# LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

Size: px
Start display at page:

Download "LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS"

## Transcription

1 LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable, and (iii) if it is diagonalizable, find an invertible matrix P and a diagonal matrix D such that A = P DP If the matrix is orthogonally diagonalizable, then try to find such a P which is a diagonal matrix HINT: The eigenvalues for the matrix A below are and A = B = 9 E = Solution: The matrix A is orthogonally diagonalizable since it is symmetric (see section 5) To diagonalize it, we first find eigenvectors of A (In the following solution, I will find an orthonormal set of eigenvectors, to show you how to orthogonally diagonalize A; however, for the question as stated, you could use any set of three linearly independent eigenvectors to get a correct answer) For the eigenvalue, the associated eigenvectors are solutions to the linear system corresponding to whose solution is given by the equations x = x and x = x (with x as a free variable) So (,, ) is an eigenvector We eventually want an orthonormal basis of R, so we divide this eigenvector by its norm,, to get the unit eigenvector u =,

2 LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS For the eigenvalue, the associated eigenvectors are the solutions to the linear system corresponding to, whose solution is given by the equation x = x x with x and x both free Choosing (, ) and (, ) for the values of x and x in the above solution, we get (,, ) and (,, ), two linearly independent eignevalues of A with eigenvalue Since we want an orthonormal set of eigenvectors, we apply the Gram-Schmidt process to these two vectors to get the orthogonal set, (see the solution to Problem below for details on how to apply Gram- Schmidt), and then we make each of these vectors into unit vectors by dividing them by their norms, to get u =, u = Finally, as explained in section 5, we can use the orthonormal set of eigenvectors { u, u, u } and the eigenvalues we have found above to construct matrices P and D that orthogonally diagonalize A: P = u u u =, D = For B, we again start by finding its eigenvalues B is upper-triangular, so its eigenvalues are the entries on the main diagonal, and the eigenvalues of B are and (Alternatively, it is easy to find the eigenvalues of B by solving the characteristic equation, which is = ( λ)( λ)) To find an eigenvector corresponding to the eigenvalue, we solve: 9 9 The general solution is that x = and x is free, so one possible eigenvector is (, ) To find an eigenvector corresponding to the eigenvalue, we solve:

3 LINEAR ALGEBRA, -IPARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS 9 The general solution is that x = x and x is free, so one possible eigenvector is (, ) So B is diagonalizable since the two eigenvectors we have found form a basis of R (as explained in section 5) Using the technique in section 5, we can let P =, D = (The columns of P are the two eigenvectors we have found, and the diagonal entries of D are the associated eigenvalues) However, since the matrix B is not symmetric, it is not orthogonally diagonalizable Finally, we consider the matrix E For this matrix, the characteristic equation is: = λ λ λ and expanding the determinant by the first column, this becomes = ( λ) λ λ = ( λ) Therefore, the only eigenvalue of E is (which is a triple root of the characteristic polynomial) Note that there do exists matrices with only one eigenvalue which are diagonalizable (For practice, you could try to find an example of such a matrix) So we are not yet finished with this problem! The -eigenspace of E is the null space of the null space of the matrix This null space is the set of all (x, x, x ) in R such that x =, which has as a basis the set {(,, ), (,, )} So the dimension of the -eigenspace is only This means that the geometric multiplicity of the eigenvalue is, but the algebraic multiplicity of this eigenvalue is (as we saw in the characteristic equation above) Therefore, E is not diagonalizable (b) Give an example of a matrix C which is not similar to the matrix A in part (a) (The definition from section 5 of the textbook says: C is similar to A if and only if there is an invertible matrix P such that C = P AP ),

