean Circulation

Boundary Layers: Homogeneous Ocean Circulation Boundary Layers: Homogeneous Ocean irculation Lecture 7 by Angel Ruiz-Angulo The first explanation for the western intensification of the wind-driven ocean circulation was provided by Henry Stommel (948).

More information

Climate Forecast Applications Network (CFAN)

Climate Forecast Applications Network (CFAN) Forecast of 2018 Atlantic Hurricane Activity April 5, 2018 Summary CFAN s inaugural April seasonal forecast for Atlantic tropical cyclone activity is based on systematic interactions among ENSO, stratospheric

More information

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz.

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz. Wind Gyres Here we derive the simplest (and oldest; Stommel, 1948) theory to explain western boundary currents like the Gulf Stream, and then discuss the relation of the theory to more realistic gyres.

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

Lecture 2 ENSO toy models

Lecture 2 ENSO toy models Lecture 2 ENSO toy models Eli Tziperman 2.3 A heuristic derivation of a delayed oscillator equation Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East

More information

WATER VAPOR FLUXES OVER EQUATORIAL CENTRAL AFRICA

WATER VAPOR FLUXES OVER EQUATORIAL CENTRAL AFRICA WATER VAPOR FLUXES OVER EQUATORIAL CENTRAL AFRICA INTRODUCTION A good understanding of the causes of climate variability depend, to the large extend, on the precise knowledge of the functioning of the

More information

JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN

JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN JP1.7 A NEAR-ANNUAL COUPLED OCEAN-ATMOSPHERE MODE IN THE EQUATORIAL PACIFIC OCEAN Soon-Il An 1, Fei-Fei Jin 1, Jong-Seong Kug 2, In-Sik Kang 2 1 School of Ocean and Earth Science and Technology, University

More information

C

C C 0.8 0.4 0.2 0.0-0.2-0.6 Fig. 1. SST-wind relation in the North Pacific and Atlantic Oceans. Left panel: COADS SST (color shade), surface wind vectors, and SLP regressed upon the Pacific Decadal Oscillation

More information

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7

Atmospheric Sciences 321. Science of Climate. Lecture 20: More Ocean: Chapter 7 Atmospheric Sciences 321 Science of Climate Lecture 20: More Ocean: Chapter 7 Community Business Quiz discussion Next Topic will be Chapter 8, Natural Climate variability in the instrumental record. Homework

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

UC Irvine Faculty Publications

UC Irvine Faculty Publications UC Irvine Faculty Publications Title A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean Permalink https://escholarship.org/uc/item/5w9602dn

More information

Dynamical Analysis of Seasonal and Interannual Variability in the Equatorial Pacific*

Dynamical Analysis of Seasonal and Interannual Variability in the Equatorial Pacific* 2350 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 29 Dynamical Analysis of Seasonal and Interannual Variability in the Equatorial Pacific* XURI YU School of Oceanography, University of Washington, Seattle,

More information

Oceanography of the tropical Pacific Ocean Part 2 Historical changes and future projections

Oceanography of the tropical Pacific Ocean Part 2 Historical changes and future projections Oceanography of the tropical Pacific Ocean Part 2 Historical changes and future projections A. Ganachaud 1, A. Sen Gupta 2, J. Brown 3, L. Muir 3, with contributions from J. Orr, S. Wijffels, K. Ridgway,

More information

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Viewed from above in the Northern Hemisphere, surface winds about a subtropical high blow a. clockwise and inward. b. counterclockwise.

More information

From El Nino to Atlantic Nino: pathways as seen in the QuikScat winds

From El Nino to Atlantic Nino: pathways as seen in the QuikScat winds From El Nino to Atlantic Nino: pathways as seen in the QuikScat winds Rong Fu 1, Lei Huang 1, Hui Wang 2 Presented by Nicole Smith-Downey 1 1 Jackson School of Geosciences, The University of Texas at Austin

More information

Role of Interannual Kelvin wave propagations in the equatorial Atlantic on the Angola-Benguela current system.

Role of Interannual Kelvin wave propagations in the equatorial Atlantic on the Angola-Benguela current system. Role of Interannual Kelvin wave propagations in the equatorial Atlantic on the Angola-Benguela current system. Presented by: Rodrigue Anicet IMBOL KOUNGUE With the Collaboration of: - Dr Serena ILLIG -

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

Transformational Climate Science. The future of climate change research following the IPCC Fifth Assessment Report

Transformational Climate Science. The future of climate change research following the IPCC Fifth Assessment Report Transformational Climate Science The future of climate change research following the IPCC Fifth Assessment Report www.exeter.ac.uk/climate2014 Working Group I The challenge of climate change #climate2014

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

CANER SERTKAN ( ) WIND DRIVEN OCEAN CIRCULATION

CANER SERTKAN ( ) WIND DRIVEN OCEAN CIRCULATION CANER SERTKAN (517101005) WIND DRIVEN OCEAN CIRCULATION INTRODUCTION The waters of the ocean are continually moving in powerful currents like the Gulf Stream, in large gyres, in feautures visible from

More information

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño-Southern Oscillation

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño-Southern Oscillation Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño-Southern Oscillation Lectures 2 and 3: Background and simple ENSO models 14 september 2014, Courant Institute

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

Exam Questions & Problems

Exam Questions & Problems 1 Exam Questions & Problems Summer School on Dynamics of the North Indian Ocean National Institute of Oceanography, Dona Paula, Goa General topics that have been considered during this course are indicated

More information

Ocean cycles and climate ENSO, PDO, AMO, AO

Ocean cycles and climate ENSO, PDO, AMO, AO Ocean cycles and climate ENSO, PDO, AMO, AO 3 2.5 2 enso-index 1.5 1 0.5 0-0.5-1 enso 3.4 -index - 1996 to 1999-1.5 1996 1997 1998 1999 Bob Tisdale Bob Tisdale Bob Tisdale ENSO mechanisms animation http://esminfo.prenhall.com/science/geoanimations/animations/26_ninonina.html

More information

Thermohaline and wind-driven circulation

Thermohaline and wind-driven circulation Thermohaline and wind-driven circulation Annalisa Bracco Georgia Institute of Technology School of Earth and Atmospheric Sciences NCAR ASP Colloquium: Carbon climate connections in the Earth System Tracer

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

Combined tidal and wind driven flows and residual currents

Combined tidal and wind driven flows and residual currents 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Combined tidal and wind driven flows and residual currents 1 Lars Erik Holmedal, Hong Wang Abstract : The effect of a residual current on the combined

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information