Elementary Linear Algebra Review for Exam 3 Exam is Friday, December 11th from 1:15-3:15

Size: px
Start display at page:

Download "Elementary Linear Algebra Review for Exam 3 Exam is Friday, December 11th from 1:15-3:15"

Transcription

1 Elementary Linear Algebra Review for Exam 3 Exam is Friday, December th from :5-3:5 The exam will cover sections: 6., 6.2, , and the class notes on dynamical systems. You absolutely must be able to do each of the following. Section 7. Determine whether or not a given vector is an eigenvector of a given matrix (To see if x is an eigenvector of A we compute Ax. If x and Ax are multiplies of each other and x 0, then x is an eigenvector. Otherwise x is not an eigenvector.) Determine whether or not a given number is an eigenvalue of a given matrix (To see if k is an eigenvalue of A we check the singularity of A ki. If A ki is singular, k is an eigenvalue. Otherwise, k is not an eigenvalue.) Use the definitions of eigenvector and eigenvalue for a matrix to find eigenvectors and eigenvalues for a related matrix. Determine a basis for an eigenspace of a matrix. Be able to explain and use the fact that eigenvectors corresponding to distinct eigenvalues are linearly independent. Section 7.2 Compute the characteristic polynomial of a matrix (at most 4 by 4). Determine the eigenvalues of a matrix. Explain why k is an eigenvalue of A if and only if c A (k) = 0, where c A is the characteristic polynomial of A. Section 7.3 Know and use what it means for a matrix to be diagonalizable. Be able to explain why if S is an invertible matrix and K is a diagonal matrix such that AS = SK, then the columns of S are eigenvectors of A. and the diagonal entries of K are the corresponding eigenvalues. Decide if a given matrix is diagonalizable or not, and if it is to determine S and K. Use the formulas SKS and S AS = K compute powers or other complicated expressions involving A. Dynamical systems Set up the system of equations for a dynamical system. Determine the transition matrix Use the transition matrix and eigenpairs to compute x(t) for specific t Use the transition matrix and eigenpairs to describe the limiting behavior. Sections 6. and 6.2. Calculate the determinant using Laplace expansion along a row or column.

2 Calculate the determinant using row reduction. (Remember the determinant of A equals the determinant of RREF(A) divided by the product of the fudge factors. Each time you interchange two rows you get a fudge factor of, each time multiply a row by k you get a fudge factor of k. Calculate a determinant using the pattern method. Use properties of the determinant such as det(ab) = det(a) det(b) and det(a) = 0 if and only if A is not invertible. Class notes Set-up the transition matrix for a population model. Use the transition matrix and the initial data to determine the population distribution at a given time (e.g. t =, 2, 3). Find a steady-state vector, and use it to find the limiting distribution, and interpret the long-term behavior of the system. Practice Problems. An biologist is testing the olfactory senses of mice, and runs the following experiment. A Christmas Party is held in a house whose floor plan is illustrated below. The caterer, from experience, knows that every 5 minutes the guests will are equally likely to move to one of the adjacent rooms or to stay in their current location. (a) Describe A so that x(t + ) = Ax(t) models this system. What do the components of A represent? (b) Find the steady-state vector for A. (c) What, in every day language, do the entries of the steady-state vector mean? (d) How should the caterer distribute the 60 trays of food that have been prepared (that is, how many trays should be put in each room)? Justify your answer. 2. The Planning Commission of a county has determined that it would be ideal to have a 2 to ratio between urban and rural populations in the county (that is, for every 2 urban citizens there should be rural citizen). They know that each year typically /4 of the rural citizens move in to the city. What fraction p of the urban citizens should they allow to move into the rural areas each year, in order to have a 2 to ratio in the long run? Your answer should include setting up a transition matrix that involves p, identifying a steady- state vector, and then finding p. 3. Let A be an n by n matrix. Then an eigenvector of A is, and an eigenvalue of A is. 4. Let x = 0, and y = 0 (a) Is x an eigenvector of A? (b) Is y an eigenvector of A?