4 4LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Solution: Any two similar matrices have the same sets of eigenvalues So we just have to find a matrix C whose set of eigenvalues is different from {, }; there are many possible correct answers here, such as C = (whose eigenvalues are,, and ) Problem (a) Find an orthonormal basis for the subspace W of R spanned by, Solution: Call this subspace S First, note that the set given is linearly independent (since neither vector is a multiple of the other), so it is a basis for S So we can use the Gram-Schmidt process (section 4, Theorem ) to find an orthogonal basis of S: let v =, v = = = Then v and v are orthogonal (since v v =, but to get an orthonormal basis, we must divide each vector by its norm The norm of v is and the norm of v is, so an orthonormal basis of S is { v, v } =, Solution: This comes down to finding a vector in the orthogonal complement of S As explained in section, the orthogonal complement of S is

5 LINEAR ALGEBRA, -IPARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS5 equal to the nullspace of the matrix This matrix row-reduces to and the solution to the associated homogeneous linear system is given by the equations x = x x and x = x (with x free) Using the value of for x, we get the solution (,, ), and we can normalize this to get the vector v = So { v, v, v } is an orthonormal basis of R (c) Is there a unique way to extend the basis you found in (a) to an orthonormal basis of R? Explain No, the vector v found above is not the unique way to extend { v, v } to an orthonormal basis of R : the vector v works, too: it is also a unit vector orthogonal to v and v (But it turns out that v and v are the only two possibilities) (d) Find the orthogonal projection of the vector (,, ) onto the subspace W Solution: We will use the orthonormal basis for W that we found in part (a) Call this basis { w, w } The orthogonal projection of (,, ) onto W is: w w w +, w w w = w + w (note that w w = and w w = because the basis is orthonormal) = / / /

### MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

### Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

### 5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

### MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

### MATH 221, Spring Homework 10 Solutions

MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

### Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

### MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

### I. Multiple Choice Questions (Answer any eight)

Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

### PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

### 22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

m:33 Notes: 7. Diagonalization of Symmetric Matrices Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman May 3, Symmetric matrices Definition. A symmetric matrix is a matrix

### 235 Final exam review questions

5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

### MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

### Solutions to Final Exam

Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

### DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

### MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

### Practice problems for Exam 3 A =

Practice problems for Exam 3. Let A = 2 (a) Determine whether A is diagonalizable. If so, find a matrix S such that S AS is diagonal. If not, explain why not. (b) What are the eigenvalues of A? Is A diagonalizable?

### Chapter 3 Transformations

Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

### ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

me me ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number

### 2. Every linear system with the same number of equations as unknowns has a unique solution.

1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

### Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5

Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,

### Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

### Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

### (a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

### Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

### No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Name: Section: Question Points

### Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

### Conceptual Questions for Review

Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

### Definition (T -invariant subspace) Example. Example

Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

### and let s calculate the image of some vectors under the transformation T.

Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

### AMS10 HW7 Solutions. All credit is given for effort. (-5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A =

AMS1 HW Solutions All credit is given for effort. (- pts for any missing sections) Problem 1 ( pts) Consider the following matrix 1 1 9 a. Calculate the eigenvalues of A. Eigenvalues are 1 1.1, 9.81,.1

### MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

### Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

### MAT Linear Algebra Collection of sample exams

MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

### Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

### Diagonalizing Matrices

Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

### MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

### Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

### ANSWERS. E k E 2 E 1 A = B

MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

### 18.06 Quiz 2 April 7, 2010 Professor Strang

18.06 Quiz 2 April 7, 2010 Professor Strang Your PRINTED name is: 1. Your recitation number or instructor is 2. 3. 1. (33 points) (a) Find the matrix P that projects every vector b in R 3 onto the line

### Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

### 1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

### Name: Final Exam MATH 3320

Name: Final Exam MATH 3320 Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling. (1) State the following

### MATH 1553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE

MATH 553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE In studying for the final exam, you should FIRST study all tests andquizzeswehave had this semester (solutions can be found on Canvas). Then go

### HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name.

HW2 - Due 0/30 Each answer must be mathematically justified. Don t forget your name. Problem. Use the row reduction algorithm to find the inverse of the matrix 0 0, 2 3 5 if it exists. Double check your

### 1 Last time: least-squares problems

MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

### MATH. 20F SAMPLE FINAL (WINTER 2010)

MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total

### Math 265 Linear Algebra Sample Spring 2002., rref (A) =

Math 265 Linear Algebra Sample Spring 22. It is given that A = rref (A T )= 2 3 5 3 2 6, rref (A) = 2 3 and (a) Find the rank of A. (b) Find the nullityof A. (c) Find a basis for the column space of A.

