4. Linear transformations as a vector space 17

Save this PDF as:

Size: px
Start display at page:

Transcription

1 4 Linear transformations as a vector space 17 d) Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation below find it matrix a) T : R 2 R 3 defined by T (x, y) T =(x +2y, 2x 5y, 7y) T ; b) T : R 4 R 3 defined by T (,x 2,, ) T =( +x 2 + +,x 2, + 3x 2 +6 ) T ; c) T : P n P n, Tf(t) =f (t) (find the matrix with respect to the standard basis 1,t,t 2,,t n ); d) T : P n P n, Tf(t) =2f(t) +3f (t) 4f (t) (again with respect to the standard basis 1,t,t 2,,t n ) 34 Find 3 3 matrices representing the transformations of R 3 which: a) project every vector onto x-y plane; b) reflect every vector through x-y plane; c) rotate the x-y plane through 30,leavingz-axis alone 35 Let A be a linear transformation If z is the center of the straight interval [x, y], show that Az is the center of the interval [Ax, Ay] Hint: What does it mean that z is the center of the interval [x, y]? 4 Linear transformations as a vector space What operations can we perform with linear transformations? We can always multiply a linear transformation for a scalar, ie if we have a linear transformation T : V W and a scalar α we can define a new transformation αt by (αt )v = α(t v) v V It is easy to check that αt is also a linear transformation: (αt )(α 1 v 1 + α 2 v 2 )=α(t (α 1 v 1 + α 2 v 2 )) by the definition of αt = α(α 1 T v 1 + α 2 T v 2 ) by the linearity of T = α 1 αt v 1 + α 2 αt v 2 = α 1 (αt )v 1 + α 2 (αt )v 2 If T 1 and T 2 are linear transformations with the same domain and target space (T 1 : V W and T 2 : V W, or in short T 1,T 2 : V W ), then we can add these transformations, ie define a new transformation T =(T 1 + T 2 ):V W by (T 1 + T 2 )v = T 1 v + T 2 v v V

2 6 Invertible transformations and matrices Isomorphisms 29 Recalling the definition of a basis we get the following corollary of Theorem 67 Corollary 69 An m n matrix is invertible if and only if its columns form a basis in R m Exercises 61 Prove, that if A : V W is an isomorphism (ie an invertible linear transformation) and v 1, v 2,,v n is a basis in V,thenAv 1,Av 2,,Av n is a basis in W 62 Find all right inverses to the 1 2 matrix (row) A =(1, 1) Conclude from here that the row A is not left invertible 63 Find all left inverses of the column (1, 2, 3) T 64 Is the column (1, 2, 3) T right invertible? Justify 65 Find two matrices A and B that AB is invertible, but A and B are not Hint: square matrices A and B would not work Remark: It is easy to construct such A and B in the case when AB is a 1 1 matrix (a scalar) But can you get 2 2 matrix AB? 3 3? n n? 66 Suppose the product AB is invertible Show that A is right invertible and B is left invertible Hint: you can just write formulas for right and left inverses 67 Let A be n n matrix Prove that if A 2 = 0 then A is not invertible 68 Suppose AB = 0 for some non-zero matrix B Can A be invertible? Justify 69 Write matrices of the linear transformations T 1 and T 2 in R 5, defined as follows: T 1 interchanges the coordinates x 2 and of the vector x, and T 2 just adds to the coordinate x 2 a times the coordinate, and does not change other coordinates, ie T 1 x 2 = here a is some fixed number x 2, T 2 x 2 = x 2 + a Show that T 1 and T 2 are invertible transformations, and write the matrices of the inverses Hint: it may be simpler, if you first describe the inverse transformation, and then find its matrix, rather than trying to guess (or compute) the inverses of the matrices T 1, T Find the matrix of the rotation in R 3 through the angle α around the vector (1, 2, 3) T We assume that rotation is counterclockwise if we sit at the tip of the vector and looking at the origin You can present the answer as a product of several matrices: you don t have to perform the multiplication 611 Give examples of matrices (say 2 2) such that: ;