3 (c) Is 2 an eigenvalue of A? If so, find a corresponding eigenvector. (d) It is known that is an eigenvalue of A. Find a basis for the corresponding eigenspace. 5. Let where a is a real number. a , (a) For which value of a is an eigenvector of A? (b) For which value of a is 0 an eigenvalue of A? 0 6. (a) Show that if x is an eigenvector of the matrix A corresponding to the eigenvalue 2, then x is an eigenvector of A 3 + I. What is the corresponding eigenvalue? (b) Show that if y is an eigenvector of the matrix A corresponding to the eigenvalue 3 and A is invertible, then y is an eigenvector fo A. What is the corresponding eigenvalue? (c) Suppose that P is an invertible matrix, and R and S are matrices with P RP = S. Show that if z is an eigenvector of S with corresponding eigenvalue 7, then P z is an eigenvector of R. What is the corresponding eigenvalue? 7. The matrix A is 4 by 4, and the nonzero vectors v, v 2, v 3, v 4 satisfy Av = 2v, Av 2 = 2v 2, Av 3 = v 3 and Av 4 = 7v 4. (a) Explain why v 2, v 3, and v 4 are linearly independent. (b) Must v, v 2, v 3 and v 4 be linearly independent? Explain. 8. Find the characteristic polynomial of the following matrix (a) Find the characteristic polynomial for the matrix (b) Find the eigenvalues of A (c) For each of the eigenvalues found in (b) determine all of the corresponding eigenvectors. 0. Let c be a constant and let c 0 c 2. (a) Carefully explain why 3 is an eigenvalue of A exactly when det(a 3I) = 0. (b) Compute det(a 3I), and use it to decide for which value(s) of c we have that 3 is an eigenvalue of A.

4 . Let The characteristic polynomial of A equals x 3 + 4x 2 4x. (a) Find the eigenvalues of A. (b) For each eigenvalue of A find a basis for the corresponding eigenspace of A. Is A diagonalizable? If so, find an invertible matrix S and a diagonal matrix K such that S AS = K. 2. Below the matrix A is factored in the form SKS / /2 (a) Find the eigenvalues of A (b) For each eigenvalue of A find a basis for the corresponding eigenspace. (c) Find lim t A t.. 3. Let 7 7 s 2 s 3 4. (a) The eigenvalues of A are and 2. For which value of s is A diagonalizable? (b) For this value of s find an invertible matrix S and a diagonal matrix K such that AS = SK. (c) Find a different invertible matrix P, and a different diagonal matrix K such that AS = SK. 4. Determine which of the following matrices are diagonalizable. For those that are diagonalizable, find a P and K such that AS = SK. (a) (b) (c) It is known that A is a 3 by 3 matrix such that AS = SK where S = 2 3 and D = (a) Determine the eigenvalues of A, and give corresponding eigenvectors for each of the eigenvalues. (b) Let v, v 2, v 3 be the eigenvectors you found in (a). Let u be any vector in R 3. Why are there constants c, c 2, and c 3 such that u = c v + c 2 v 2 + c 3 v 3? (You shouldn t have to do any row reduction here.)

5 (c) Suppose now that u = (/3)v (/4)v 2 + (/3)v 3. Express Au as a linear combination of v, v 2 and v 3. (d) Express A 2 u as a linear combination of v, v 2 and v 3. (e) For any positive integer t, express A t u as a linear combination of v, v 2, v 3. (f) Determine lim t A t u. (g) If A represents the transition matrix for a dynamical system, how does one interpret the answer to (f)? 6. There are two types of Furbies, juvenile and adult. Each year /2 of the juvenile Furbies survive to adulthood, 2/3 of the adult Furbies live, and on average each adult Furbie produces 6/9 baby Furbies. (a) Explain how the above description leads to the matrix [ ] 0 6/9 M = /2 2/3. (b) Use the characteristic polynomial of M to show that the eigenvalues of M are 4/3 and 2/3. (c) Find eigenvectors u and v for M corresponding to 4/3 and 2/3. (d) Initially there are 00 juvenile Furbies and 20 adult Furbies. So x(0) =. (e) Explain why there are constants c and d so that x(0) = cu + dv. (f) Use (e) to express x(t) in terms of c, d, u and v. (g) Based on you answer to (f), what will happen to the Furby population in the long run? What will the ratio of juvenile to adult Furby s be in the long run? 7. Adult Furbies have become a delicacy, and to prevent the extinction of Furbies you ve been asked to determine the largest fraction h of adult Furbies that can be harvested each year. (a) Explain why the transition matrix when there is harvesting becomes [ ] 0 6/9 N = /2 2/3 h (b) Explain what happens to the population of Furbies if N has an eigenvalue greater than. (c) Explain what happens to the population of Furbies if the absolute value of each eigenvalue is less than. (d) Find h so that the matrix N has eigenvalue. (e) Why is the h found in (d) the largest fraction of adult Furbies that can be harvested each year (without the population going extinct)? 8. (a) Use the recursive method to compute the determinant of the matrix (b) Use the row-reduction method to compute the determinant of (c) Why is the matrix in (b) invertible? What is the determinant of its inverse?