### Diagonalization of Matrix

of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

### Linear Algebra Final Exam Study Guide Solutions Fall 2012

. Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

### LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

### Eigenvalues and Eigenvectors A =

Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

### Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

### Math 3191 Applied Linear Algebra

Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

### PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

### Problem 1: Solving a linear equation

Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution

### Math 1553, Introduction to Linear Algebra

Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has course-level learning goals that pertain to the entire course, and section-level

### Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

### Solutions to practice questions for the final

Math A UC Davis, Winter Prof. Dan Romik Solutions to practice questions for the final. You are given the linear system of equations x + 4x + x 3 + x 4 = 8 x + x + x 3 = 5 x x + x 3 x 4 = x + x + x 4 =

### Math 205, Summer I, Week 4b:

Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

### NATIONAL UNIVERSITY OF SINGAPORE MA1101R

Student Number: NATIONAL UNIVERSITY OF SINGAPORE - Linear Algebra I (Semester 2 : AY25/26) Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES. Write down your matriculation/student number clearly in the

### Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

### MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

### Exercise Set 7.2. Skills

Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

### Chapter 6: Orthogonality

Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

### 5.3.5 The eigenvalues are 3, 2, 3 (i.e., the diagonal entries of D) with corresponding eigenvalues. Null(A 3I) = Null( ), 0 0

535 The eigenvalues are 3,, 3 (ie, the diagonal entries of D) with corresponding eigenvalues,, 538 The matrix is upper triangular so the eigenvalues are simply the diagonal entries, namely 3, 3 The corresponding

### MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

### REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

### Math 315: Linear Algebra Solutions to Assignment 7

Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

### Check that your exam contains 30 multiple-choice questions, numbered sequentially.

MATH EXAM SPRING VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result

### EXAM. Exam 1. Math 5316, Fall December 2, 2012

EXAM Exam Math 536, Fall 22 December 2, 22 Write all of your answers on separate sheets of paper. You can keep the exam questions. This is a takehome exam, to be worked individually. You can use your notes.

### Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

### IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

### homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

### Sample Final Exam: Solutions

Sample Final Exam: Solutions Problem. A linear transformation T : R R 4 is given by () x x T = x 4. x + (a) Find the standard matrix A of this transformation; (b) Find a basis and the dimension for Range(T

### The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

### LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

### ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

### YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

### Lecture 12: Diagonalization

Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors

### Test 3, Linear Algebra

Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

### Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

### IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

### Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

### Columbus State Community College Mathematics Department Public Syllabus

Columbus State Community College Mathematics Department Public Syllabus Course and Number: MATH 2568 Elementary Linear Algebra Credits: 4 Class Hours Per Week: 4 Prerequisites: MATH 2153 with a C or higher

### Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

### Section 6.4. The Gram Schmidt Process

Section 6.4 The Gram Schmidt Process Motivation The procedures in 6 start with an orthogonal basis {u, u,..., u m}. Find the B-coordinates of a vector x using dot products: x = m i= x u i u i u i u i Find

### Reduction to the associated homogeneous system via a particular solution

June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

### MATH 115A: SAMPLE FINAL SOLUTIONS

MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

### Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

### MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

### Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

### Cheat Sheet for MATH461

Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

### Math 2B Spring 13 Final Exam Name Write all responses on separate paper. Show your work for credit.

Math 2B Spring 3 Final Exam Name Write all responses on separate paper. Show your work for credit.. True or false, with reason if true and counterexample if false: a. Every invertible matrix can be factored

### Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

### BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

### MATH Spring 2011 Sample problems for Test 2: Solutions

MATH 304 505 Spring 011 Sample problems for Test : Solutions Any problem may be altered or replaced by a different one! Problem 1 (15 pts) Let M, (R) denote the vector space of matrices with real entries

### SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

### Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis