2. Every linear system with the same number of equations as unknowns has a unique solution.


 Rosanna Kennedy
 1 years ago
 Views:
Transcription
1 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations as unknowns has at least one solution. 4. Every linear system with more equations than unknowns may have an infinite number of solutions. 5. Every linear system with fewer equations than unknowns may have no solutions. 6. Every matrix is row equivalent to a unique matrix in row echelon form. 7. If [A b] and [C d] are row equivalent augmented matrices, the matrix equations Ax = b and Cx = d have the same solution set. 8. A linear system with a square coefficient matrix A has a unique solution if and only if A is row equivalent to the identity matrix. 9. A linear system with coefficient matrix A has an infinite number of solutions if and only if A can be row reduced to an echelon form that includes some column containing no pivot. 10. A consistent linear system with coefficient matrix A has an infinite number of solutions if and only if A can be row reduced to an echelon form that includes some column containing no pivot. 11. If a square linear system Ax = b has a solution for every choice of column vector b, then the solution is unique for each b. 12. If a square linear system Ax = 0 has only the trivial solution, then Ax = b has a unique solution for every (appropriately sized) column vector b. 13. Multiplication of a nonzero vector by a nonzero scalar never yields the zero vector 14. No vector is its own additive inverse. 15. Every vector space has at least two vectors. 16. Every vector space has at least two distinct subspaces. 17. If u + v is in a subspace W of a vector space V, then both u and v are elements of W. 18. Two subspaces of a vector space V may have an empty intersection.
2 19. The rank of A + B is less than or equal to the ranks of both A and B. 20. Let A and B be 2 2 matrices such that AB = 0. Either A = 0 or B = 0, or both. 21. Let A and B be 2 2 matrices such that AB = 0. If B is invertible, then A = Let A and B be 2 2 matrices such that AB = 0. BA = Let A and B be 2 2 matrices such that AB = 0. There is a vector x 0 such that BAx = If B is an n n matrix and B 2 = B, then B is not invertible. 25. The span of any two nonzero vectors in R 2 is all of R If v 1, v 2,..., v k are vectors in R 2 such that span(v 1, v 2,..., v k ) = R 2, then k = A subset of R n containing two nonzero distinct parallel vectors is dependent. 28. If a set of nonzero vectors in R n is dependent, then any two vectors in the set are parallel. 29. Every subset of three vectors in R 2 is dependent. 30. Every subset of two vectors in R 2 is independent. 31. If a subset of two vectors in R 2 spans R 2, then the subset is independent. 32. If S is independent, then each vector in V can be expressed uniquely as a linear combination of the vectors in S. 33. If S is independent and spans V, then each vector in V can be expressed uniquely as a linear combination of the vectors in S. 34. Every independent subset of V is a subset of some basis for V. 35. If H is a row echelon form of a matrix A, then the nonzero column vectors in H form a basis for the column space of A. 36. For all positive integers m and n, the nullity (dimension of the null space) of an m n matrix might be any number from 0 to n. 37. For all positive integers m and n, the nullity of an m n matrix might be any number from 0 to m.
3 38. For all positive integers m n, the nullity of an m n matrix might be any number from 0 to n. 39. There is a unique coordinate vector associated with each vector v V. 40. There is a unique coordinate vector associated with each vector v V relative to a basis for V. 41. There is a unique coordinate vector associated with each vector v V relative to an ordered basis of V. 42. Distinct vectors in V have distinct coordinate vectors relative to the same ordered basis B of V. 43. The same vector in V cannot have the same coordinate vector relative to different ordered bases B and C of V. 44. Every changeofcoordinates matrix is square. 45. There are six possible ordered bases for R There are six possible ordered bases for R 3 consisting of the standard basis vectors. 47. If A is invertible, the row space of A 1 must be the same as the row space of A. 48. If A is a 6 8 matrix then the dimension of Null(A) is at least two. 49. If A is a 6 8 matrix and the dimension of the null space of A is three, then the dimension of Col(A T ) is five. 50. If A is a 3 2 matrix with independent columns, then there exists a 2 3 matrix B such that AB = I Let A be an n n matrix. If B = {b 1, b 2,..., b n } is a basis for the row space of A (these b i s are written in row b 1 vector shape), then the columns of the matrix b 2. b n form a basis for the column space of A. 52. Let V and W be linear spaces (vector spaces) and let T : V W be a linear transformation. Let v 1, v 2..., v n be vectors in V. If T(v 1 ), T(v 2 ),..., T(v n ) are linearly independent, then v 1, v 2..., v n are linearly independent. 53. The determinant of a 2 2 matrix is a vector. 54. If two rows of 3 3 matrix are interchanged, the sign of the determinant is changed. 55. The determinant of a 3 3 matrix is zero if two rows of the matrix are parallel vectors in R 3
4 56. In order for the determinant of a 3 3 matrix to be zero, two rows of the matrix must be parallel vectors in R The determinant of A, det(a), is defined for any matrix A. 58. det(a) is defined for each square matrix A. 59. det(a) is a scalar. 60. If a matrix A is multiplied by the scalar k, then the determinant of the resulting matrix is k det(a). 61. If an n n matrix A is multiplied by the scalar k, then the determinant of the resulting matrix is k det(a). 62. If an n n matrix A is multiplied by the scalar k, then the determinant of the resulting matrix is k n det(a). 63. det(aa T ) = det(a T A) = [det(a)] The determinant of an elementary matrix is nonzero. 65. If det(a) = 2 and det(b) = 2, then det(a + B) = If det(a) = 2 and det(b) = 2, then det(ab) = If A and B are n n matrices and det(a) = 2 and det(b) = 3, then det(ab) = The determinant of a square matrix is the product of the entries on its main diagonal. 69. The determinant of an upper triangular matrix is the product of the entries on its main diagonal. 70. The determinant of a lower triangular matrix is the product of the entries on its main diagonal. 71. A square matrix is invertible if and only if its determinant is positive. 72. The column vectors of an n n matrix are independent if and only if the determinant of the matrix is nonzero. 73. A homogeneous square linear system has a nontrivial solution if and only if the determinant of its coefficient matrix is zero. 74. Every n n matrix has real eigenvalues. 75. There can only be one eigenvalue associated with an eigenvector.
5 76. There can only be one eigenvector associated with a distinct eigenvalue. 77. If v is an eigenvector for A then v is an eigenvector for A ki n, for all scalars k. 78. If ł is an eigenvalue for A then ł is an eigenvalue for A ki n, for all scalars k. 79. If v is an eigenvector for A 1 then kv is an eigenvector for A, for all nonzero scalars k. 80. Every vector in R n is an eigenvector for I n. 81. If an n n matrix has n distinct real eigenvalues it is diagonalizable. 82. An n n matrix is diagonalizable if and only if it has n distinct eigenvalues. 83. Let A and B be 3 3 matrices. If det(a) = 1 and det(b) = 0, then rank A > rank B. 84. An n n matrix is diagonalizable if and only if the algebraic multiplicity of each of its eigenvalues equals the geometric multiplicity. 85. Every invertible matrix is diagonalizable. 86. Every triangular matrix is diagonalizable. 87. If A and B are similar and A is diagonalizable, then B is also diagonalizable. 88. If A and B are similar, then det(a) = det(b). 89. If A is diagonalizable, there is a unique diagonal matrix D that is similar to A. 90. If A and P are n n matrices with P invertible, then det(pap 1 ) = det(a). 91. Similar matrices have the same eigenvalues and eigenvectors. 92. Similar matrices have the same eigenvalues with the algebraic and geometric multiplicities. 93. If A and B are n n matrices with B invertible and v an eigenvector of A, then Bv is an eigenvector of BAB If A and B are n n matrices with B invertible and v an eigenvector of A, then B 1 v is an eigenvector of B 1 AB.
6 95. Any two n n diagonalizable matrices having the same eigenvalues of the same algebraic multiplicities are similar. 96. Any two n n diagonalizable matrices having the same eigenvectors are similar. 97. Any two n n diagonal matrices are similar. 98. Every nonzero vector in R n has nonzero magnitude. 99. Every vector of nonzero magnitude in R n is nonzero There are exactly two unit vectors parallel to any given nonzero vector in R n There are exactly two unit vectors orthogonal to any given nonzero vector in R n The dot product of a vector with itself yields the magnitude of the vector For a vector v R n and r a scalar, the magnitude of r times v is r times the magnitude of v If v and w are vectors in R n of the same magnitude, then the magnitude of v w is The set of all vectors in R n orthogonal to every vector w of a subspace W is a subspace of R n The intersection of W and W is empty If vectors u and v have the same projection onto the subspace W of V, then u = v All vectors in an orthogonal basis have length If A has kernel {0}, then the Gram matrix, A T A, is invertible The parallelogram in R 2 determined by nonzero vectors x and y is a square if and only if x y = The box in R 3 determined by vectors x, y and z is a cube if and only if x y = x z = y z0, and x x = y y = z z The projection of x onto the span of y is a scalar multiple of x The projection of x onto the span of y is a scalar multiple of y The set of all vectors in R n which are orthogonal to a subspace W of R n is a subspace of R n.