6 9. Let a b c d e f g h i Assume that det(a) = 3, and det(b) = 5. and B = r s t u v w x y z (a) Using A, find a matrix C whose determinant is 3. (b) Using B, find a matrix D, other than B, whose determinant is 5. (c) Using A and B, find a matrix E whose determinant is I started with a 3 by 3 matrix A and did the following row operations: () Switch rows and 3 (2) Added 4 times row to row 2 (3) Added 3 times row one to row 3 (4) Multiplied row 2 by /2. The matrix I obtained is: (a) What is det(a)? (b) Is A invertible, why or why not? 2. Calculate the determinants of each of the following matrices, and determine which are invertible. [ ] , B =, C = Use the pattern method to compute the determinant of the following matrix Construct a 5 by 5 matrix using the numbers ±2, 000 whose determinant is negative. Explain why the determinant is negative, without computing the determinant. (Hint: think patterns!)..

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Examples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions.

Examples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions. The exam will cover Sections 6.-6.2 and 7.-7.4: True/False 30% Definitions 0% Computational 60% Skip Minors and Laplace Expansion in Section 6.2 and p. 304 (trajectories and phase portraits) in Section

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9 Bachelor in Statistics and Business Universidad Carlos III de Madrid Mathematical Methods II María Barbero Liñán Homework sheet 4: EIGENVALUES AND EIGENVECTORS DIAGONALIZATION (with solutions) Year - Is

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

MATH 1553 PRACTICE MIDTERM 3 (VERSION B)

MATH 1553 PRACTICE MIDTERM 3 (VERSION B) MATH 1553 PRACTICE MIDTERM 3 (VERSION B) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Math 304 Fall 2018 Exam 3 Solutions 1. (18 Points, 3 Pts each part) Let A, B, C, D be square matrices of the same size such that

Math 304 Fall 2018 Exam 3 Solutions 1. (18 Points, 3 Pts each part) Let A, B, C, D be square matrices of the same size such that Math 304 Fall 2018 Exam 3 Solutions 1. (18 Points, 3 Pts each part) Let A, B, C, D be square matrices of the same size such that det(a) = 2, det(b) = 2, det(c) = 1, det(d) = 4. 2 (a) Compute det(ad)+det((b

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

MATH 1553-C MIDTERM EXAMINATION 3

MATH 1553-C MIDTERM EXAMINATION 3 MATH 553-C MIDTERM EXAMINATION 3 Name GT Email @gatech.edu Please read all instructions carefully before beginning. Please leave your GT ID card on your desk until your TA scans your exam. Each problem

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

Announcements Monday, November 06

Announcements Monday, November 06 Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity:

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity: Diagonalization We have seen that diagonal and triangular matrices are much easier to work with than are most matrices For example, determinants and eigenvalues are easy to compute, and multiplication

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

Name: Final Exam MATH 3320

Name: Final Exam MATH 3320 Name: Final Exam MATH 3320 Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling. (1) State the following

More information

Linear Algebra Exercises

Linear Algebra Exercises 9. 8.03 Linear Algebra Exercises 9A. Matrix Multiplication, Rank, Echelon Form 9A-. Which of the following matrices is in row-echelon form? 2 0 0 5 0 (i) (ii) (iii) (iv) 0 0 0 (v) [ 0 ] 0 0 0 0 0 0 0 9A-2.

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

MATH 1553, C. JANKOWSKI MIDTERM 3

MATH 1553, C. JANKOWSKI MIDTERM 3 MATH 1553, C JANKOWSKI MIDTERM 3 Name GT Email @gatechedu Write your section number (E6-E9) here: Please read all instructions carefully before beginning Please leave your GT ID card on your desk until

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name: Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID:

Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID: Math 2030, Matrix Theory and Linear Algebra I, Fall 20 Final Exam, December 3, 20 FIRST NAME: LAST NAME: STUDENT ID: SIGNATURE: Part I: True or false questions Decide whether each statement is true or

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Math 21b Final Exam Thursday, May 15, 2003 Solutions

Math 21b Final Exam Thursday, May 15, 2003 Solutions Math 2b Final Exam Thursday, May 5, 2003 Solutions. (20 points) True or False. No justification is necessary, simply circle T or F for each statement. T F (a) If W is a subspace of R n and x is not in

More information

Matrices related to linear transformations

Matrices related to linear transformations Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ

More information

Mathematical Methods for Engineers 1 (AMS10/10A)

Mathematical Methods for Engineers 1 (AMS10/10A) Mathematical Methods for Engineers 1 (AMS10/10A) Quiz 5 - Friday May 27th (2016) 2:00-3:10 PM AMS 10 AMS 10A Name: Student ID: Multiple Choice Questions (3 points each; only one correct answer per question)

More information

Final. for Math 308, Winter This exam contains 7 questions for a total of 100 points in 15 pages.

Final. for Math 308, Winter This exam contains 7 questions for a total of 100 points in 15 pages. Final for Math 308, Winter 208 NAME (last - first): Do not open this exam until you are told to begin. You will have 0 minutes for the exam. This exam contains 7 questions for a total of 00 points in 5

More information

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 TMA4115 - Calculus 3 Lecture 21, April 3 Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 www.ntnu.no TMA4115 - Calculus 3, Lecture 21 Review of last week s lecture Last week

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions Warm-up True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation Eigenanalysis What s Eigenanalysis? Fourier s Eigenanalysis Model is a Replacement Process Powers and Fourier s Model Differential Equations and Fourier s Model Fourier s Model Illustrated What is Eigenanalysis?

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Practice problems for Exam 3 A =

Practice problems for Exam 3 A = Practice problems for Exam 3. Let A = 2 (a) Determine whether A is diagonalizable. If so, find a matrix S such that S AS is diagonal. If not, explain why not. (b) What are the eigenvalues of A? Is A diagonalizable?

More information

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them. Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

More information

Summer Session Practice Final Exam

Summer Session Practice Final Exam Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.

More information

ANSWERS. E k E 2 E 1 A = B

ANSWERS. E k E 2 E 1 A = B MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

More information

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018

MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 Name Circle the name of your instructor below: Fathi Jankowski Kordek Strenner Yan Please read all instructions carefully before beginning Each problem is worth

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Math 205, Summer I, Week 4b:

Math 205, Summer I, Week 4b: Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

More information

Diagonalization of Matrix

Diagonalization of Matrix of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

MATH 1553 PRACTICE MIDTERM 3 (VERSION A)

MATH 1553 PRACTICE MIDTERM 3 (VERSION A) MATH 1553 PRACTICE MIDTERM 3 (VERSION A) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.

More information

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

More information

City Suburbs. : population distribution after m years

City Suburbs. : population distribution after m years Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is,

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is, 65 Diagonalizable Matrices It is useful to introduce few more concepts, that are common in the literature Definition 65 The characteristic polynomial of an n n matrix A is the function p(λ) det(a λi) Example

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM 33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM (UPDATED MARCH 17, 2018) The final exam will be cumulative, with a bit more weight on more recent material. This outline covers the what we ve done since the

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 16 That is one week from this Friday The exam covers 45, 51, 52 53, 61, 62, 64, 65 (through today s material) WeBWorK 61, 62

More information

AMS10 HW7 Solutions. All credit is given for effort. (-5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A =

AMS10 HW7 Solutions. All credit is given for effort. (-5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A = AMS1 HW Solutions All credit is given for effort. (- pts for any missing sections) Problem 1 ( pts) Consider the following matrix 1 1 9 a. Calculate the eigenvalues of A. Eigenvalues are 1 1.1, 9.81,.1

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

There are six more problems on the next two pages

There are six more problems on the next two pages Math 435 bg & bu: Topics in linear algebra Summer 25 Final exam Wed., 8/3/5. Justify all your work to receive full credit. Name:. Let A 3 2 5 Find a permutation matrix P, a lower triangular matrix L with

More information

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

0 2 0, it is diagonal, hence diagonalizable)

0 2 0, it is diagonal, hence diagonalizable) MATH 54 TRUE/FALSE QUESTIONS FOR MIDTERM 2 SOLUTIONS PEYAM RYAN TABRIZIAN 1. (a) TRUE If A is diagonalizable, then A 3 is diagonalizable. (A = P DP 1, so A 3 = P D 3 P = P D P 1, where P = P and D = D

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis

More information

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

More information

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes. Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes Matrices and linear equations A matrix is an m-by-n array of numbers A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

Quizzes for Math 304

Quizzes for Math 304 Quizzes for Math 304 QUIZ. A system of linear equations has augmented matrix 2 4 4 A = 2 0 2 4 3 5 2 a) Write down this system of equations; b) Find the reduced row-echelon form of A; c) What are the pivot

More information

Determinants by Cofactor Expansion (III)

Determinants by Cofactor Expansion (III) Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...

More information

Test 3, Linear Algebra

Test 3, Linear Algebra Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

More information