Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Size: px
Start display at page:

Download "Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center"

Transcription

1 July London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez Abstract Buoyancy driven heat transer o water-based CuO nanoluid in a tilted enclosure with a heat conducting solid circular cylinder on the center is studied numerically with Comsol Multiphysics modeling and simulation sotware. The upper and the bottom walls o the enclosure are kept in adiabatic conditions and the sidewalls o the enclosure are in isothermal conditions. The results show that nanoparticle usage enhances the heat transer rate considerably. The results also show that average Nusselt number shows irst an increase and then a decrease as the inclination angle is increased. The maximum heat transer takes place at =45 deg or Ra=10 4 and at =30 deg or Ra=10 5 and Index Terms nanoluid natural convection enclosure Nusselt number Rayleigh number I I. INTRODUCTION N many engineering applications especially cooling o electronic equipment it is wanted to enhance the heat transer rate. But conventional heat transer luids such as water oil ethylene glycol have lower thermal conductivities. One way to enhance heat transer rate is using nanoluids in these types o application. Nanoluids are heat transer luids whose thermal conductivities are signiicantly high with respect to the conventional heat transer luids [1] [2] [7]. They are obtained by adding nanoparticles with high thermal conductivity to the base luid. In the past because o technological diiculties micron-sized particles have been used to enhance heat transer rate. Micron-sized particles in the luid cause sedimentation and clogging problems. These types o problem are eliminated by nanoparticle usage. Thermal conductivity is the most important parameter or the heat transer enhancement potential o nanoluids. The thermal conductivity o a nanoluid varies with the thermal conductivity o both the base luid and the nanoparticle the shape o the nanoparticles the surace area the distribution o the dispersed particles and the volume raction. Because o the absence o the suitable theoretical ormulas or the thermal conductivity o the nanoluid some models or solid Manuscript received March ; revised April Ahmet Cihan Kamil Kahveci and Çiğdem Susantez are rom Mechanical Engineering Department Trakya University Edirne Turkey ( ahmetcihan@trakya.edu.tr kamilkahveci@trakya.edu.tr cigdemsusantez@trakya.edu.tr; corresponding author to provide phone: ; ax: ). liquid mixtures with micron-sized particles are used to predict the thermal conductivity o the nanoluids. But in these models the thermal conductivity o the nanoluids is not the unction o the size and the distribution o the particles. Maxwell model [3] is a well known thermal conductivity model or this type o solid-liquid mixtures. In this model thermal conductivity is deined as ollows: ks 2k 2ks k k / k (1) k 2k 2 k k s s where k s and k are the thermal conductivity o the solid particle and the base luid respectively and is the solid particle volume raction. Another model or the eective thermal conductivity has been proposed by Yu and Choi [4]. They claimed that a structural model o nanoluids might consist o a bulk liquid solid nanoparticles and solid-like nanolayers. The solid-like nanolayers act as a thermal bridge between a solid nanoparticle and a bulk liquid. I the thermal conductivity o the solid-like nanolayers is assumed to be equal to the thermal conductivity o solid particles this model or spherical nanoparticle case takes the ollowing orm: 3 ks 2k 2ks k 1 k / k (2) 3 k 2k 2 k k 1 s s where is deined as the ratio o the nanolayer thickness to the original particle radius. On the other hand ater comparing the model results or =0.1 with existing experimental results a reasonably good agreement is obtained in the related study. In the present study this model was used or the thermal conductivity o the nanoluids. Brinkman [5] proposed an expression or the eective viscosity or a two-phased mixture. This model given below was used in the present study to determine the viscosity o the nanoluid. /1 2.5 (3) Xuan and Li [6] made an experimental study on the eective viscosity o the water-copper nanoluid and the transormer oil-water nanoluid in the temperature range o C and they ound that the obtained results were compatible with the Brinkman theory. There are a number o studies in the literature on natural convection heat transer o nanoluids. In one o these studies Oztop and Abu-Nada [10] made a study on the

2 July London U.K. buoyancy driven heat transer and luid low in a partially heated enclosure illed with nanoluid. The results show that the heat transer enhancement at low aspect ratios is higher than at high aspect ratios o the enclosure. Koo and Kleinstreuer [11] investigated the laminar nanoluid low in microheatsinks and ound that a high Prandtl number base luid and a high aspect ratio channel give better heat transer perormance. Maiga et al [8] studied orced convection low o nanoluids in a system consisting o uniormly heated tube and parallel coaxial and heated disks and observed that both the Reynolds number and the gap between disks have an insigniicant eect on the heat transer enhancement. Mirmasoumi and Behzadmehr [9] studied laminar mixed convection o Al 2 O 3 -based nanoluids in a horizontal tube and ound that the secondary low strength increases with the increase o the nanoparticle volume raction and increasing solid volume raction has no signiicant eect on the skin riction coeicient in the ully developed region except or the entrance region. In this study buoyancy driven heat transer and luid low o water based CuO nanoluids in a tilted enclosure with a heat conducting solid cylinder on its center is investigated numerically by the Comsol multiphysics modeling and simulation sotware. II. ANALYSIS The investigated geometry and the coordinate system are given in the Fig. 1. While the upper and the bottom walls o the enclosure are in adiabatic conditions the let and the right walls are kept at constant temperatures. * 2 * 2 * * v * v 1 P v v u v * *2 *2 x y y x y T gt TC cos Energy equation or the nanoluid 2 * 2 * u T v T T T *2 *2 x y x y Energy equation or the circular cylinder 2 * 2 * T T 0 *2 *2 x y (6) (7) (8) where u * and v * are velocity components in x and y directions respectively g is gravitational acceleration β T is coeicient o thermal expansion is kinematic viscosity is the thermal diusivity. The nondimensional variables used or the nondimensionalization o the governing equations can be deined as ollows: x y u v x y u v L L / L / L (9) 2 L * T TC 2 TH TC P P T Nondimensional governing equations can thereore be obtained as ollows: Nondimensional continuity equation u v 0 (10) x y g Nondimensional Navier Stokes equations u u P u u u v Pr x y x x y T T RaPrT sin (11) Fig.1 Geometry and coordinate system The low is assumed to be Newtonian two-dimensional steady incompressible and single phase. Depending on these assumptions the governing equations can be expressed as ollows: Continuity equation u v 0 (4) x y Navier-Stokes equations * 2 * 2 * * u * u 1 P u u u v * *2 *2 x y x x y T gt TC sin (5) u v Pr T RaPrT cos v v P v v x y y x y T Nondimensional energy equation or the nanoluid T T T T u v x y x y (12) (13) Nondimensional energy equation or the heat conducting circular cylinder T T 0 (14) x y Rayleigh and Prandtl numbers are deined as ollows: g 3 T L T HTC Pr Ra (15)