7 115. If the projection of x onto the subspace W of R n is x itself, then x is orthogonal to every vector in W If the projection of x onto the subspace W of R n is x itself, then x W The intersection of W and W is empty if proj W x = proj W y then x = y All vectors in an orthogonal basis have length Every nontrivial subspace of R n has an orthonormal basis Every vector in R n is in some orthonormal basis for R n Every unit vector in R n is in some orthonormal basis for R n A matrix is orthogonal when its column vectors are orthogonal A square matrix is orthonormal when its column vectors are orthonormal Every orthogonal matrix has a trivial nullspace If A T is orthogonal then A is orthogonal If A is a symmetric orthogonal n n matrix, then A 2 = I n If A is a symmetric n n matrix with A 2 = I n, then A is an orthogonal matrix If A and B are both n n orthogonal matrices, then AB is an orthogonal matrix.
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationMAT Linear Algebra Collection of sample exams
MAT 342  Linear Algebra Collection of sample exams Ax. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system
More informationftuiowamath2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST
me me ftuiowamath255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following
More informationMath 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam
Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationMATH 240 Spring, Chapter 1: Linear Equations and Matrices
MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More informationMATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION
MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether
More information1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?
. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in
More information(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).
.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)
More informationMATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.
MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Rowcolumn rule: ijth entry of AB:
More information1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det
What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix
More informationLINEAR ALGEBRA REVIEW
LINEAR ALGEBRA REVIEW SPENCER BECKERKAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for
More informationElementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.
Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationMath 4A Notes. Written by Victoria Kala Last updated June 11, 2017
Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...
More informationMath Final December 2006 C. Robinson
Math 2851 Final December 2006 C. Robinson 2 5 8 5 1 2 01 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the
More informationStudy Guide for Linear Algebra Exam 2
Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real
More informationLINEAR ALGEBRA SUMMARY SHEET.
LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linearalgebrasummarysheet/ This document is a concise collection of many of the important theorems of linear algebra, organized
More informationMath 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID:
Math 2030, Matrix Theory and Linear Algebra I, Fall 20 Final Exam, December 3, 20 FIRST NAME: LAST NAME: STUDENT ID: SIGNATURE: Part I: True or false questions Decide whether each statement is true or
More informationOnline Exercises for Linear Algebra XM511
This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationLINEAR ALGEBRA 1, 2012I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS
LINEAR ALGEBRA, I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,
More informationMath 369 Exam #2 Practice Problem Solutions
Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.
More informationPractice Final Exam. Solutions.
MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be
More information1. Select the unique answer (choice) for each problem. Write only the answer.
MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +
More information2018 Fall 2210Q Section 013 Midterm Exam II Solution
08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique
More informationRemark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial
More informationMATH 220 FINAL EXAMINATION December 13, Name ID # Section #
MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is
More informationProblem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show
MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology  Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,
More information(Practice)Exam in Linear Algebra
(Practice)Exam in Linear Algebra May 016 First Year at The Faculties of Engineering and Science and of Health This test has 10 pages and 16 multiplechoice problems. In twosided print. It is allowed to
More informationLinear Algebra Primer
Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................
More informationSolving a system by backsubstitution, checking consistency of a system (no rows of the form
MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary
More informationWarmup. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions
Warmup True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be
More informationANSWERS. E k E 2 E 1 A = B
MATH 7 Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,
More informationSolutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015
Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See
More informationMATH 31  ADDITIONAL PRACTICE PROBLEMS FOR FINAL
MATH 3  ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left
More informationThis MUST hold matrix multiplication satisfies the distributive property.
The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients
More informationQuestion 7. Consider a linear system A x = b with 4 unknown. x = [x 1, x 2, x 3, x 4 ] T. The augmented
Question. How many solutions does x 6 = 4 + i have Practice Problems 6 d) 5 Question. Which of the following is a cubed root of the complex number i. 6 e i arctan() e i(arctan() π) e i(arctan() π)/3 6
More informationThird Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.
Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot
More informationPRACTICE PROBLEMS FOR THE FINAL
PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show
More information235 Final exam review questions
5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an
More informationMath 54 HW 4 solutions
Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,
More informationMath 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination
Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column
More informationChapter 3. Directions: For questions 111 mark each statement True or False. Justify each answer.
Chapter 3 Directions: For questions 111 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]
More information5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.
Linear Algebra  Test File  Spring Test # For problems  consider the following system of equations. x + y  z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the
More informationLecture Summaries for Linear Algebra M51A
These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture
More informationMATH 2360 REVIEW PROBLEMS
MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1
More informationSolutions to Final Exam
Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns
More informationftuiowamath2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST
me me ftuiowamath2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number
More informationEquality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.
