Prandtl Number Effect on Assisted Convective Heat Transfer through a Solar Collector

Size: px
Start display at page:

Download "Prandtl Number Effect on Assisted Convective Heat Transfer through a Solar Collector"

Transcription

1 Available at Appl. Appl. Math. ISSN: Applications and Applied Mathematics: An International Journal (AAM) Special Issue No. 2 (May 2016), pp th International Mathematics Conerence, March 20 22, 2014, IUB Campus, Bashundhara Dhaka, Bangladesh Prandtl Number Eect on Assisted Convective Heat Transer through a Solar Collector Rehena Nasrin *, Salma Parvin and M.A. Alim Department o Mathematics Bangladesh University o Engineering & Technology Dhaka-1000, Bangladesh * rehena@math.buet.ac.bd ABSTRACT Numerical study o the inluence o Prandtl number on orced convective heat transer through a riser pipe o a lat plate solar collector is done. The working luid is Al 2 O 3 /water nanoluid. By Finite Element Method the governing partial dierential equations are solved. The eect o the Prandtl number on the temperature and velocity ield has been depicted. Comprehensive average Nusselt number, average bulk temperature, mean velocity, mid-height temperature inside the pipe, mean output temperature and collector eiciency are presented or the governing parameter mentioned above. Nu increases by 16% with the variation o Pr rom 4.6 to 6.6 using nanoluid. Due to rising Pr heat transer rate increases but collector eiciency devalues. KEYWORDS: Assisted convection, inite element method, water-al 2 O 3 nanoluid, thermal eiciency MSC 2010 No.: 65, INTRODUCTION Solar collectors are key elements in many applications, such as building heating systems, solar drying devices, etc. Solar energy has the greatest potential o all the sources o renewable energy especially when other sources in the country have depleted. The luids with solid-sized nanoparticles suspended in them are called nanoluids. The suspended metallic or nonmetallic 22

2 AAM: Inter n. J., Special Issue, No. 2 (May 2016) 23 nanoparticles change the transport properties and heat transer characteristics o the base luid. Nanoluids are expected to exhibit superior heat transer properties compared with conventional heat transer luids. Forced convection occurs when a luid low is induced by an external orce. In other words, it is a mechanism in which luid motion is generated by an external source (like a pump, an or mixer, suction device etc.). Signiicant amounts o heat energy can be transported very eiciently by this system and it is ound very commonly in everyday lie, including central heating, air conditioning, steam turbines and in many other machines. Struckmann (2008) analyzed lat-plate solar collector where eorts had been made to combine a number o the most important actors into a single equation and thus ormulate a mathematical model which would describe the thermal perormance o the collector in a computationally eicient manner. Zambolin (2011) theoretically and experimentally perormed solar thermal collector systems and components. Sandhu (2013) experimentally studied temperature ield in lat-plate collector and heat transer enhancement with the use o insert devices. Various new conigurations o the conventional insert devices were tested over a wide range o Reynolds number ( ). Chabane et al. (2013) studied thermal perormance optimization o a lat plate solar air heater. The received energy and useul energy rates o the solar air heaters were evaluated or various air low rates were (0.0108, , , and kg.s -1 ) are investigated. Optimum values o air mass low rates were suggested maximizing the perormance o the solar collector. Mahian et al. (2013) perormed a review o the applications o nanoluids in solar energy. The eects o nanoluids on the perormance o solar collectors and solar water heaters rom the eiciency, economic and environmental consideration viewpoints and the challenges o using nanoluids in solar energy devices were discussed. Natarajan and Sathish (2009) studied role o nanoluids in solar water heater. Heat transer enhancement in solar devices is one o the key issues o energy saving and compact designs. The aim o this paper was to analyze and compare the heat transer properties o the nanoluids with the conventional luids. Eismann and Prasser (2013) investigated correction or the absorber edge eect in analytical models o lat plate solar collectors. They derived a new correlation or the in eiciency. Their correlation was easy to use or engineering purposes. The correlation allowed or more accurate eiciency/cost optimization. One o the major uncertainties o analytical models was eliminated. Wei et al. (2013) studied lat-plate solar heat collector with an integrated heat pipe. An improved structure o lat-plate solar heat collector applied in construction o the solar water heater system was proposed in this paper where the collector used one large integrated wickless heat pipe instead o side-by-side separate heat pipes. High stability and leak avoidance between the water cooling side and the solar heating side were the main advantages in their system. Nasrin and Alim (2012, 2013) studied ree and orced convective heat and mass transer with entropy generation o nanoluid having single as well as double nanoparticles considering dierent geometry namely complicated cavity, direct absorption solar collector, prism shaped

3 24 R. Nasrin et al. solar collector, solar collector having wavy absorber, lat plate solar collector etc. They analyzed nanoluid low with double nanoparticles using necessary modiication o established nanoparticles eective properties. They showed how to enhance thermal perormance o dierent types o solar collectors in their analyses. In literature review, it is seen that there has been a good number o works in the ield o heat transer system through a lat plate solar collector. But there is some scope to work with temperature, heat transer and enhancement o collector eiciency using nanoluid. In this paper, the orced convection low through the riser pipe o a lat plate solar collector is studied numerically. The objective o this paper is to present temperature and velocity proiles as well as heat transer system or the variation o Prandtl number. 2. PROBLEM FORMULATION I I be the intensity o solar radiation, incident on the aperture plane o the solar collector having a collector surace area o A, then the amount o solar radiation received by the collector is: Qi IA. (1) Basically, it is the product o the rate o transmission o the cover (λ) and the absorption rate o the absorber (к). Thus, Q recv I A. (2) As the collector absorbs heat its temperature is getting higher than that o the surrounding and heat is lost to the atmosphere by convection and radiation. The rate o heat loss (Q loss ) depends on the collector overall heat transer coeicient (U l ), the collector temperature (T col ) and ambient temperature (T amb ). So, loss l col amb Q U A T T. (3) Thus, the rate o useul energy extracted by the collector (Q usl ), expressed as a rate o extraction under steady state conditions, proportional to the rate o useul energy absorbed by the collector, less the amount lost by the collector to its surroundings. This is expressed as: Q Q Q I AU A T T. (4) usl recv loss l col amb It is also known that the rate o extraction o heat rom the collector may be measured by means o the amount o heat carried away in the luid passed through it. Thus, Q usl p out in mc T T, (5)