3 July London U.K. Thermophysical properties o nanoluid are deined as ollows: 1 (16) s c 1 c c (17) p p s p s 1 (18) T T s T s The appropriate boundary conditions or the nondimensional governing equations could be given as: T T(0 y) 1 T(1 y) 0 0 y T y x1 0 u 0 v 0 s s x0 (19) The boundary conditions on the surace o the solid cylinder could be given as: n q q 0 T T (20) s1 s2 s1 s2 where 1 and 2 stand or luid and cylinder. n is unit normal vector. From the continuity condition given above an extra parameter k r emerges. The parameter k r is deined as the ratio o the thermal conductivity o heat conducting circular cylinder to the thermal conductivity o the base luid. k k / k (21) r cyl Local Nusselt number can be deined as: k T Nu k 0 (22) where is the outer direction normal to the surace k is the thermal conductivity. III. RESULTS AND DISCUSSION In this study natural convection o water-based CuO nanoluids in a tilted enlosure with a heat conducting solid circular cylinder is studied numerically. Computational results are obtained by Comsol Multiphysics modelling and simulation sotware. A direct solver is used or all the examined values o inclination angle solid volume raction and Rayleigh number. The ratio o the cylinder diameter to the enclosure is taken as The ratio o the nanolayer thickness to the original particle radius is taken as =0.1. The thermal conductivity ratio is taken as k r =1. The eects o inclination angle solid volume raction and Rayleigh number on the velocity and temperature ields are investigated or the values o inclination angle and 60; or the values o solid volume raction and or the values o Rayleigh number Computational results are obtained or water based CuO nanoluid. The thermophysical properties o the luid and nanoparticle are given in Table I. Temperature and velocity ields are shown in Figs. 2-5 or various values o inclination angle solid volume raction and the Rayleigh numbers. As it is seen rom the igures the heated luid particles rise along the let wall as a result o buoyancy orces until they reach near the top wall where TABLE I THERMOPHYSICAL PROPERTIES OF THE BASE FLUID AND THE NANOPARTICLE Property Water CuO (kg/m 3 ) c p (J/kgK) k (W/mK) x10 7 (m 2 /s) T x10 6 (1/K) they turn rightward towards the sidewalls. Then they turn downward near those walls and move towards the bottom wall while they are cooled. Finally the restriction imposed by the bottom wall orces the luid particles to turn letward. The low path is completed as the colder luid is entrained to the ascending low along the heated wall. As it can also be seen rom the igures that the low structure evolves toward the boundary layer regime with increasing Rayleigh numbers. This is clear by the increasing steepness o the velocity and temperature proiles near the walls. The strength o convective circulation increases considerably with an increase o Rayleigh number due to higher buoyancy orces. The circulation strength also increases with an increase o solid volume raction. This is due to the increase in thermal energy transport rom the hot wall to the luid particles. Note that an increase in the viscous orces with increasing solid volume raction is also a act although it does not compensate or the increase in the thermal energy rom the hot wall to the nanoluid due to increased thermal conductivity. Hence convective circulation strengthens with increasing solid volume raction. With an increase o inclination angle circulation intensity shows irst an increase then a decrease. As the inclination angle is increased luid particles is directed towards to right sidewall in a more smooth way. This creates a positive eect on the circulation intensity. On the other hand the luid particles begin to move away rom the hot wall without heated enough as the inclination angle is increased. This creates a negative eect on the circulation intensity. Depending on the dominancy o these two eects circulation intensity shows irst an increase then a decrease. The variation o the average Nusselt number on the let wall with the inclination angle solid volume raction and Rayleigh number are given in Table 2. It is obviously seen rom the results that as Rayleigh number increases a considerable increase is seen at the average Nusselt number depending on the strengthening convective circulation. There is also a remarkable increase in the average heat transer rate with increasing solid volume raction due to the increase in thermal energy transport rom the hot wall to the luid particles. The average heat transer rate shows an increasing trend and then a decreasing trend as the inclination angle is increased. The maximum heat transer takes place at =45 deg or Ra=10 4 and at =30 deg or Ra=10 5 and 10 6.

4 July London U.K. IV. CONGLUSION Natural convection in an inclined enclosure which includes a heat conducting circular cylinder on its center is studied. Numerical results are obtained with Comsol Multiphysics modeling and simulation sotware. The results show that adding nanoparticles to the base heat transer luid enhances heat transer rate signiicantly. The results also show that average Nusselt number shows irst an increase and then a decrease as the inclination angle is increased. The maximum heat transer takes place at =45 deg or Ra=10 4 and at =30 deg or Ra=10 5 and ϕ=0.00 Ra=10 4 ϕ=0.00 Ra=10 5 ϕ=0.00 Ra=10 6 ϕ=0.00 Ra=10 4 ϕ=0.00 Ra=10 5 ϕ=0.00 Ra=10 6 ϕ=0.04 Ra=10 4 ϕ=0.04 Ra=10 5 ϕ=0.04 Ra=10 6 ϕ=0.04 Ra=10 4 ϕ=0.04 Ra=10 5 ϕ=0.04 Ra=10 6 ϕ=0.08 Ra=10 4 ϕ=0.08 Ra=10 5 ϕ=0.08 Ra=10 6 Fig. 2 Temperature and velocity ields or inclination angle =0. ϕ=0.08 Ra=10 4 ϕ=0.08 Ra=10 5 ϕ=0.08 Ra=10 6 Fig. 4 Temperature and velocity ields or inclination angle =45. ϕ=0.00 Ra=10 4 ϕ=0.00 Ra=10 5 ϕ=0.00 Ra=10 6 ϕ=0.00 Ra=10 4 ϕ=0.00 Ra=10 5 ϕ=0.00 Ra=10 6 ϕ=0.04 Ra=10 4 ϕ=0.04 Ra=10 5 ϕ=0.04 Ra=10 6 ϕ=0.04 Ra=10 4 ϕ=0.04 Ra=10 5 ϕ=0.04 Ra=10 6 ϕ=0.08 Ra=10 4 ϕ=0.08 Ra=10 5 ϕ=0.08 Ra=10 6 Fig. 3 Temperature and velocity ields or inclination angle =30. ϕ=0.08 Ra=10 4 ϕ=0.08 Ra=10 5 ϕ=0.08 Ra=10 6 Fig. 5 Temperature and velocity ields or inclination angle =60.

5 July London U.K. TABLE I THE AVERAGE NUSSELT NUMBER Ra ϕ Nu a REFERENCES [1] CHOI S. U. S. ZHANG Z. G. YU W. LOCKFOOD F. E. GRULKE E. A. Anomalous thermal conductivity enhancement in nanotube suspensions Appl. Phys. Lett : [2] DAS S. K. PUTRA N. THIESEN P. ROETZEL W. Temperature dependence o thermal conductivity enhancement o nanoluids ASME J. Heat Transer : [3] MAXWELL J. C. A treatise on electricity and magnetism Clarendon Oxord UK [4] YU W. CHOI S. U. S. The role o interacial layers in the enhanced thermal conductivity o nanoluids: a renovated Maxwell model J. Nanopart. Res : [5] BRINKMAN H. C. The viscosity o concentrated suspensions and solutions J. Chem. Phys : [6] XUAN Y. LI Q. Experimental research on the viscosity o nanoluids Report o Nanjing University o Science and Technology 1999 [7] EASTMAN J. A. CHOI S. U. S. LI S. SOYEZ G. THOMPSON L. J. DIMELFI R. J. Novel thermal properties o nanostructured materials J. Metastable Nanocryst. Mater : [8] MAIGA S. E. B. PALM S. J. NGUYEN C. T. ROY G. GALANIS N. Heat transer enhancement by using nanoluids in orced convection lows Int. J. Heat Fluid Flow : [9] MIRMASOUMI S. BEHZADMEHR A. Numerical study o laminar mixed convection o a nanoluid in a horizontal tube using two-phase mixture model Appl. Therm. Eng (7): [10] OZTOP H. F. ABU-NADA E. Numerical study o natural convection in partially heated rectangular enclosures illed with nanoluids Int. J. Heat Fluid Flow (5): [11] KOO J. KLEINSTREUER C. Laminar nanoluid low in microheatsinks Int. J. Heat Mass Transer :

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 388 397 6th BSME International Conerence on Thermal Engineering (ICTE 2014) Eect o tilt angle on pure mixed convection

More information

American Journal of Modern Energy

American Journal of Modern Energy American Journal o Modern Energy 2015; 1(1): 1-16 Published online June 15, 2015 (http://www.sciencepublishinggroup.com/j/ajme) doi: 10.11648/j.ajme.20150101.11 Heat Generation/Absorption Eect on Natural

More information

NUMERICAL STUDY ON THE EFFECT OF INCLINATION ANGLE ON HEAT TRANSFER PERFORMANCE IN BACK-WARD FACING STEP UTILIZING NANOFLUID

NUMERICAL STUDY ON THE EFFECT OF INCLINATION ANGLE ON HEAT TRANSFER PERFORMANCE IN BACK-WARD FACING STEP UTILIZING NANOFLUID NUMERICAL STUDY ON THE EFFECT OF INCLINATION ANGLE ON HEAT TRANSFER PERFORMANCE IN BACK-WARD FACING STEP UTILIZING NANOFLUID Saleh Etaig*, Etaig.Mahmoud@Northumbria.ac.uk Reaz Hasan, Reaz.Hasan@Northumria.ac.uk

More information

Mechanical Engineering Research Journal BUOYANT FLOW OF NANOFLUID FOR HEAT-MASS TRANSFER THROUGH A THIN LAYER

Mechanical Engineering Research Journal BUOYANT FLOW OF NANOFLUID FOR HEAT-MASS TRANSFER THROUGH A THIN LAYER Dept. o Mech. Eng. CUET Published Online March 2015 (http://www.cuet.ac.bd/merj/index.html) Mechanical Engineering Research Journal Vol. 9, pp. 712, 2013 M E R J ISSN: 1990-5491 BUOYANT FLOW OF NANOFLUID

More information

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal o Engineering Research (AJER) 2015 American Journal o Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-7, pp-33-40.ajer.org Research Paper Open Access The

More information

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID by Nader POURMAHMOUD 1,a, Ashkan GHAFOURI 1,b,*, Iraj MIRZAEE 1,c 1 Department

More information

Keywords: Finite element method; Nanofluid; Inclined magnetic field; Natural convection; Square enclosure; Brownian motion

Keywords: Finite element method; Nanofluid; Inclined magnetic field; Natural convection; Square enclosure; Brownian motion Columbia International Publishing American Journal o Heat and Mass Transer doi:10.7726/ajhmt.2016.1012 Research Article Finite Element Analysis o Unsteady Natural Convective Heat Transer and Fluid Flow

More information

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure Trans. Phenom. Nano Micro cales, 3(1): 37-45, Winter - pring 15 DOI: 1.758/tpnms.15.1.4 ORIGINAL REEARCH PAPER. MHD Natural Convection and Entropy Generation o Variable Properties Nanoluid in a Triangular

More information

Effect of Thermal Dispersion and Thermal Radiation on Boundary Payer Flow of Mhd Nanofluid With Variable Suction

Effect of Thermal Dispersion and Thermal Radiation on Boundary Payer Flow of Mhd Nanofluid With Variable Suction IOSR Journal o Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue 6 Ver. III (Nov. - Dec.6), PP 3-3 www.iosrjournals.org Eect o Thermal Dispersion and Thermal Radiation on Boundary Payer

More information

Natural Convection of Water-Based CuO Nanofluid Between Concentric Cylinders

Natural Convection of Water-Based CuO Nanofluid Between Concentric Cylinders Natural Convection o Water-Baed CuO Nanoluid Between Concentric Cylinder SEMİHA ÖZTUNA KAMİL KAHVECİ BAHA TULU TANJU Mechanical Engineering Department Trakya Univerity Mechanical Engineering Department,

More information

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime.

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime. Metallurgical and Materials Engineering Association o Metallurgical Engineers o Serbia AMES Scientiic paper UDC: 669.245 NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER AROUND A CIRCULAR CYLINDER

More information

Free convection in a porous cavity filled with nanofluids

Free convection in a porous cavity filled with nanofluids Free convection in a porous cavity illed with nanoluids GROSAN TEODOR, REVNIC CORNELIA, POP IOAN Faculty o Mathematics and Computer Sciences Babes-Bolyai University Cluj-Napoca ROMANIA tgrosan@math.ubbcluj.ro,

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

PERFORMANCE OF NANOFLUID IN FREE CONVECTIVE HEAT TRANSFER INSIDE A CAVITY WITH NON-ISOTHERMAL BOUNDARY CONDITIONS

PERFORMANCE OF NANOFLUID IN FREE CONVECTIVE HEAT TRANSFER INSIDE A CAVITY WITH NON-ISOTHERMAL BOUNDARY CONDITIONS Proceedings o the International Conerence on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015) 26 29 November, 2015, Chittagong, Bangladesh ICMERE2015-PI-058 PERFORMANCE OF NANOFUID IN FREE

More information

Prediction of Nanofluid Forced and Mixed Convection Heat Transfer through an Annular Pipe

Prediction of Nanofluid Forced and Mixed Convection Heat Transfer through an Annular Pipe Prediction of Nanofluid Forced Mixed Convection Heat Transfer through an Annular Pipe F. Benkhedda, T. Boufendi, S. Touahri Abstract This work is a numerical simulation of the 3D forced mixed convection

More information

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP IOSR Journal o Mathematics (IOSR-JM) e-issn:78-578, p-issn: 39-765X.Volume,Issue Ver. III (Jan.-Feb.6)PP 88- www.iosrjournals.org Eect o Chemical Reaction on MHD Boundary Layer Flow o Williamson Nanoluid

More information

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone Boundary-Layer Flow over a Porous Medium o a Nanoluid Past rom a Vertical Cone Mohammad Mehdi Keshtkar 1 and jamaladin hadizadeh 2 1 Assistant Proessor, Department o Mechanical Engineering, 2 MSc. Student,

More information

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID Proceedings o the International Conerence on Mechanical Engineering and Reneable Energy 7 (ICMERE7) 8 December, 7, Chittagong, Bangladesh ICMERE7-PI- BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE

More information

NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM

NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2117-2128 2117 Introduction NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM by Habib-Ollah

More information

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer International Journal o Mathematics Research. ISSN 0976-5840 Volume 9, Number (017), pp. 89-97 International Research Publication House http://www.irphouse.com Rotating Flow o Magnetite-Water Nanoluid

More information

Convective Heat Transfer Mechanisms and Clustering in Nanofluids

Convective Heat Transfer Mechanisms and Clustering in Nanofluids 2011 International Conerence on Nanotechnology and Biosensors ICBEE vol.25(2011) (2011) IACSIT ress, Singapore Convective Heat Transer Mechanisms and Clustering in Nanoluids Mohammad Hadi irahmadian Neyriz

More information

Introduction to Nanofluids

Introduction to Nanofluids Chapter 1 Introduction to Nanoluids 1.1 Introduction Thermal properties o liquids play a decisive role in heating as well as cooling applications in industrial processes. Thermal conductivity o a liquid

More information

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer Second Order Slip Flow o Cu-Water Nanoluid Over a Stretching Sheet With Heat Transer RAJESH SHARMA AND ANUAR ISHAK School o Mathematical Sciences, Faculty o Science and Technology Universiti Kebangsaan

More information

THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD

THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD THE EFFECT OF VARIATION OF BASE FLUID ON NATURAL CONVECTION IN CAVITY FILLED WITH NAOFLUID IN THE PRESENCE OF MAGNETIC FIELD Salma H. RADWAN 1*, Mohamed TEAMAH 2, Mohamed M. ABO ELAZM 3, Wael El-MAGHLANY

More information

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS THERMAL SCIENCE: Year 8, Vol., No. B, pp. 383-39 383 MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS Introduction by Mohammadreza AZIMI and Rouzbeh RIAZI

More information

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid

CFD Study of the Turbulent Forced Convective Heat Transfer of Non-Newtonian Nanofluid Reduction of Parasitic Currents in Simulation of Droplet Secondary Breakup with Density Ratio Higher than 60 by InterDyMFoam Iranian Journal of Chemical Engineering Vol. 11, No. 2 (Spring 2014), IAChE

More information

A Numerical Study on Mixed Convection of Water Based Cuo Nanofluids in A Lid-Driven Square Enclosure: Effects of Viscosity Models

A Numerical Study on Mixed Convection of Water Based Cuo Nanofluids in A Lid-Driven Square Enclosure: Effects of Viscosity Models Proceeding o the nd World Congre on Mechanical, Chemical, and Material Engineering (MCM'16 Budapet, Hungary Augut 3, 016 Paper No. HTFF 117 DOI: 10.11159/ht16.117 A Numerical Study on Mixed Convection

More information

A Semi-Analytical Solution for a Porous Channel Flow of a Non-Newtonian Fluid

A Semi-Analytical Solution for a Porous Channel Flow of a Non-Newtonian Fluid Journal o Applied Fluid Mechanics, Vol. 9, No. 6, pp. 77-76, 6. Available online at www.jamonline.net, ISSN 735-357, EISSN 735-3645. A Semi-Analytical Solution or a Porous Channel Flow o a Non-Newtonian

More information

EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES

EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES THERMAL SCIENCE, Year 015, Vol. 19, No. 5, pp. 161-163 161 EFFECTS OF CIRCULAR CORNERS AND ASPECT-RATIO ON ENTROPY GENERATION DUE TO NATURAL CONVECTION OF NANOFLUID FLOWS IN RECTANGULAR CAVITIES by Mahmoud

More information

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure.

Thermophysical characteristics of ZnO nanofluid in L-shape enclosure. Thermophysical characteristics of ZnO nanofluid in L-shape enclosure. Introduction Bin Wang, version 6, 05/25/2015 Conventional heat transfer fluids, such as water, ethylene glycol and engine oil, have

More information

Investigation of two phase unsteady nanofluid flow and heat transfer between moving parallel plates in the presence of the magnetic field using GM

Investigation of two phase unsteady nanofluid flow and heat transfer between moving parallel plates in the presence of the magnetic field using GM rans. Phenom. Nano Micro Scales, 4(): -8, Winter - Spring 06 DOI: 0.708/tpnms.06.0.007 ORIGINAL RESEARCH PAPER Investigation o two phase unsteady nanoluid low and heat transer between moving parallel plates

More information

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid Journal o Applied Science and Agriculture, 9() February 04, Pages: 408-47 AENSI Journals Journal o Applied Science and Agriculture ISSN 86-9 Journal ome page: www.aensiweb.com/jasa/index.tml Te Eects O

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams P Periodica Polytechnica Mechanical Engineering P 60(4), pp. 193-202, 2016 DOI: 10.3311/PPme.8511 Creative Commons Attribution b 3D Numerical Modelling o Convective Heat Transer through Two-sided Vertical

More information

VOL. 5, NO. 5, May 2015 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 5, NO. 5, May 2015 ISSN ARPN Journal of Science and Technology All rights reserved. ARPN Journal o Science and Technology 011-015. All rights reserved. http://.ejournaloscience.org Impact o Heat Transer on MHD Boundary Layer o Copper Nanoluid at a Stagnation Point Flo Past a Porous Stretching

More information

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION by Asterios Pantokratoras School o Engineering, Democritus University o Thrace, 67100

More information

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER Muhammad Khairul Anuar Mohamed 1, Norhaizah Md Sari 1, Abdul Rahman Mohd Kasim 1, Nor Aida Zuraimi

More information

Numerical Study of Forced Convective Heat Transfer of Nanofluids inside a Vertical Tube

Numerical Study of Forced Convective Heat Transfer of Nanofluids inside a Vertical Tube Research Article International Journal of Thermal Technologies ISSN 2277-4114 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Numerical Study of Forced Convective Heat

More information

A. Zamzamian * Materials and Energy Research Center (MERC), Karaj, I. R. Iran

A. Zamzamian * Materials and Energy Research Center (MERC), Karaj, I. R. Iran Int. J. Nanosci. Nanotechnol., Vol. 10, No. 2, June 2014, pp. 103-110 Entropy Generation Analysis of EG Al 2 Nanofluid Flows through a Helical Pipe A. Zamzamian * Materials and Energy Research Center (MERC),

More information

RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE

RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE by Loganathan PARASURAMAN a *, Nirmal Chand PEDDISETTY a and Ganesan PERIYANNAGOUNDER a a Department o

More information

Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids

Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids Available online at www.sciencedirect.com International Communications in Heat and Mass Transfer 35 (2008) 657 665 www.elsevier.com/locate/ichmt Natural convection heat transfer enhancement in horizontal

More information

MHD Flow of Nanofluids over an Exponentially Stretching Sheet Embedded in a Stratified Medium with Suction and Radiation Effects

MHD Flow of Nanofluids over an Exponentially Stretching Sheet Embedded in a Stratified Medium with Suction and Radiation Effects Journal o Applied Fluid Mechanics, Vol. 8, No. 1, pp. 85-93, 215. Available online at.jamonline.net, ISSN 1735-3572, EISSN 1735-3645. MHD Flo o Nanoluids over an Exponentially Stretching Sheet Embedded

More information

OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION

OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION R. S. Matos a, T. A. Laursen b, J. V. C. Vargas a, and A. Bejan c, a Universidade Federal do Paraná Departamento de Engenharia

More information

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate Journal o Magnetics (), 181-187 (017) ISSN (Print) 16-1750 ISSN (Online) 33-6656 https://doi.org/10.483/jmag.017...181 Flo and Heat Transer Analysis o Copper-ater Nanoluid ith Temperature Dependent Viscosity

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid

Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid Effect of particle volume concentration on thermo physical properties of Silicon Carbide Water based Nanofluid S. Seetaram 1, A.N.S. Sandeep 2, B. Mohan Krishna 3, S. Laxmana Kumar 4, N. Surendra Kumar

More information

Available online at ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a

Available online at   ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 83 (205 ) 34 349 7th International Conerence on Sustainability in Energy and Buildings Numerical investigation o counter low plate

More information

Critical review of heat transfer characteristics of nanofluids

Critical review of heat transfer characteristics of nanofluids Critical review of heat transfer characteristics of nanofluids Visinee Trisaksri a, Somchai Wongwises b, a Energy Division, The Joint Graduate School of Energy and Environment, King Mongkut s University

More information

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings International Journal o Mechanical Engineering and Applications 7; 5(): 6-67 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: -X (Print); ISSN: -48 (Online) Non-newtonian Rabinowitsch

More information

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS

HEAT TRANSFER STUDY IN A COAXIAL HEAT EXCHANGER USING NANOFLUIDS BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI Publicat de Universitatea Tehnică Gheorghe Asachi din Iaşi Tomul LVI (LX), Fasc. 4, 2010 Secţia CONSTRUCŢII. ĂRHITECTURĂ HEAT TRANSFER STUDY IN A COAXIAL HEAT

More information

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling.

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling. Eect o Dierent Perorations Shapes on the Thermal-hydraulic Perormance o Perorated Pinned Heat Sinks Amer Al-Damook 1,, J.L. Summers 1, N. Kapur 1, H. Thompson 1 mnajs@leeds.ac.uk, j.l.summers@leeds.ac.uk,

More information

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS

ANALYSIS OF NANOFLUIDS IN LIQUID ELECTRONIC COOLING SYSTEMS Proceedings of the ASME 2009 InterPACK Conference IPACK2009 July 19-23, 2009, San Francisco, California, USA Proceedings of InterPACK09 ASME/Pacific Rim Technical Conference and Exhibition on Packaging

More information

FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES

FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES Abbasian Arani A. A., et al.: Free Convection of a Nanofluid in a Square Cavity S283 FREE CONVECTION OF A NANOFLUID IN A SQUARE CAVITY WITH A HEAT SOURCE ON THE BOTTOM WALL AND PARTIALLY COOLED FROM SIDES

More information

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

IJRET: International Journal of Research in Engineering and Technology eissn: pissn: IJRET: International Journal o Research in Engineering and Technology eissn: 39-63 pissn: 3-738 NUMERICAL SIMULATION OF HEAT TRANSFER CHARACTERISTICS IN THIN FILM FLOW OF MHD DISSIPATIVE CARREAU NANOFLUID

More information

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL Journal of Naval Architecture and Marine Engineering December, 2010 DOI: 10.3329/jname.v7i2.3292 http://www.banglajol.info NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A

More information

NUMERICAL ANALYSIS OF MIXED CONVECTION CHARACTERISTICS INSIDE A VENTILATED CAVITY INCLUDING THE EFFECTS OF NANOPARTICLE SUSPENSIONS

NUMERICAL ANALYSIS OF MIXED CONVECTION CHARACTERISTICS INSIDE A VENTILATED CAVITY INCLUDING THE EFFECTS OF NANOPARTICLE SUSPENSIONS THERMAL SCIENCE, Year 017, Vol. 1, No. 5, pp. 05-15 05 NUMERICAL ANALYSIF MIXED CONVECTION CHARACTERISTICS INSIDE A VENTILATED CAVITY INCLUDING THE EFFECTS OF NANOPARTICLE SUSPENSIONS by Ehsan SOURTIJI

More information

Convective effects in air layers bound by cellular honeycomb arrays *

Convective effects in air layers bound by cellular honeycomb arrays * Journal o Scientiic & Industrial Research Vol. 64, August 5, pp. 6-61 Convective eects in air layers bound by cellular honeycomb arrays * Pawan Kumar 1 and N D Kaushika, * 1 Centre or Energy Studies, Indian

More information

EXPERIMENTAL STUDY ON HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR OF Al 2 O 3 NANOFLUID IN A PACKED BED COLUMN

EXPERIMENTAL STUDY ON HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR OF Al 2 O 3 NANOFLUID IN A PACKED BED COLUMN Journal o Mechanical Engineering and Sciences (JMES) ISSN (rint): 2289-4659; e-issn: 2231-8380; Volume 1, pp. 1-15, December 2011 Universiti Malaysia ahang, ekan, ahang, Malaysia DOI: http://dx.doi.org/10.15282/jmes.1.2011.1.0001

More information

Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd,

Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd, Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/atam.2014.31124 Magneto-Hydrodynamic Eect with Temperature Dependent Viscosity on Natural Convection

More information

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE

CHAPTER-III CONVECTION IN A POROUS MEDIUM WITH EFFECT OF MAGNETIC FIELD, VARIABLE FLUID PROPERTIES AND VARYING WALL TEMPERATURE CHAPER-III CONVECION IN A POROUS MEDIUM WIH EFFEC OF MAGNEIC FIELD, VARIABLE FLUID PROPERIES AND VARYING WALL EMPERAURE 3.1. INRODUCION Heat transer studies in porous media ind applications in several

More information

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID Effect of Type and Model of Nanofluid

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID Effect of Type and Model of Nanofluid Pourmahmoud, N., et al.: Numerical Study of Mixed Convection Heat Transfer in THERMAL SCIENCE, Year 015, Vol. 19, No. 5, pp. 1575-1590 1575 NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN

More information

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATE-FIN AND PIN-FIN HEAT SINKS

More information

Evaluation of Heat Transfer Enhancement and Pressure Drop Penalty of Nanofluid Flow Through a -Channel

Evaluation of Heat Transfer Enhancement and Pressure Drop Penalty of Nanofluid Flow Through a -Channel American Journal o Aerospace Engineering 18; 5(1): 47-55 http://www.sciencepublishinggroup.com//aae doi: 1.11648/.aae.1851.17 ISSN: 376-4813 (Print); ISSN: 376-481 (Online) Evaluation o Heat ranser Enhancement

More information

Natural Convection and Entropy Generation in Partially Heated Porous Wavy Cavity Saturated by a Nanofluid

Natural Convection and Entropy Generation in Partially Heated Porous Wavy Cavity Saturated by a Nanofluid Proceedings o the 5 th International Conerence o Fluid Flow, Heat and Mass Transer (FFHMT'18) Niagara Falls, Canada June 7 9, 2018 Paer No. 123 DOI: 10.11159/hmt18.123 Natural Convection and Entroy Generation

More information

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID

HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID Rita Choudhury et al. / International Journal o Engineering Science and Technology (IJEST) HYDROAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO- ELASTIC ELECTRICALLY CONDUCTING FLUID RITA CHOUDHURY Department

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

Radiation Effects on MHD Free Convective Heat and Mass Transfer Flow Past a Vertical Porous Flat Plate with Suction

Radiation Effects on MHD Free Convective Heat and Mass Transfer Flow Past a Vertical Porous Flat Plate with Suction International Journal o Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 5, May 4 Radiation Eects on MHD Free Convective Heat and Mass Transer Flow Past a Vertical Porous Flat Plate

More information

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below

Effect of Buoyancy Force on the Flow Field in a Square Cavity with Heated from Below International Journal of Discrete Mathematics 017; (): 43-47 http://www.sciencepublishinggroup.com/j/dmath doi: 10.11648/j.dmath.01700.13 Effect of Buoyancy Force on the Flow Field in a Square Cavity with

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall

Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall Heat Transfer Research, 2011, Vol. 42, No. 3 Numerical Study of Free Convection Heat Transfer in a Square Cavity with a Fin Attached to Its Cold Wall SAEID JANI, 1* MEYSAM AMINI, 2 and MOSTAFA MAHMOODI

More information

EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH JOULE HEATING AND THERMAL RADIATION

EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH JOULE HEATING AND THERMAL RADIATION International Research Journal o Engineering and Technology (IRJET) e-issn: 395-56 Volume: Issue: 9 Dec-5.irjet.net p-issn: 395-7 EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY

More information

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 2, pp. 130-143, July-December 2010 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.2.2010.3.0011

More information

Mixed Convection Characteristics of Ethylene Glycol and Water Mixture Based Al2O3 Nanofluids

Mixed Convection Characteristics of Ethylene Glycol and Water Mixture Based Al2O3 Nanofluids Proceeding o the 2 nd World Congre on Mechanical, Chemical, and Material Engineering (MCM'16) Budapet, Hungary Augut 22 23, 2016 Paper No. HTFF 116 DOI: 10.11159/ht16.116 Mixed Convection Characteritic

More information

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium Comments on Magnetohydrodynamic Unsteady Flow o A Non- Newtonian Fluid Through A Porous Medium Mostaa A.A.Mahmoud Department o Mathematics, Faculty o Science, Benha University (358), Egypt Abstract The

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Influence of rheological behavior of nanofluid on heat transfer

Influence of rheological behavior of nanofluid on heat transfer Influence of rheological behavior of nanofluid on heat transfer ADNAN RAJKOTWALA AND JYOTIRMAY BANERJEE * Department of Mechanical Engineering National Institute of Technology Surat (Gujarat) - 395007

More information

Journal of Heat and Mass Transfer Research

Journal of Heat and Mass Transfer Research Journal o Heat and Mass Transer Research 1 (014) 55-65 Journal o Heat and Mass Transer Research Journal homepage: http://jhmtr.journals.semnan.ac.ir Boundary layer lo beneath a uniorm ree stream permeable

More information

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 Arun Kumar Tiwari 1 Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University, Mathura, 281004,

More information

MIXED CONVECTION HEAT TRANSFER IN A DOUBLE LID-DRIVEN INCLINED SQUARE ENCLOSURE SUBJECTED TO Cu WATER NANOFLUID WITH PARTICLE DIAMETER OF 90 nm

MIXED CONVECTION HEAT TRANSFER IN A DOUBLE LID-DRIVEN INCLINED SQUARE ENCLOSURE SUBJECTED TO Cu WATER NANOFLUID WITH PARTICLE DIAMETER OF 90 nm Heat Transfer Research 45(1), 75 95 (2014) MIXED CONVECTION HEAT TRANSFER IN A DOUBLE LID-DRIVEN INCLINED SQUARE ENCLOSURE SUBJECTED TO Cu WATER NANOFLUID WITH PARTICLE DIAMETER OF 90 nm Mohammad Reza

More information

Free convection of nanoliquids in an enclosure with sinusoidal heating

Free convection of nanoliquids in an enclosure with sinusoidal heating IOP Conerence Series: Materials Science and Engineering PAPER OPEN ACCESS Free convection o nanoliquids in an enclosure with sinusoidal heating To cite this article: S. Sivasanaran et al 018 IOP Con. Ser.:

More information

International Journal of Thermal Sciences

International Journal of Thermal Sciences International Journal of Thermal Sciences 105 (2016) 137e158 Contents lists available at ScienceDirect International Journal of Thermal Sciences journal homepage: www. elsevier. com/ locate/ ijts Natural

More information

Prandtl Number Effect on Assisted Convective Heat Transfer through a Solar Collector

Prandtl Number Effect on Assisted Convective Heat Transfer through a Solar Collector Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Applications and Applied Mathematics: An International Journal (AAM) Special Issue No. 2 (May 2016), pp. 22 36 18th International Mathematics

More information

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids Applied Mathematics Volume 2012, Article ID 581471, 11 pages doi:10.1155/2012/581471 Research Article Cooling Intensification of a Continuously Moving Stretching Surface Using Different Types of Nanofluids

More information

NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE

NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT PLATE WITH A UNIFORM HEAT FLUX AT THE SURFACE HEFAT2007 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics Sun City, South Africa Paper number: OP2 NATURAL CONVECTIVE HEAT TRANSFER FROM A RECESSED NARROW VERTICAL FLAT

More information

Available online at ScienceDirect. Procedia Engineering 127 (2015 )

Available online at   ScienceDirect. Procedia Engineering 127 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 17 (015 ) 106 1033 International Conerence on Computational Heat and Mass Transer-015 MHD Flow o a Nanoluid Embedded with Dust

More information

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2413-2424 2413 EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY by Hicham DOGHMI *, Btissam ABOURIDA, Lahoucin BELARCHE, Mohamed

More information

Computer-Aided Simulation of Heat Transfer in Nanofluids

Computer-Aided Simulation of Heat Transfer in Nanofluids Computer-Aided Simulation of Heat Transfer in Nanofluids A.M. Sharifi, A. Emamzadeh, A. A. Hamidi, H. Farzaneh, M. Rastgarpour Abstract_ Numerical simulation and experimental investigation were used for

More information

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 218, Pittsburgh, Pennsylvania Channel Structure Inluence on the Thermal-Hydraulic Perormance o Zigzag PCHE Yichao Gao Wenkai

More information

MIXED CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A LID DRIVEN SQUARE CAVITY: A PARAMETRIC STUDY

MIXED CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A LID DRIVEN SQUARE CAVITY: A PARAMETRIC STUDY International Journal of Mechanical and Materials Engineering (IJMME), Vol. 8 (2013), No. 1, Pages: 48-57. MIXED CONVECTION HEAT TRANSFER OF NANOFLUIDS IN A LID DRIVEN SQUARE CAVITY: A PARAMETRIC STUDY

More information

EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE

EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE THERMAL SCIENCE, Year 016, Vol. 0, No., pp. 437-447 437 EFFECTS OF RADIATION ON CONVECTION HEAT TRANSFER OF Cu-WATER NANOFLUID PAST A MOVING WEDGE by Faiza A. SALAMA a,b * a Department of Mathematics,

More information

SIMULATION OF NATURAL CONVECTION HEAT TRANSFER USING NANOFLUID IN A CONCENTRIC ANNULUS

SIMULATION OF NATURAL CONVECTION HEAT TRANSFER USING NANOFLUID IN A CONCENTRIC ANNULUS THERMAL SCIENCE: Year 17, Vol. 1, No., pp. 175-186 175 SIMULATION OF NATURAL CONVECTION HEAT TRANSFER USING NANOFLUID IN A CONCENTRIC ANNULUS by Keivan FALLAH a*, Atena GHADERI b, Nima SEDAGHATIZADEH c,

More information

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 1, 89 99 89 Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle S. Parvin,

More information

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE Thamer Khalif Salem Mechanical Engineering, College of Engineering, Tikrit University, IRAQ. thamer_khalif@yahoo.com

More information