3 1 Main definitions Eigenvalues of a triangular matrix Computing eigenvalues is equivalent to finding roots of a characteristic polynomial of a matrix (or using some numerical method), which can be quite time consuming However, there is one particular case, when we can just read eigenvalues off the matrix Namely eigenvalues of a triangular matrix (counting multiplicities) are exactly the diagonal entries a 1,1,a 2,2,,a n,n By triangular here we mean either upper or lower triangular matrix Since a diagonal matrix is a particular case of a triangular matrix (it is both upper and lower triangular the eigenvalues of a diagonal matrix are its diagonal entries The proof of the statement about triangular matrices is trivial: we need to subtract λ from the diagonal entries of A, and use the fact that determinant of a triangular matrix is the product of its diagonal entries We get the characteristic polynomial det(a λi) =(a 1,1 λ)(a 2,2 λ) (a n,n λ) and its roots are exactly a 1,1,a 2,2,,a n,n Exercises 11 True or false: a) Every linear operator in an n-dimensional vector space has n distinct eigenvalues; b) If a matrix has one eigenvector, it has infinitely many eigenvectors; c) There exists a square real matrix with no real eigenvalues; d) There exists a square matrix with no (complex) eigenvectors; e) Similar matrices always have the same eigenvalues; f) Similar matrices always have the same eigenvectors; g) The sum of two eigenvectors of a matrix A is always an eigenvector; h) The sum of two eigenvectors of a matrix A corresponding to the same eigenvalue λ is always an eigenvector 12 Find characteristic polynomials, eigenvalues and eigenvectors of the following matrices: ,, Compute eigenvalues and eigenvectors of the rotation matrix cos α sin α sin α cos α Note, that the eigenvalues (and eigenvectors) do not need to be real

4 104 4 Introduction to spectral theory Assume the field is C (the complex numbers) False in general otherwise Same comment 14 Compute characteristic polynomials and eigenvalues of the following matrices: , 0 π , e 0, Do not expand the characteristic polynomials, leave them as products 15 Prove that eigenvalues (counting multiplicities) of a triangular matrix coincide with its diagonal entries 16 An operator A is called nilpotent if A k = 0 for some k Prove that if A is nilpotent, then σ(a) ={0} (ie that 0 is the only eigenvalue of A) 17 Show that characteristic polynomial of a block triangular matrix A, 0 B where A and B are square matrices, coincides with det(a λi)det(b λi) (Use Exercise 311 from Chapter 3) 18 Let v 1, v 2,,v n be a basis in a vector space V Assume also that the first k vectors v 1, v 2,,v k of the basis are eigenvectors of an operator A, corresponding to an eigenvalue λ (ie that Av j = λv j, j =1, 2,,k) Show that in this basis the matrix of the operator A has block triangular form λik 0 B where I k is k k identity matrix and B is some (n k) (n k) matrix 19 Use the two previous exercises to prove that geometric multiplicity of an eigenvalue cannot exceed its algebraic multiplicity 110 Prove that determinant of a matrix A is the product of its eigenvalues (counting multiplicities) Hint: first show that det(a λi) = (λ 1 λ)(λ 2 λ) (λ n λ), where λ 1, λ 2,,λ n are eigenvalues (counting multiplicities) Then compare the free terms (terms without λ) or plug in λ = 0 to get the conclusion 111 Prove that the trace of a matrix equals the sum of eigenvalues in three steps First, compute the coefficient of λ n 1 in the right side of the equality, det(a λi) =(λ 1 λ)(λ 2 λ) (λ n λ) Then show that det(a λi) can be represented as det(a λi) =(a 1,1 λ)(a 2,2 λ) (a n,n λ)+q(λ) where q(λ) is polynomial of degree at most n 2 coefficients of λ n 1 get the conclusion And finally, comparing the

5 112 4 Introduction to spectral theory Exercises 21 Let A be n n matrix True or false: a) A T has the same eigenvalues as A b) A T has the same eigenvectors as A c) If A is is diagonalizable, then so is A T Justify your conclusions 22 Let A be a square matrix with real entries, and let λ be its complex eigenvalue Suppose v =(v 1,v 2,,v n ) T is a corresponding eigenvector, Av = λv Prove that the λ is an eigenvalue of A and Av = λv Here v is the complex conjugate of the vector v, v := (v 1, v 2,,v n ) T 23 Let Find A 2004 by diagonalizing A A = Construct a matrix A with eigenvalues 1 and 3 and corresponding eigenvectors (1, 2) T and (1, 1) T Is such a matrix unique? 25 Diagonalize the following matrices, if possible: 4 2 a) b) c) (λ = 2 is one of the eigenvalues) Consider the matrix A = a) Find its eigenvalues Is it possible to find the eigenvalues without computing? b) Is this matrix diagonalizable? Find out without computing anything c) If the matrix is diagonalizable, diagonalize it 27 Diagonalize the matrix Find all square roots of the matrix 5 2 A = 3 0 ie find all matrices B such that B 2 = A Hint: Finding a square root of a diagonal matrix is easy You can leave your answer as a product

6 2 Diagonalization Let us recall that the famous Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, is defined as follows: we put ϕ 0 = 0, ϕ 1 = 1 and define ϕ n+2 = ϕ n+1 + ϕ n We want to find a formula for ϕ n Todothis a) Find a 2 2 matrix A such that ϕn+2 = A ϕ n+1 ϕn+1 Hint: Add the trivial equation ϕ n+1 = ϕ n+1 to the Fibonacci relation ϕ n+2 = ϕ n+1 + ϕ n b) Diagonalize A and find a formula for A n c) Noticing that ϕn+1 ϕ n ϕ n = A n ϕ1 ϕ 0 = A n 1 0 find a formula for ϕ n (You will need to compute an inverse and perform multiplication here) d) Show that the vector (ϕ n+1 /ϕ n, 1) T converges to an eigenvector of A What do you think, is it a coincidence? 210 Let A be a 5 5 matrix with 3 eigenvalues (not counting multiplicities) Suppose we know that one eigenspace is three-dimensional Can you say if A is diagonalizable? 211 Give an example of a 3 3 matrix which cannot be diagonalized After you constructed the matrix, can you make it generic, so no special structure of the matrix could be seen? 212 Let a matrix A satisfies A 5 = 0 Prove that A cannot be diagonalized More generally, any nilpotent matrix, ie a matrix satisfying A N = 0 for some N cannot be diagonalized 213 Eigenvalues of a transposition: a) Consider the transformation T in the space M 2 2 of 2 2 matrices, T (A) = A T Find all its eigenvalues and eigenvectors Is it possible to diagonalize this transformation? Hint: While it is possible to write a matrix of this linear transformation in some basis, compute characteristic polynomial, and so on, it is easier to find eigenvalues and eigenvectors directly from the definition b) Can you do the same problem but in the space of n n matrices? 214 Prove that two subspaces V 1 and V 2 are linearly independent if and only if V 1 V 2 = {0}

Calculating determinants for larger matrices

Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

Definition (T -invariant subspace) Example. Example

Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

Eigenvalues, Eigenvectors, and Diagonalization

Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction

NONCOMMUTATIVE POLYNOMIAL EQUATIONS Edward S Letzter Introduction My aim in these notes is twofold: First, to briefly review some linear algebra Second, to provide you with some new tools and techniques

and let s calculate the image of some vectors under the transformation T.

Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

m:33 Notes: 7. Diagonalization of Symmetric Matrices Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman May 3, Symmetric matrices Definition. A symmetric matrix is a matrix

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

Diagonalisierung. Eigenwerte, Eigenvektoren, Mathematische Methoden der Physik I. Vorlesungsnotizen zu

Eigenwerte, Eigenvektoren, Diagonalisierung Vorlesungsnotizen zu Mathematische Methoden der Physik I J. Mark Heinzle Gravitational Physics, Faculty of Physics University of Vienna Version /6/29 2 version

LECTURE VII: THE JORDAN CANONICAL FORM MAT FALL 2006 PRINCETON UNIVERSITY. [See also Appendix B in the book]

LECTURE VII: THE JORDAN CANONICAL FORM MAT 204 - FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO [See also Appendix B in the book] 1 Introduction In Lecture IV we have introduced the concept of eigenvalue

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

Summer Session Practice Final Exam

Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.

Eigenvalues and Eigenvectors

CHAPTER Eigenvalues and Eigenvectors CHAPTER CONTENTS. Eigenvalues and Eigenvectors 9. Diagonalization. Complex Vector Spaces.4 Differential Equations 6. Dynamical Systems and Markov Chains INTRODUCTION

MTH 102: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur. Problem Set

MTH 102: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set 6 Problems marked (T) are for discussions in Tutorial sessions. 1. Find the eigenvalues

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS KEITH CONRAD. Introduction The easiest matrices to compute with are the diagonal ones. The sum and product of diagonal matrices can be computed componentwise

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

1. General Vector Spaces

1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

Eigenvalues and Eigenvectors 7.2 Diagonalization

Eigenvalues and Eigenvectors 7.2 Diagonalization November 8 Goals Suppose A is square matrix of order n. Provide necessary and sufficient condition when there is an invertible matrix P such that P 1 AP

Math 2331 Linear Algebra

5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions

Final Exam Linear Algebra Summer Math SX (3) Corrin Clarkson August th, Name: Solutions Instructions: This is a closed book exam. You may not use the textbook, notes or a calculator. You will have 9 minutes

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

Math 20F Practice Final Solutions. Jor-el Briones

Math 2F Practice Final Solutions Jor-el Briones Jor-el Briones / Math 2F Practice Problems for Final Page 2 of 6 NOTE: For the solutions to these problems, I skip all the row reduction calculations. Please

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

4. Determinants.

4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

Topic 2 Quiz 2. choice C implies B and B implies C. correct-choice C implies B, but B does not imply C

Topic 1 Quiz 1 text A reduced row-echelon form of a 3 by 4 matrix can have how many leading one s? choice must have 3 choice may have 1, 2, or 3 correct-choice may have 0, 1, 2, or 3 choice may have 0,

Spectral radius, symmetric and positive matrices

Spectral radius, symmetric and positive matrices Zdeněk Dvořák April 28, 2016 1 Spectral radius Definition 1. The spectral radius of a square matrix A is ρ(a) = max{ λ : λ is an eigenvalue of A}. For an

MTH50 Spring 07 HW Assignment 7 {From [FIS0]}: Sec 44 #4a h 6; Sec 5 #ad ac 4ae 4 7 The due date for this assignment is 04/05/7 Sec 44 #4a h Evaluate the erminant of the following matrices by any legitimate

1 Invariant subspaces

MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another

Eigenvalues, Eigenvectors, and Diagonalization

Week12 Eigenvalues, Eigenvectors, and Diagonalization 12.1 Opening Remarks 12.1.1 Predicting the Weather, Again Let us revisit the example from Week 4, in which we had a simple model for predicting the

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

Eigenvalues and Eigenvectors

LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Name: Section: Question Points

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

Determinants by Cofactor Expansion (III)

Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

80 min. 65 points in total. The raw score will be normalized according to the course policy to count into the final score.

This is a closed book, closed notes exam You need to justify every one of your answers unless you are asked not to do so Completely correct answers given without justification will receive little credit

5.3.5 The eigenvalues are 3, 2, 3 (i.e., the diagonal entries of D) with corresponding eigenvalues. Null(A 3I) = Null( ), 0 0

535 The eigenvalues are 3,, 3 (ie, the diagonal entries of D) with corresponding eigenvalues,, 538 The matrix is upper triangular so the eigenvalues are simply the diagonal entries, namely 3, 3 The corresponding

I. Multiple Choice Questions (Answer any eight)

Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

Lecture 11: Eigenvalues and Eigenvectors

Lecture : Eigenvalues and Eigenvectors De nition.. Let A be a square matrix (or linear transformation). A number λ is called an eigenvalue of A if there exists a non-zero vector u such that A u λ u. ()

Diagonalisierung. Eigenwerte, Eigenvektoren, Mathematische Methoden der Physik I. Vorlesungsnotizen zu

Eigenwerte, Eigenvektoren, Diagonalisierung Vorlesungsnotizen zu Mathematische Methoden der Physik I J. Mark Heinzle Gravitational Physics, Faculty of Physics University of Vienna Version 5/5/2 2 version

EIGENVALUES AND EIGENVECTORS

EIGENVALUES AND EIGENVECTORS Diagonalizable linear transformations and matrices Recall, a matrix, D, is diagonal if it is square and the only non-zero entries are on the diagonal This is equivalent to

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT 204 - FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO 1 Adjoint of a linear operator Note: In these notes, V will denote a n-dimensional euclidean vector

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. Determinants Ex... Let A = 0 4 4 2 0 and B = 0 3 0. (a) Compute 0 0 0 0 A. (b) Compute det(2a 2 B), det(4a + B), det(2(a 3 B 2 )). 0 t Ex..2. For

Math Linear Algebra Final Exam Review Sheet

Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

Linear algebra II Homework #1 solutions A = This means that every eigenvector with eigenvalue λ = 1 must have the form

Linear algebra II Homework # solutions. Find the eigenvalues and the eigenvectors of the matrix 4 6 A =. 5 Since tra = 9 and deta = = 8, the characteristic polynomial is f(λ) = λ (tra)λ+deta = λ 9λ+8 =

Midterm 2 Solutions, MATH 54, Linear Algebra and Differential Equations, Fall 2014

Name (Last, First): Student ID: Circle your section: 2 Shin 8am 7 Evans 22 Lim pm 35 Etcheverry 22 Cho 8am 75 Evans 23 Tanzer 2pm 35 Evans 23 Shin 9am 5 Latimer 24 Moody 2pm 8 Evans 24 Cho 9am 254 Sutardja

Linear Algebra. Carleton DeTar February 27, 2017

Linear Algebra Carleton DeTar detar@physics.utah.edu February 27, 2017 This document provides some background for various course topics in linear algebra: solving linear systems, determinants, and finding

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler.

Math 453 Exam 3 Review The syllabus for Exam 3 is Chapter 6 (pages -2), Chapter 7 through page 37, and Chapter 8 through page 82 in Axler.. You should be sure to know precise definition of the terms we

Math 313 (Linear Algebra) Exam 2 - Practice Exam

Name: Student ID: Section: Instructor: Math 313 (Linear Algebra) Exam 2 - Practice Exam Instructions: For questions which require a written answer, show all your work. Full credit will be given only if

1. Select the unique answer (choice) for each problem. Write only the answer.

MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

Matrices related to linear transformations

Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas

Math 215 HW #9 Solutions

Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith

Elementary Linear Algebra Review for Exam 3 Exam is Friday, December 11th from 1:15-3:15

Elementary Linear Algebra Review for Exam 3 Exam is Friday, December th from :5-3:5 The exam will cover sections: 6., 6.2, 7. 7.4, and the class notes on dynamical systems. You absolutely must be able

Eigenvectors and Hermitian Operators

7 71 Eigenvalues and Eigenvectors Basic Definitions Let L be a linear operator on some given vector space V A scalar λ and a nonzero vector v are referred to, respectively, as an eigenvalue and corresponding

Chapter 4 & 5: Vector Spaces & Linear Transformations

Chapter 4 & 5: Vector Spaces & Linear Transformations Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapters 4 & 5 1 / 40 Objective The purpose of Chapter 4 is to think

33A Linear Algebra and Applications: Practice Final Exam - Solutions

33A Linear Algebra and Applications: Practice Final Eam - Solutions Question Consider a plane V in R 3 with a basis given by v = and v =. Suppose, y are both in V. (a) [3 points] If [ ] B =, find. (b)

Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem

Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem Steven J. Miller June 19, 2004 Abstract Matrices can be thought of as rectangular (often square) arrays of numbers, or as

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns.

MATRICES After studying this chapter you will acquire the skills in knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. List of

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1)

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Travis Schedler Tue, Oct 18, 2011 (version: Tue, Oct 18, 6:00 PM) Goals (2) Solving systems of equations

Chapter Two Elements of Linear Algebra

Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe

0.1 Eigenvalues and Eigenvectors

0.. EIGENVALUES AND EIGENVECTORS MATH 22AL Computer LAB for Linear Algebra Eigenvalues and Eigenvectors Dr. Daddel Please save your MATLAB Session (diary)as LAB9.text and submit. 0. Eigenvalues and Eigenvectors

MATH 320 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

MATH 2 INHOMOGENEOUS LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS W To find a particular solution for a linear inhomogeneous system of differential equations x Ax = ft) or of a mechanical system with external

SOLUTIONS: ASSIGNMENT Use Gaussian elimination to find the determinant of the matrix. = det. = det = 1 ( 2) 3 6 = 36. v 4.

SOLUTIONS: ASSIGNMENT 9 66 Use Gaussian elimination to find the determinant of the matrix det 1 1 4 4 1 1 1 1 8 8 = det = det 0 7 9 0 0 0 6 = 1 ( ) 3 6 = 36 = det = det 0 0 6 1 0 0 0 6 61 Consider a 4

Matrices and Deformation

ES 111 Mathematical Methods in the Earth Sciences Matrices and Deformation Lecture Outline 13 - Thurs 9th Nov 2017 Strain Ellipse and Eigenvectors One way of thinking about a matrix is that it operates

9.1 Eigenanalysis I Eigenanalysis II Advanced Topics in Linear Algebra Kepler s laws

Chapter 9 Eigenanalysis Contents 9. Eigenanalysis I.................. 49 9.2 Eigenanalysis II................. 5 9.3 Advanced Topics in Linear Algebra..... 522 9.4 Kepler s laws................... 537

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

Lecture 12: Diagonalization

Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors

ANSWERS. E k E 2 E 1 A = B

MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

Diagonalization of Matrices

LECTURE 4 Diagonalization of Matrices Recall that a diagonal matrix is a square n n matrix with non-zero entries only along the diagonal from the upper left to the lower right (the main diagonal) Diagonal

MATH 369 Linear Algebra

Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

1 9/5 Matrices, vectors, and their applications

1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric

Eigenvalues and Eigenvectors. Review: Invertibility. Eigenvalues and Eigenvectors. The Finite Dimensional Case. January 18, 2018

January 18, 2018 Contents 1 2 3 4 Review 1 We looked at general determinant functions proved that they are all multiples of a special one, called det f (A) = f (I n ) det A. Review 1 We looked at general

Chapter 3: Theory Review: Solutions Math 308 F Spring 2015

Chapter : Theory Review: Solutions Math 08 F Spring 05. What two properties must a function T : R m R n satisfy to be a linear transformation? (a) For all vectors u and v in R m, T (u + v) T (u) + T (v)