Introduction Matrix Operations Matrix: An m n matrix A is an mbyn array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read
More informationFinal Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2
Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.15.4, 6.16.2 and 7.17.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch
More informationCSL361 Problem set 4: Basic linear algebra
CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Rowreduced echelon matrices
More informationMATH. 20F SAMPLE FINAL (WINTER 2010)
MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total
More informationConceptual Questions for Review
Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
More informationMath 1553, Introduction to Linear Algebra
Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has courselevel learning goals that pertain to the entire course, and sectionlevel
More informationLinear Algebra Final Exam Study Guide Solutions Fall 2012
. Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize
More informationand let s calculate the image of some vectors under the transformation T.
Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =
More informationMATH 1553 PRACTICE FINAL EXAMINATION
MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master
More informationDefinitions for Quizzes
Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does
More informationFinal Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015
Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,
More informationLinear Algebra Highlights
Linear Algebra Highlights Chapter 1 A linear equation in n variables is of the form a 1 x 1 + a 2 x 2 + + a n x n. We can have m equations in n variables, a system of linear equations, which we want to
More informationMATH 235. Final ANSWERS May 5, 2015
MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your
More informationReview problems for MA 54, Fall 2004.
Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on
More informationCalculating determinants for larger matrices
Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det
More informationQuizzes for Math 304
Quizzes for Math 304 QUIZ. A system of linear equations has augmented matrix 2 4 4 A = 2 0 2 4 3 5 2 a) Write down this system of equations; b) Find the reduced rowechelon form of A; c) What are the pivot
More informationYORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions
YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For
More informationSolutions to practice questions for the final
Math A UC Davis, Winter Prof. Dan Romik Solutions to practice questions for the final. You are given the linear system of equations x + 4x + x 3 + x 4 = 8 x + x + x 3 = 5 x x + x 3 x 4 = x + x + x 4 =
More informationChapter 1. Vectors, Matrices, and Linear Spaces
1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution
More informationFind the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form
Math 2 Homework #7 March 4, 2 7.3.3. Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y/2. Hence the solution space consists of all vectors of the form ( ( ( ( x (5 + 3y/2 5/2 3/2 x =
More informationMTH 464: Computational Linear Algebra
MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)
More informationMath 21b. Review for Final Exam
Math 21b. Review for Final Exam Thomas W. Judson Spring 2003 General Information The exam is on Thursday, May 15 from 2:15 am to 5:15 pm in Jefferson 250. Please check with the registrar if you have a
More informationSUMMARY OF MATH 1600
SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You
More information1. General Vector Spaces
1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationMATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics
MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones
More informationFamily Feud Review. Linear Algebra. October 22, 2013
Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while
More informationMAT 242 CHAPTER 4: SUBSPACES OF R n
MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)
More informationLINEAR ALGEBRA QUESTION BANK
LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,
More informationAssignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.
Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has
More informationAnnouncements Monday, October 29
Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,
More information1 9/5 Matrices, vectors, and their applications
1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric
More informationNo books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question.
Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question. Name: Section: Question Points
More informationRemark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called
More informationChapter 5 Eigenvalues and Eigenvectors
Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n
More informationNATIONAL UNIVERSITY OF SINGAPORE MA1101R
Student Number: NATIONAL UNIVERSITY OF SINGAPORE  Linear Algebra I (Semester 2 : AY25/26) Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES. Write down your matriculation/student number clearly in the
More informationLinear Algebra Practice Problems
Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a
More informationThe value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.
Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class
More informationReview Notes for Linear Algebra True or False Last Updated: February 22, 2010
Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n
More informationLinear Algebra Practice Problems
Linear Algebra Practice Problems Page of 7 Linear Algebra Practice Problems These problems cover Chapters 4, 5, 6, and 7 of Elementary Linear Algebra, 6th ed, by Ron Larson and David Falvo (ISBN3 = 97868783762,
More informationhomogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45
address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test
More informationMATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:
MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these
More informationLinear Algebra Final Exam Review
Linear Algebra Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.
More informationThe definition of a vector space (V, +, )
The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element
More informationIn Class Peer Review Assignment 2
Name: Due Date: Tues. Dec. 5th In Class Peer Review Assignment 2 D.M. 1 : 7 (7pts) Short Answer 8 : 14 (32pts) T/F and Multiple Choice 15 : 30 (15pts) Total out of (54pts) Directions: Put only your answers
More informationMTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education
MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life
More information(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.
1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III
More informationMATH 369 Linear Algebra
Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine
More informationLinear Algebra: Sample Questions for Exam 2
Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and
More information