4 AAM: Inter n. J., Special Issue, No. 2 (May 2016) 25 where m, C p, T in and T out mass low rate, speciic heat at constant pressure, inlet and outlet luid temperature respectively. Equation (4) may be inconvenient because o the diiculty in deining the collector average temperature. It is convenient to deine a quantity that relates the actual useul energy gain o a collector to the useul gain i the whole collector surace were at the luid inlet temperature. This quantity is known as the collector heat removal actor (F R ) and is expressed as: F R mc p Tout Tin AI U T T l in amb. (6) The maximum possible useul energy gain in a solar collector occurs when the whole collector is at the inlet luid temperature. The actual useul energy gain (Q usl ), is ound by multiplying the collector heat removal actor (F R ) by the maximum possible useul energy gain. This allows the rewriting o equation (4) as: Qu F sl RAI Ul Tin Tamb. (7) The heat lux per unit area q is now denoted as Q usl A l in amb q I U T T. (8) Equation (7) is a widely used relationship or measuring collector energy gain and is generally known as the Hottel-Whillier-Bliss equation. The instantaneous thermal eiciency o the collector is: Q F usl R A I Ul Tin Tamb Tin Tamb FR FR Ul. (9) AI AI I A schematic diagram o the system and its cross sectional views are shown in Figures 1 (i)-(ii). The numerical computation is carried on taking single riser pipe o FPSC. FPSC with single riser pipe gives the average heat transer and luid low phenomena. Glass cover is at the top o the FPSC. It is made up o borosilicate which has thermal conductivity o 1.14 W/mK and reractive index o 1.47, speciic heat o 750 J/kgK and coeicient o sunlight transmission o 95%. The wavelength o visible light is roughly 700 nm. Thickness o glass cover is 0.005m. There is an air gap o 0.005m between glass cover and absorber plate. Air density = Kg/m 3, speciic heat = J/kgK and thermal conductivity = W/mK. All these properties o air domain represent air o temperature at 298K. A dark colored copper absorber plate is under the air gap. Length, width and thickness o the absorber plate are 1m, 0.15m and m

5 26 R. Nasrin et al. respectively. Coeicients o heat absorption and emission o copper absorber plate are 95% and 5% respectively. Solar radiance Absorber plate Out low Riser pipe Bonding conductance Inlow (i) Air gap Solar irradiation Glass cover Absorber plate Inlow Out low y // x Insulation Housing (ii) Figure 1. Computational domain o the FPSC (i) 3D and (ii) 2D longitudinal views The riser pipe has inner diameter 0.01 m and thickness m. The riser tube is also made in copper metal. A trapezium shaped bonding conductance o copper metal is attached to the absorber and riser pipe. The luid through the copper riser pipe is water-based nanoluid containing Al 2 O 3 nanoparticles whose thermo-physical properties are shown in Table 1. The two dimensional governing equations are:

6 AAM: Inter n. J., Special Issue, No. 2 (May 2016) 27 where u v 0, x y (10) 2 2 n u u v p u u n 2 2, x y x x y (11) 2 2 n u v v p v v n 2 2 x y y x y, (12) 2 2 u v T T n 2 2, x y x y (13) T x T y 2 2 a a k C n n p n is the thermal diusivity, 1 n s is the density,, (14) Cp 1 Cp Cp n s is the heat capacitance, n is the viscosity o Brinkman model (1952), k n k k 2k 2 k k s s k 2k k k s s is the thermal conductivity o Maxwell Garnett (MG) model (1904), ν Pr α ia the Prandtl number and

7 28 R. Nasrin et al. uinl Re ia the Reynolds number. The boundary conditions o the riser pipe are: at all solid boundaries: u = v = 0, at the solid-luid interace: k n T T k a solid y y n solid, at the inlet boundary: T T in, u = u in, at the outlet boundary: convective boundary condition p = 0, at the top surace o absorber: heat lux T k q I U T T y at outer surace o riser pipe: a a l in amb, and T y 0. Table 1. Thermo physical properties o luid and nanoparticles at 300K Physical Properties Fluid phase (Water) Al 2 O 3 C p (J/kgK) (kg/m 3 ) k (W/mK) (m 2 /s) For water based nanoluid low the expression o local Nusselt number is as ollows: Nu T kn y L kn k T k k q y ql k. (15)

8 AAM: Inter n. J., Special Issue, No. 2 (May 2016) 29 The non-dimensional orm o local heat transer rate at the riser pipe solid surace is k Nu k n Y. The above equations are non-dimensionalized by using the ollowing dimensionless, quantities X x y T Tin k, Y,. L L ql By integrating the local Nusselt number over the riser pipe, the average heat transer rate o the collector can be written as 1 L Nu Nu dx L. 0 The mean bulk temperature and average sub domain velocity o the luid inside the collector may be written as T av A A Td A da A Td A HL and Vd A A A Vav A da Vd A HL, (16) where A, L, H and V are the area, length and height o the absorber tube, magnitude o subdomain velocity, respectively. The overall heat transer loss rom the collector is the summation o three separate components, the top loss coeicient, the bottom loss coeicient and the edge loss coeicient. The empirical relations or these coeicients are mentioned by Duie and Beckman (1991) and Al-Ajlan et al. (2003) as ollows: Ul Ut Ub Ue, (17) where U t is the heat loss coeicient rom the top, U b is the heat loss coeicient rom the bottom, and U e is the heat loss coeicient rom the edges o collector. These can be calculated rom the ollowing relations:

9 30 R. Nasrin et al. U U t b N 1 Ta Tamb Ta Tamb c C T h 1 2N amb a a T amb N T a Nhamb c a N kb Ue Ae k 2L W e H, Ue, xb A xe LW, C 2 520* , and h h * N. a amb a 3. NUMERICAL IMPLEMENTATION The Galerkin inite element method Taylor and Hood (1973) and Dechaumphai (1999) is used to solve the non-dimensional governing equations along with boundary conditions. The equation o continuity has been used as a constraint due to mass conservation and this restriction may be used to ind the pressure distribution. The inite element method o Reddy (1994) is used to solve the equations (10) - (14), where the pressure P is eliminated by a constraint. The continuity equation is automatically ulilled or large values o this constraint. Then the velocity components (u, v) and temperature (T) are expanded using a basis set. The Galerkin inite element technique yields the subsequent nonlinear residual equations. Three points Gaussian quadrature is used to evaluate the integrals in these equations. The non-linear residual equations are solved using Newton Raphson method to determine the coeicients o the expansions Mesh Generation In the inite element method, the mesh generation is the technique to subdivide a domain into a set o sub-domains, called inite elements, control volume, etc. The discrete locations are deined by the numerical grid, at which the variables are to be calculated. It is basically a discrete representation o the geometric domain on which the problem is to be solved. The computational domains with irregular geometries by a collection o inite elements make the method a valuable practical tool or the solution o boundary value problems arising in various ields o engineering. Figure 2 displays the inite element mesh o the present physical domain. Figure 2. Mesh generation o the computational domain

10 AAM: Inter n. J., Special Issue, No. 2 (May 2016) Grid Independent Test An extensive mesh testing procedure is conducted to guarantee a grid-independent solution or Re = 480 and Pr = 5.8 in a solar collector. In the present work, we examine ive dierent nonuniorm grid systems with the ollowing number o elements within the resolution ield: 42,010, 99,832, 1,40,472, 1,68,040 and 1,92,548. The numerical scheme is carried out or highly precise key in the average Nusselt number or water-alumina nanoluid ( = 2%) as well as base luid ( = 0%) or the aoresaid elements to develop an understanding o the grid ineness as shown in Table 2. The scale o the average Nusselt numbers or nanoluid and clear water or 1,68,040 elements shows a little dierence with the results obtained or the other elements. Hence, considering the non-uniorm grid system o 1,68,040 elements is preerred or the computation. Table 2. Grid test at Pr = 5.8, = 2%, I = 215W/m 2 and Re = 480 Elements 42,010 99,832 1,40,472 1,68,040 1,92,548 Nu (Nanoluid) Nu (Base luid) Time (s) RESULTS AND DISCUSSION Finite element simulation is applied to perorm the analysis o laminar orced convection temperature and luid low through a riser pipe o a lat plate solar collector illed with water/alumina nanoluid. Eect o the Prandtl number (Pr) on heat transer and collector eiciency has been studied. The range o Pr or this investigation vary rom 4.6 to 6.6 where solar irradiation (I), Reynolds number (Re), and solid volume raction nanoluid () remain ixed at 215 W/m 2, 480 and 2% respectively. The mass low rate per unit area (m) is Kg/s, overall heat transer coeicient (U l ) is 8 W/m 2 K, aperature area o the collector (A) is 1.8 m 2, number o glass (N) is 1, the tilt angle o collector is 0 0 and nanoparticle size is 10 nm. Eect o Pr is shown in the Figures 3 (i)-(iii). The streamlines in the Figure 3(i) occupying the whole riser pipe is ound at the Prandtl number (Pr = 5.8). Color o streamlines at the solid suraces o riser pipe is deep blue and at the middle is red. This is due to the act that no-slip condition is maintained at the solid suraces o riser pipe. Thus maximum velocity is obtained at the middle o the pipe. Also the boundary plot represents that luid passes through the pipe and takes heat rom top surace o riser pipe. That s why boundary temperature becomes low near the inlet and gradually becomes high near the exit boundary. The temperature o top surace o riser pipe is higher than the bottom surace. Arrow plot indicates direction o luid low. From Figure

11 32 R. Nasrin et al. 3(iii) it is observed that nanoluid low enters at the let inlet opening and exits rom the right outlet opening. The eect o Prandtl number (Pr) on average Nusselt number (Nu) at the top o riser pipe, average temperature (T av ), magnitude o average velocity (V av ), mid-height temperature (T) o water-copper nanoluid, mean outlet temperature (T out ) and percentage o collector eiciency with Re = 480, I = 215W/m 2, = 2% are shown in Figures 4(i)-(vi). The values o Pr are chosen as 4.6, 5.2, 5.8 and 6.6. (i) (ii) (iii) Figure 3: Eect o Pr at 5.8 on (i) streamlines, (ii) boundary plot and (iii) arrow plot All these values o Prandtl number represent water at dierent temperatures. From the Figure 4(i) it is clearly observed that as Pr increases, heat transer rate enhances or both luids. Nu increases by 16% and 12% with the variation o Pr rom 4.6 to 6.6 or water-copper nanoluid and clear water respectively. As Pr increases average bulk temperature (T av ) o the luids decreases gradually or both luids. It is well known that increasing Prandtl number devalues luid temperature. Nanoluid has higher temperature than base luid.

12 AAM: Inter n. J., Special Issue, No. 2 (May 2016) 33 Mean velocity (V av ) devalues or higher Prandtl number because luid with higher viscosity can t move reely like lower viscous luid. Water-Al 2 O 3 nanoluid has lower mean velocity than clear water. Temperature (T) o water-cu nanoluid at the middle o riser pipe is seen in Figure 4(iv). Nanoluid temperature increases when it passes through the riser pipe. But temperature o nanoluid diminishes with growing Pr. (i) (ii) (iii) (iv) (v) (vi) Figure 4. Eect o Pr on (i) mean Nusselt number, (ii) mean bulk temperature, (iii) mean velocity, (iv) mid-height temperature, (v) mean output temperature and (vi) collector eiciency Figure 4(v) shows that mean outlet temperature (T out ) decreases with increasing Prandtl number. This describes in this way that increasing Prandtl number decreases luid temperature. As a result lower tempered luid can t become so hot at outlet exit like higher tempered luid. Average outlet temperature becomes 318K, 316K, 314K, 313K or nanoluid and 313K, 312K, 310K, 309K or water respectively with the variation o Pr = 4.6, 5.2, 5.8 and 6.6. Using higher values o Prandtl number the collector eiciency decreases. In this scheme water/aluminium oxide nanoluid ( = 2%) perorms better than clear water ( = 0%). Thermal

13 34 R. Nasrin et al. eiciency devalues rom 66%-45% or nanoluid and 52%-36% or water due to the variation o Prandtl number Pr rom 4.6 to CONCLUSION The results o the numerical analysis lead to the ollowing conclusions: The structure o the luid streamline, boundary plot and arrow plot through the solar collector is ound to signiicantly depend upon the Prandtl number. The Al 2 O 3 nanoparticle with the highest Pr is established to be most eective in enhancing perormance o heat transer rate than base luid. Collector eiciency is obtained lower or growing Pr. Mean bulk temperature diminishes or both luids with rising Pr. Mean velocity is obtained higher or base luid with alling Pr. ACKNOWLEDGEMENT The present numerical work is done in the Department o Mathematics, Bangladesh University o Engineering & Technology, Dhaka-1000, Bangladesh. Research Support & Publication Division, University Grants Commission, Agargaon, Bangladesh helps inancially or this work. REFERENCES Brinkman, H.C. (1952). The viscosity o concentrated suspensions and solution, Journal o Chemical Physics, Vol. 20, pp Chabane, F., Moummi, N., Benramache, S., Bensahal, D., Belahssen, O., Lemmadi, F.Z., (2013). Thermal perormance optimization o a lat plate solar air heater, Int. J. o Energy & Tech., Vol. 5, No. 8, pp Dechaumphai, P. (1999). Finite Element Method in Engineering, 2nd ed., Chulalongkorn University Press, Bangkok. Eismann, R., Prasser, H.-M. (2013). Correction or the absorber edge eect in analytical models o lat plate solar collectors, Solar Energy, Vol. 95, pp Mahian, O., Kianiar, A., Kalogirou, S.A., Pop, I., Wongwises, S. (2013). A review o the applications o nanoluids in solar energy, Int. J. o Heat and Mass Trans. Vol. 57, pp Maxwell-Garnett, J.C., (1904). Colours in metal glasses and in metallic ilms. Philos. Trans. Roy. Soc. A, Vol. 203, pp Nasrin, R. and Alim, M.A. (2012). Eect o radiation on convective low in a tilted solar collector illed with water-alumina nanoluid, Int. J. o Engg., Sci. & Tech., Vol. 4, No. 4, pp Nasrin, R. and Alim, M.A. (2012). Prandtl number eect on ree convective low in a solar collector utilizing nanoluid, Engg. e Transac., Vol. 7, No. 2, pp Nasrin, R. and Alim, M.A. (2013). Free convective low o nanoluid having two nanoparticles inside a complicated cavity, Int. J. o Heat and Mass Trans., Vol. 63, pp Nasrin, R. and Alim, M.A. (2013). Perormance o nanoluids on heat transer in a wavy solar collector, Int. J. o Engg., Sci. & Tech., Vol. 5, No. 3, pp

14 AAM: Inter n. J., Special Issue, No. 2 (May 2016) 35 Nasrin, R., Parvin, S. and Alim, M.A. (2013). Buoyant low o nanoluid or heat-mass transer through a thin layer, Mech. Engg. Res. J., Vol. 9, pp Natarajan, E. & Sathish, R. (2009). Role o nanoluids in solar water heater, Int. J. Adv. Manu. Techn., Vol. 45, 5 pages. DOI /s Reddy, J.N. and Gartling, D.K. (1994). The Finite Element Method in Heat Transer and Fluid Dynamics, CRC Press, Inc., Boca Raton, Florida. Sandhu, G. (2013). Experimental study o temperature ield in lat-plate collector and heat transer enhancement with the use o insert devices, M. o Engg. Sci. theseis, The School o Graduate and Postdoctoral Studies, The University o Western Ontario London, Ontario, Canada. Struckmann, F. (2008). Analysis o a lat-plate solar collector, Project Report, MVK160 Heat and Mass Transport, Lund, Sweden. Taylor, C., Hood, P. (1973). A numerical solution o the Navier-Stokes equations using inite element technique, Computer and Fluids, Vol. 1, pp Wei, L., Yuan, D., Tang, D., Wu, B. (2013). A study on a lat-plate type o solar heat collector with an integrated heat pipe, Solar Energy, Vol. 97, pp Zambolin, E. (2011). Theoretical and experimental study o solar thermal collector systems and components, Scuola di Dottorato di Ricerca in Ingegneria Industriale, Indirizzo Fisica Tecnica. NOMENCLATURES A aperature area o solar collector (m 2 ) A e area base on the perimeter o collector (m 2 ) A area o 2D cross section o riser pipe (m 2 ) C constant deined in section 2 C p speciic heat at constant pressure (Jkg -1 K -1 ) riction actor h convective heat transer coeicient (Wm -2 K -1 ) h a convective heat transer coeicient between glass and ambient air (Wm -2 K -1 ) H height o the collector (m) I solar irradiation (Wm -2 ) k thermal conductivity o luid (Wm -1 K -1 ) k b back insulation conductivity (Wm -1 K -1 ) k e edge insulation conductivity (Wm -1 K -1 ) L length o the solar collector (m) N number o glass Nu average Nusselt number p pressure (kgms -2 ) Pr Prandtl number q heat lux (Wm -2 ) Re Reynolds number T luid temperature (K) u, v, w velocity components along x, y, z direction (ms -1 )

15 36 R. Nasrin et al. U l overall heat transer coeicient (Wm -2 K -1 ) V magnitude o velocity (ms -1 ) V volume o riser pipe (m 3 ) x b back insulation thickness (m) x e edge insulation thickness (m) x, y Cartesian coordinates (m) X, Y dimensionless Cartesian coordinates W width o collector (m) Greek symbols thermal diusivity (m 2 s -1 ) tilt angle ( 0 ) λ transmitivity ε emissivity η thermal eiciency nanoparticles volume raction θ dimensionless luid temperature μ dynamic viscosity o the luid (m 2 s -1 ) ν kinematic viscosity o the luid (m 2 s -1 ) density o the luid (kgm -3 ) κ absorption coeicient Subscripts a absorber amb ambient av average b back c cover col collector e edge luid in input loss lost n nanoluid out output recv received s solid particle t top usl useul

Mechanical Engineering Research Journal BUOYANT FLOW OF NANOFLUID FOR HEAT-MASS TRANSFER THROUGH A THIN LAYER

Mechanical Engineering Research Journal BUOYANT FLOW OF NANOFLUID FOR HEAT-MASS TRANSFER THROUGH A THIN LAYER Dept. o Mech. Eng. CUET Published Online March 2015 (http://www.cuet.ac.bd/merj/index.html) Mechanical Engineering Research Journal Vol. 9, pp. 712, 2013 M E R J ISSN: 1990-5491 BUOYANT FLOW OF NANOFLUID

More information

PERFORMANCE OF NANOFLUID IN FREE CONVECTIVE HEAT TRANSFER INSIDE A CAVITY WITH NON-ISOTHERMAL BOUNDARY CONDITIONS

PERFORMANCE OF NANOFLUID IN FREE CONVECTIVE HEAT TRANSFER INSIDE A CAVITY WITH NON-ISOTHERMAL BOUNDARY CONDITIONS Proceedings o the International Conerence on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015) 26 29 November, 2015, Chittagong, Bangladesh ICMERE2015-PI-058 PERFORMANCE OF NANOFUID IN FREE

More information

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center

Buoyancy Driven Heat Transfer of Water-Based CuO Nanofluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center July 4-6 2012 London U.K. Buoyancy Driven Heat Transer o Water-Based CuO Nanoluids in a Tilted Enclosure with a Heat Conducting Solid Cylinder on its Center Ahmet Cihan Kamil Kahveci and Çiğdem Susantez

More information

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID

BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE WITH MAGNETIC FIELD IN A NANOFLUID Proceedings o the International Conerence on Mechanical Engineering and Reneable Energy 7 (ICMERE7) 8 December, 7, Chittagong, Bangladesh ICMERE7-PI- BOUNDARY LAYER ANALYSIS ALONG A STRETCHING WEDGE SURFACE

More information

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer

Rotating Flow of Magnetite-Water Nanofluid over a Stretching Surface Inspired By Non-Linear Thermal Radiation and Mass Transfer International Journal o Mathematics Research. ISSN 0976-5840 Volume 9, Number (017), pp. 89-97 International Research Publication House http://www.irphouse.com Rotating Flow o Magnetite-Water Nanoluid

More information

THERMAL PERFORMANCE OF NANOFLUID FILLED SOLAR FLAT PLATE COLLECTOR

THERMAL PERFORMANCE OF NANOFLUID FILLED SOLAR FLAT PLATE COLLECTOR INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33, No.2, 2015 http://dx.doi.org/10.18280/ijht.330203 THERMAL PERFORMANCE OF NANOFLUID FILLED SOLAR FLAT PLATE COLLECTOR Rehena Nasr* and M. A. Alim Department

More information

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a

CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular cross-section under laminar and turbulent conditions

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 388 397 6th BSME International Conerence on Thermal Engineering (ICTE 2014) Eect o tilt angle on pure mixed convection

More information

2015 American Journal of Engineering Research (AJER)

2015 American Journal of Engineering Research (AJER) American Journal o Engineering Research (AJER) 2015 American Journal o Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-7, pp-33-40.ajer.org Research Paper Open Access The

More information

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall

Controlling the Heat Flux Distribution by Changing the Thickness of Heated Wall J. Basic. Appl. Sci. Res., 2(7)7270-7275, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing

More information

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION

NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION NON-SIMILAR SOLUTIONS FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH A CONVECTIVE THERMAL BOUNDARY CONDITION by Asterios Pantokratoras School o Engineering, Democritus University o Thrace, 67100

More information

Analysis of Non-Thermal Equilibrium in Porous Media

Analysis of Non-Thermal Equilibrium in Porous Media Analysis o Non-Thermal Equilibrium in Porous Media A. Nouri-Borujerdi, M. Nazari 1 School o Mechanical Engineering, Shari University o Technology P.O Box 11365-9567, Tehran, Iran E-mail: anouri@shari.edu

More information

OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION

OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION OPTIMALLY STAGGERED FINNED CIRCULAR AND ELLIPTIC TUBES IN FORCED CONVECTION R. S. Matos a, T. A. Laursen b, J. V. C. Vargas a, and A. Bejan c, a Universidade Federal do Paraná Departamento de Engenharia

More information

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime.

Constantine, Algeria. Received Accepted Keywords: Copper nanoparticles; heat transfer; circular cylinder; steady regime. Metallurgical and Materials Engineering Association o Metallurgical Engineers o Serbia AMES Scientiic paper UDC: 669.245 NUMERICAL INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER AROUND A CIRCULAR CYLINDER

More information

NUMERICAL STUDY ON THE EFFECT OF INCLINATION ANGLE ON HEAT TRANSFER PERFORMANCE IN BACK-WARD FACING STEP UTILIZING NANOFLUID

NUMERICAL STUDY ON THE EFFECT OF INCLINATION ANGLE ON HEAT TRANSFER PERFORMANCE IN BACK-WARD FACING STEP UTILIZING NANOFLUID NUMERICAL STUDY ON THE EFFECT OF INCLINATION ANGLE ON HEAT TRANSFER PERFORMANCE IN BACK-WARD FACING STEP UTILIZING NANOFLUID Saleh Etaig*, Etaig.Mahmoud@Northumbria.ac.uk Reaz Hasan, Reaz.Hasan@Northumria.ac.uk

More information

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer

Second Order Slip Flow of Cu-Water Nanofluid Over a Stretching Sheet With Heat Transfer Second Order Slip Flow o Cu-Water Nanoluid Over a Stretching Sheet With Heat Transer RAJESH SHARMA AND ANUAR ISHAK School o Mathematical Sciences, Faculty o Science and Technology Universiti Kebangsaan

More information

Keywords: Finite element method; Nanofluid; Inclined magnetic field; Natural convection; Square enclosure; Brownian motion

Keywords: Finite element method; Nanofluid; Inclined magnetic field; Natural convection; Square enclosure; Brownian motion Columbia International Publishing American Journal o Heat and Mass Transer doi:10.7726/ajhmt.2016.1012 Research Article Finite Element Analysis o Unsteady Natural Convective Heat Transer and Fluid Flow

More information

Free convection in a porous cavity filled with nanofluids

Free convection in a porous cavity filled with nanofluids Free convection in a porous cavity illed with nanoluids GROSAN TEODOR, REVNIC CORNELIA, POP IOAN Faculty o Mathematics and Computer Sciences Babes-Bolyai University Cluj-Napoca ROMANIA tgrosan@math.ubbcluj.ro,

More information

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle

Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 1, 89 99 89 Analysis of the flow and heat transfer characteristics for MHD free convection in an enclosure with a heated obstacle S. Parvin,

More information

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL

NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A FLUSH MOUNTED HEATER ON A SIDE WALL Journal of Naval Architecture and Marine Engineering December, 2010 DOI: 10.3329/jname.v7i2.3292 http://www.banglajol.info NATURAL CONVECTION FLOW IN A SQUARE CAVITY WITH INTERNAL HEAT GENERATION AND A

More information

Heat-fluid Coupling Simulation of Wet Friction Clutch

Heat-fluid Coupling Simulation of Wet Friction Clutch 3rd International Conerence on Mechatronics, Robotics and Automation (ICMRA 2015) Heat-luid Coupling Simulation o Wet Friction Clutch Tengjiao Lin 1,a *, Qing Wang 1, b, Quancheng Peng 1,c and Yan Xie

More information

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP

IOSR Journal of Mathematics (IOSR-JM) e-issn: , p-issn: X.Volume12,Issue 1 Ver. III (Jan.-Feb.2016)PP IOSR Journal o Mathematics (IOSR-JM) e-issn:78-578, p-issn: 39-765X.Volume,Issue Ver. III (Jan.-Feb.6)PP 88- www.iosrjournals.org Eect o Chemical Reaction on MHD Boundary Layer Flow o Williamson Nanoluid

More information

Available online at ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a

Available online at   ScienceDirect. Energy Procedia 83 (2015 ) Václav Dvo ák a *, Tomáš Vít a Available online at www.sciencedirect.com ScienceDirect Energy Procedia 83 (205 ) 34 349 7th International Conerence on Sustainability in Energy and Buildings Numerical investigation o counter low plate

More information

Effect of Thermal Dispersion and Thermal Radiation on Boundary Payer Flow of Mhd Nanofluid With Variable Suction

Effect of Thermal Dispersion and Thermal Radiation on Boundary Payer Flow of Mhd Nanofluid With Variable Suction IOSR Journal o Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume, Issue 6 Ver. III (Nov. - Dec.6), PP 3-3 www.iosrjournals.org Eect o Thermal Dispersion and Thermal Radiation on Boundary Payer

More information

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49 Heat Transer: A Practical Approach - Yunus A Cengel Assignment Fall 00 Tuesday, November 8, 00 Chapter, Problem 9 The variation o the spectral transmissivity o a 0.6- cm-thick glass window is as given

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017 Experimental Investigation and Fabrication of Serpentine Flat-Plate Collector to predict the Performance Srinivas Prasad Sanaka 1, P.K.Bharadwaj 2, BLVS Gupta 3 1 Professor, 2 Student, 3 Assistant Professor

More information

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure

MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure Trans. Phenom. Nano Micro cales, 3(1): 37-45, Winter - pring 15 DOI: 1.758/tpnms.15.1.4 ORIGINAL REEARCH PAPER. MHD Natural Convection and Entropy Generation o Variable Properties Nanoluid in a Triangular

More information

Finite Element Simulation of Forced Convection in a Flat Plate Solar Collector: Influence of Nanofluid with Double Nanoparticles

Finite Element Simulation of Forced Convection in a Flat Plate Solar Collector: Influence of Nanofluid with Double Nanoparticles Journal of pplied Fluid Mechanics, Vol. 7, No. 3, pp. 543-556, 2014. vailable online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. Finite Element Simulation of Forced Convection in a Flat Plate

More information

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling.

Keywords Perforated pinned heat sinks, Conjugate heat transfer, Electronic component cooling. Eect o Dierent Perorations Shapes on the Thermal-hydraulic Perormance o Perorated Pinned Heat Sinks Amer Al-Damook 1,, J.L. Summers 1, N. Kapur 1, H. Thompson 1 mnajs@leeds.ac.uk, j.l.summers@leeds.ac.uk,

More information

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field

Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a Rectangular Heated Body in Presence of External Oriented Magnetic Field Publications Available Online J. Sci. Res. 10 (1), 11-23 (2018) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Analysis of Natural Convection Flow in a Trapezoidal Cavity Containing a

More information

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Suranaree J. Sci. Technol. Vol. 17 No. 2; April - June 2010 139 MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Md. Mustafizur Rahman 1 *, M. A. Alim 1 and Sumon Saha

More information

Published in: Proceedings of the th EUROSIM Congress on Modelling and Simulation

Published in: Proceedings of the th EUROSIM Congress on Modelling and Simulation Aalborg Universitet Parametric CFD Analysis to Study the Inluence o Fin Geometry on the Perormance o a Fin and Tube Heat Exchanger Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph Published in: Proceedings

More information

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone

Boundary-Layer Flow over a Porous Medium of a Nanofluid Past from a Vertical Cone Boundary-Layer Flow over a Porous Medium o a Nanoluid Past rom a Vertical Cone Mohammad Mehdi Keshtkar 1 and jamaladin hadizadeh 2 1 Assistant Proessor, Department o Mechanical Engineering, 2 MSc. Student,

More information

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams

3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams P Periodica Polytechnica Mechanical Engineering P 60(4), pp. 193-202, 2016 DOI: 10.3311/PPme.8511 Creative Commons Attribution b 3D Numerical Modelling o Convective Heat Transer through Two-sided Vertical

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION

COMPARISON OF THERMAL CHARACTERISTICS BETWEEN THE PLATE-FIN AND PIN-FIN HEAT SINKS IN NATURAL CONVECTION HEFAT014 10 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 14 6 July 014 Orlando, Florida COMPARISON OF THERMA CHARACTERISTICS BETWEEN THE PATE-FIN AND PIN-FIN HEAT SINKS

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Radiation Effects on MHD Free Convective Heat and Mass Transfer Flow Past a Vertical Porous Flat Plate with Suction

Radiation Effects on MHD Free Convective Heat and Mass Transfer Flow Past a Vertical Porous Flat Plate with Suction International Journal o Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 5, May 4 Radiation Eects on MHD Free Convective Heat and Mass Transer Flow Past a Vertical Porous Flat Plate

More information

COMBINED EFFECTS OF RADIATION AND HEAT GENERATION ON MHD NATURAL CONVECTION FLOW ALONG A VERTICAL FLAT PLATE IN PRESENCE OF HEAT CONDUCTION

COMBINED EFFECTS OF RADIATION AND HEAT GENERATION ON MHD NATURAL CONVECTION FLOW ALONG A VERTICAL FLAT PLATE IN PRESENCE OF HEAT CONDUCTION BRAC University Journal, vol.vi, no., 9, pp 11- COMBINED EFFECTS OF RADIATION AND HEAT GENERATION ON MHD NATURAL CONVECTION FLOW ALONG A VERTICAL FLAT PLATE IN PRESENCE OF HEAT CONDUCTION Mohammad Mokaddes

More information

Evaluation of Heat Transfer Enhancement and Pressure Drop Penalty of Nanofluid Flow Through a -Channel

Evaluation of Heat Transfer Enhancement and Pressure Drop Penalty of Nanofluid Flow Through a -Channel American Journal o Aerospace Engineering 18; 5(1): 47-55 http://www.sciencepublishinggroup.com//aae doi: 1.11648/.aae.1851.17 ISSN: 376-4813 (Print); ISSN: 376-481 (Online) Evaluation o Heat ranser Enhancement

More information

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun.

Kuldeep Rawat*, Ayushman Srivastav* *Assistant Professor, Shivalik College of Engineering, Dehradun. International Journal o Scientiic & Engineering search, Volume 7, Issue 12, December-16 348 ISSN 2229-18 NUMERICAL INVESTIGATION OF HEAT TRANSFER ENHANCEMENT OVER RECTANGULAR PERFORATED FIN Abstract Kuldeep

More information

A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING THICKNESS

A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING THICKNESS VOL., NO. 8, APRIL 6 ISSN 89-668 ARPN Journal o Engineering and Applied Sciences 6-6 Asian Research Publishing Networ (ARPN). All rights reserved. A REPORT ON PERFORMANCE OF ANNULAR FINS HAVING VARYING

More information

Simulation of a concentrating PV/thermal collector using TRNSYS

Simulation of a concentrating PV/thermal collector using TRNSYS Simulation o a concentrating PV/ermal lector using TRNSYS Abstract Centre or Sustainable Energy Systems Australian National University Canberra 0200 ACT AUSTRALIA Telephone: +61 02 6125 3976 Facsimile:

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd,

Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd, Adv. Theor. Appl. Mech., Vol. 7, 2014, no. 1, 1-20 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/atam.2014.31124 Magneto-Hydrodynamic Eect with Temperature Dependent Viscosity on Natural Convection

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS

Entropy 2011, 13, ; doi: /e OPEN ACCESS Entropy 011, 13, 1446-1464; doi:10.3390/e13081446 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Second Law Analysis or Variable Viscosity Hydromagnetic Boundary Layer Flow with

More information

Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block

Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block Abdul Halim Bhuiyan, M. A. Alim, Md. Nasir Uddin Abstract This paper is concerned with

More information

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material R. Sivakumar and V. Sivaramakrishnan Abstract Flat Plate

More information

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID by Nader POURMAHMOUD 1,a, Ashkan GHAFOURI 1,b,*, Iraj MIRZAEE 1,c 1 Department

More information

Dynamic thermal simulation of a solar chimney with PV modules

Dynamic thermal simulation of a solar chimney with PV modules International Conerence Passive and Low Energy Cooling 89 Dynamic thermal simulation o a solar chimney with PV modules J. Martí-Herrero and M.R. Heras-Celemin Energetic Eiciency in Building, CIEMAT, Madrid,

More information

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings

Non-newtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings International Journal o Mechanical Engineering and Applications 7; 5(): 6-67 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: -X (Print); ISSN: -48 (Online) Non-newtonian Rabinowitsch

More information

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater

Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Er. Vivek Garg Gateway Institute of Engineering and Technology, Sonipat Mechanical Engineering Department Dr. Shalini

More information

Analysis, Design and Fabrication of Forced Convection Apparatus

Analysis, Design and Fabrication of Forced Convection Apparatus Analysis, Design and Fabrication of Forced Convection Apparatus Shajan K. Thomas 1, Vishnukumar C M 2, Vishnu C J 3, Alex Baby 4 Assistant Professor, Dept. of Mechanical Engineering, Toc H Institute of

More information

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System

Fin efficiency of the newly developed Compartmented Coil of a Single Coil Twin Fan System Fin eiciency o the newly developed Compartmented Coil o a Single Coil Twin Fan System ABSTRACT In predicting the perormance o any cooling coil, HVAC designers ace multiold challenges in designing the system

More information

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate Journal o Magnetics (), 181-187 (017) ISSN (Print) 16-1750 ISSN (Online) 33-6656 https://doi.org/10.483/jmag.017...181 Flo and Heat Transer Analysis o Copper-ater Nanoluid ith Temperature Dependent Viscosity

More information

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE

Channel Structure Influence on the Thermal-Hydraulic Performance of. Zigzag PCHE The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 218, Pittsburgh, Pennsylvania Channel Structure Inluence on the Thermal-Hydraulic Perormance o Zigzag PCHE Yichao Gao Wenkai

More information

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium

Comments on Magnetohydrodynamic Unsteady Flow of A Non- Newtonian Fluid Through A Porous Medium Comments on Magnetohydrodynamic Unsteady Flow o A Non- Newtonian Fluid Through A Porous Medium Mostaa A.A.Mahmoud Department o Mathematics, Faculty o Science, Benha University (358), Egypt Abstract The

More information

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS

MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS THERMAL SCIENCE: Year 8, Vol., No. B, pp. 383-39 383 MAGNETOHYDRODYNAMIC GO-WATER NANOFLUID FLOW AND HEAT TRANSFER BETWEEN TWO PARALLEL MOVING DISKS Introduction by Mohammadreza AZIMI and Rouzbeh RIAZI

More information

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid Journal o Applied Science and Agriculture, 9() February 04, Pages: 408-47 AENSI Journals Journal o Applied Science and Agriculture ISSN 86-9 Journal ome page: www.aensiweb.com/jasa/index.tml Te Eects O

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

Iterative Methods for Stokes/Darcy Coupling

Iterative Methods for Stokes/Darcy Coupling Iterative Methods or Stokes/Darcy Coupling Marco Discacciati Ecole Polytechnique Fédérale de Lausanne Institut d Analyse et Calcul Scientiique Chair o Modelling and Scientiic Computing marco.discacciati@epl.ch

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

ScienceDirect. Heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system with local thermal non-equilibrium model

ScienceDirect. Heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system with local thermal non-equilibrium model Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 7644 7650 GHGT-12 Heat transer and luid transport o supercritical CO 2 in enhanced geothermal system with local thermal

More information

Performance Assessment of PV/T Air Collector by Using CFD

Performance Assessment of PV/T Air Collector by Using CFD Performance Assessment of /T Air Collector by Using CFD Wang, Z. Department of Built Environment, University of Nottingham (email: laxzw4@nottingham.ac.uk) Abstract Photovoltaic-thermal (/T) collector,

More information

A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN ROUND TUBE HEAT EXCHANGERS

A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN ROUND TUBE HEAT EXCHANGERS www.arpapress.com/volumes/vol6issue4/ijrras_6_4_05.pd A NUMERICAL STUDY OF SINGLE-PHASE FORCED CONVECTIVE HEAT TRANSFER WITH FLOW FRICTION IN ROUND TUBE HEAT EXCHANGERS Pedram Mohajeri Khameneh 1,*, Iraj

More information

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR Int. J. Mech. Eng. & Rob. Res. 2013 Basavanna S and K S Shashishekar, 2013 Research Paper ISSN 2278 0149 www.imerr.com Vol. 2, No. 1, January 2013 2013 IJMERR. All Rights Reserved CFD ANALYSIS OF TRIANGULAR

More information

EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH JOULE HEATING AND THERMAL RADIATION

EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH JOULE HEATING AND THERMAL RADIATION International Research Journal o Engineering and Technology (IRJET) e-issn: 395-56 Volume: Issue: 9 Dec-5.irjet.net p-issn: 395-7 EFFECTS OF CHEMICAL REACTION ON MHD BOUNDARY LAYER FLOW OVER AN EXPONENTIALLY

More information

RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE

RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE RADIATION EFFECTS ON AN UNSTEADY MHD NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST A VERTICAL PLATE by Loganathan PARASURAMAN a *, Nirmal Chand PEDDISETTY a and Ganesan PERIYANNAGOUNDER a a Department o

More information

Free convection of nanoliquids in an enclosure with sinusoidal heating

Free convection of nanoliquids in an enclosure with sinusoidal heating IOP Conerence Series: Materials Science and Engineering PAPER OPEN ACCESS Free convection o nanoliquids in an enclosure with sinusoidal heating To cite this article: S. Sivasanaran et al 018 IOP Con. Ser.:

More information

Available online at ScienceDirect. Procedia Engineering 127 (2015 )

Available online at   ScienceDirect. Procedia Engineering 127 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 17 (015 ) 106 1033 International Conerence on Computational Heat and Mass Transer-015 MHD Flow o a Nanoluid Embedded with Dust

More information

Natural Convection in Porous Triangular Enclosure with a Circular Obstacle in Presence of Heat Generation

Natural Convection in Porous Triangular Enclosure with a Circular Obstacle in Presence of Heat Generation American Journal of Applied Mathematics 2015; 3(2): 51-58 Published online March 20, 2015 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20150302.14 ISSN: 2330-0043 (Print); ISSN:

More information

Description of a One-Dimensional Numerical Model of an Active Magnetic Regenerator Refrigerator

Description of a One-Dimensional Numerical Model of an Active Magnetic Regenerator Refrigerator This is a 1D model o an active magnetic regenerative rerigerator (AMRR) that was developed in MATLAB. The model uses cycle inputs such as the luid mass low and magnetic ield proiles, luid and regenerator

More information

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW

OPTIMIZATION AND DESIGN GUIDELINES FOR HIGH FLUX MICRO-CHANNEL HEAT SINKS FOR LIQUID AND GASEOUS SINGLE-PHASE FLOW OPTIMIZATION AND DESIGN GIDELINES FOR HIGH FLX MICRO-CHANNEL HEAT SINKS FOR LIID AND GASEOS SINGLE-PHASE FLOW Norbert Müller, Luc G. Fréchette Mechanical Engineering Columbia niversity in the City o New

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Finite Element Analysis of Convective Heat and Mass Transfer Through a Parallel Plate Reactor with Heat of Reaction Effect

Finite Element Analysis of Convective Heat and Mass Transfer Through a Parallel Plate Reactor with Heat of Reaction Effect International Journal of Modern Physics and Applications Vol. 1, No. 4, 2015, pp. 152-158 http://www.aiscience.org/journal/ijmpa Finite Element Analysis of Convective Heat and Mass Transfer Through a Parallel

More information

Natural Convection and Entropy Generation in Partially Heated Porous Wavy Cavity Saturated by a Nanofluid

Natural Convection and Entropy Generation in Partially Heated Porous Wavy Cavity Saturated by a Nanofluid Proceedings o the 5 th International Conerence o Fluid Flow, Heat and Mass Transer (FFHMT'18) Niagara Falls, Canada June 7 9, 2018 Paer No. 123 DOI: 10.11159/hmt18.123 Natural Convection and Entroy Generation

More information

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali*

Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis. S.A. Abdel-Moneim and R.K. Ali* Int. J. Exergy, Vol. 4, No. 4, 2007 401 Performance evaluation of heat transfer enhancement for internal flow based on exergy analysis S.A. Abdel-Moneim and R.K. Ali* Faculty of Engineering (Shoubra),

More information

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS.

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. FLAT PLATE COLLECTORS ABSORBER PLATES OPTIMIZATION OF GEOMETRY SELECTIVE SURFACES METHODS OF TESTING TO DETERMINE THE THERMAL PERFORMANCE

More information

A modified model for parabolic trough solar receiver

A modified model for parabolic trough solar receiver American Journal o Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-05, pp-200-2 www.ajer.us Research Paper Open Access A modiied model or parabolic trough solar receiver

More information

FLUID MECHANICS. Lecture 7 Exact solutions

FLUID MECHANICS. Lecture 7 Exact solutions FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.

More information

Gas-side mass transfer coefficient of a laboratory column equipped with one sieve tray

Gas-side mass transfer coefficient of a laboratory column equipped with one sieve tray Gas-side mass transer coeicient o a laoratory column equipped with one sieve tray Zhivko Ivanov, Zhelcho Steanov, Bogdan Bogdanov Astract: The inluence o plate geometry on the characteristics o luid low

More information

A Semi-Analytical Solution for a Porous Channel Flow of a Non-Newtonian Fluid

A Semi-Analytical Solution for a Porous Channel Flow of a Non-Newtonian Fluid Journal o Applied Fluid Mechanics, Vol. 9, No. 6, pp. 77-76, 6. Available online at www.jamonline.net, ISSN 735-357, EISSN 735-3645. A Semi-Analytical Solution or a Porous Channel Flow o a Non-Newtonian

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

General Case for Deriving Four Pole Coefficients for Gas Pulsation

General Case for Deriving Four Pole Coefficients for Gas Pulsation urdue University urdue e-ubs International Compressor Engineering Conerence School o Mechanical Engineering 21 General Case or Deriving Four ole Coeicients or Gas ulsation Nasir Bilal urdue University

More information

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 211-224 Research India Publications http://www.ripublication.com Numerical Analysis of Fe 3 O 4 Nanofluid Flow

More information

Natural convection in a vertical strip immersed in a porous medium

Natural convection in a vertical strip immersed in a porous medium European Journal o Mechanics B/Fluids 22 (2003) 545 553 Natural convection in a vertical strip immersed in a porous medium L. Martínez-Suástegui a,c.treviño b,,f.méndez a a Facultad de Ingeniería, UNAM,

More information

NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM

NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2117-2128 2117 Introduction NUMERICAL ANALYSIS OF FORCED CONVECTION HEAT TRANSFER FROM TWO TANDEM CIRCULAR CYLINDERS EMBEDDED IN A POROUS MEDIUM by Habib-Ollah

More information

IMPACT OF HEAT TRANSFER ANALYSIS ON CARREAU FLUID-FLOW PAST A STATIC/MOVING WEDGE

IMPACT OF HEAT TRANSFER ANALYSIS ON CARREAU FLUID-FLOW PAST A STATIC/MOVING WEDGE THERMAL SCIENCE: Year 8, Vol., No., pp. 89-8 89 IMPACT OF HEAT TRANSFER ANALYSIS ON CARREAU FLUID-FLOW PAST A STATIC/MOVING WEDGE by HASHIM * and Masood KHAN Department o Mathematics, Quaid-i-Azam University,

More information

Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

More information

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF PREFORM INFRARED RADIATIVE HEATING

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF PREFORM INFRARED RADIATIVE HEATING EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF PREFORM INFRARED RADIATIVE HEATING Serge Monteix (*), F. Schmidt (*), Y. LeMaoult (*), G. Denis (**), M. Vigny (**) (*) Ecole des Mines d Albi-Carmaux Campus

More information

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications

The Effect of Internal Obstructions in Naturally Ventilated Greenhouse Applications HEFAT27 5 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics 1-4 July 27, Sun City, South Arica Paper number: KS2 The Eect o Internal Obstructions in Naturally Ventilated Greenhouse

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER N. HAMICI a, D. SADAOUI a a. Laboratory of Mechanic, Materials and Energy (L2ME), University

More information

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB Piyush Kumar Jain and Atul Lanjewar Department of Mechanical Engineering, Maulana Azad

More information

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER

EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER EFFECTS OF VISCOUS DISSIPATION ON FREE CONVECTION BOUNDARY LAYER FLOW TOWARDS A HORIZONTAL CIRCULAR CYLINDER Muhammad Khairul Anuar Mohamed 1, Norhaizah Md Sari 1, Abdul Rahman Mohd Kasim 1, Nor Aida Zuraimi

More information

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System Engineering, 2010, 2, 832-840 doi:10.4236/eng.2010.210106 Published Online October 2010 (http://www.scirp.org/journal/eng) Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated

More information

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION OBJECTIVE The objective of the experiment is to compare the heat transfer characteristics of free and forced convection.

More information