Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam


 Beatrix Merritt
 1 years ago
 Views:
Transcription
1 Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into Determine if the system is consistent.. Choose h and k so that the system of equations x + hx = and 4x + 8x = k has (a) no solution, (b) one and only one solution, and (c) infinitely many solutions. 3. Solve the linear system x x 3 = 9 and x + x 3 = 3; and write down the solution set. 4. Find the solution of the system x + 5x 3x 3 =, x x + x 3 =. 5. Find a 3 3 nonzero matrix A such that the vector is a solution of Ax = Is the vector a linear combination of,, and 6? (That a vector 6 8 u is a linear combination of vectors v, v, v 3 means that u = c v + c v + c 3 v 3 for some numbers c, c, and c 3. So, you need to solve for these numbers.) 7. Can three linearly dependent vectors in R 3 span R 3? What about three linearly independent vectors in R 3? 3 8. Do,, and span R 3? For what values of h will 3 be in the span of, 4, and? h 7. Let A be a matrix. Suppose the first 5 column vectors are linearly dependent. Are all column vectors of A also linearly dependent?. If a matrix has more columns than rows, then the columns of this matrix are always linearly dependent. Is this true? 3. Find h so that the vectors, 7, and are linearly dependent. 4 6 h 3. Three vectors u, u, u 3 are linearly dependent if and only if one of them is a linear combination of the other two. Explain why.
2 4. Define a transformation T from R to R by T (x) = (x + 3, 3x x ). Is T linear? If so, find the matrix A such that T (x) = Ax for all x in R. 5. Define a transformation T from R to R by T (x) = (x x, 3x x ). Is T linear? If so, find the matrix A such that T (x) = Ax for all x in R. 6. Define a transformation T from R to R by T (x) = (x x, 3x x ). Is T linear? If so, find the matrix A such that T (x) = Ax for all x in R. 7. Let T : R 3 R be a linear transformation. Assume that u and u are two vectors in R 3 such that T (u ) = and T (u ) =. Let u be in the span of {u, u }. Show that T (u) =. [ ] [ ] 8. Let T be a linear transformation from R to R. Suppose T transforms and [ ] [ ] 3 to and, respectively. Find the matrix A such that T (x) = Ax for all x in R. 9. Let T be a linear transformation from R to R that reflects a vector with respect to the x axis and then expands by a factor of in the x direction. Find the matrix A such that T (x) = Ax for all x in R Let A =. Is the linear transformation T : R 3 R 3 defined by 5 6 T (x) = Ax onetoone? onto? Is the vector in the range of T?. Can a linear transformation from R to R be onto? Why? Let A =, B = 3, C = 3. Find out (AB) T and 3B C. 3. Find two matrices A and B such that AB BA. 4. Find two matrices A and B such that AB = but A and B. [ ] 5. Find the inverse of the matrix A = Let A = 3. Is A invertible? If so, find its inverse.
3 7. Find three 3 3 elementary matrices of three different types. Calculate their inverse matrices. 8. Invertible matrix: definition. If AB = BA = I, then B = A. How to check if an n n matrix A is invertible? (a) Echelon form: n pivots; nonzero diagonal entries; (b) All columns are linearly independent; (c) All columns span R n ; (d) Ax = has only the trivial solution x = ; (e) Ax = b has a unique solution for any b; (f) det A ; (g) A T is invertible; (h) The number is not an eigenvalue of A. 9. Let T be a onetoone linear transformation from R 4 to R 4. Let A be the matrix associated with T. Is A invertible? 3. Let A = 3 and b = 5. Find out the LU factorization of A and use this to solve Ax = b by solving two triangular systems. 3. Find all the cofactors, the adjugate matrix, and the determinant of the matrix True or false: (a) If a square matrix B is an echelon form of matrix A then det A = det B; (b) The determinant of any elementary matrix is ; (c) det(a + B) = det A + det B, det( A) = det A, and det(ab) = (det A)(det B); (d) det A T = det A and det A = (det A) ; (e) A square matrix is invertible if and only if its determinant is nonzero. 33. Calculate the determinant of each of the following matrices: ; 4 ; Show that det a b c = (a b)(b c)(c a). a b c What is Cramer s rule? Let A be a 3 3 matrix and assume det A =, the cofactors C =, C = 4, C 3 = 6. What is the solution to Ax = e with e = (,, ) T? 3
4 36. Since A = det A adj A, we have A adj A = (det A)I. Correct? 37. Find the area of the parallelogram whose vertices are (, ), (6, ), ( 3, ), (3, ). 38. Find the volume of the parallelepiped with one vertex at (,, ) and its three adjacent vertices (, 4, ), (,, ), and (, 5, ). 39. Show that thearea of the triangle with vertices (x, y ), (x, y ), (x 3, y 3 ) is the absolute value of det x x x 3. y y y 3 4. Determine if H is a subspace of R 3 : (a) H consists of all the vectors in R 3 with the product of all the components equal to ; (b) H consists of all the vectors in R 3 with the first component equal to ; (c) H consists of all the vectors in R 3 with the first component equal to ; a b (d) H consists of all the vectors b c with a, b, c all real numbers. c a 4. Is the set of all diagonal matrices a subspace of the space of all matrices? 4. Determine if is in the span by, and 4 4. [ ] [ ] Determine if is in the column space and null space of. 44. Let v and v be two vectors in a vector space. Show that any three vectors in Span {v, v } must be linearly dependent. 45. Show that p (t) =, p (t) = + t, and p (t) = + t + t form a basis of the vector space P. Find the coordinates of p(t) = t + 3t with respect to this basis. 46. Find a basis for the column space, the null space, and row space of 7 and Find also the rank of each of these two matrices. 47. True or false: (a) If B is an echelon form of A, then A and B have the same null space, column space, and row space; (b) The row space of A is the column space of A T ; 4
5 (c) If the null space of a square matrix A is {} then A is invertible; (d) If u and v are two vectors in R 3 then the rank of the matrix uv T is always or. 48. What is the dimension of R 4, P 4, the space of all 4 4 matrices? 49. If V is a vector space and dim V = n then n+ vectors in V must be linearly dependent. Correct? Why? 5. True or false: (a) rank A + rank B = rank (A + B); (b) rank (AB) = (rank A)(rank B); (c) dim Col A + dim Nul A = number of columns of A. 5. True or false: (Justify your answers.) (a) If λ is an eigenvalue of A. Then λ is an eigenvalue of A ; (b) If λ is an eigenvalue of A then λ 7 is an eigenvalue of the matrix A 7I; (I is the identity matrix.) (c) An eigenvalue of a matrix can never be, and an eigenvector of a matrix can never be the zero vector; (d) The sum of all eigenvalues of a matrix equals the sum of all diagonal entries of the matrix; (e) The product of all eigenvalues of a 3 3 equals the determinant of the matrix. What about a matrix? (f) If two matrices have same eigenvalues then either both of them are diagonalizable or both of them are not; (g) Any invertible matrix is diagonalizable; (h) The inverse of an invertible and diagonalizable matrix is diagonalizable. (i) Any upper triangular square matrix is diagonalizable; (j) The product of two diagonalizable matrices is still diagonalizable. 5. Explain why any three different eigenvectors of a matrix A corresponding to three different eigenvalues must be linearly independent. (The statement is true for any number, not necessary three.) 53. Write down the characteristic equation, and then find all the eigenvalues and eigenvectors of each of the following matrices: and 9. [ ] Two matrices A and B (of same size) are similar, if A = P BP for some invertible matrix P (cf. Section 5.). Why similar matrices have the same characteristic equations, and hence have the same eigenvalues, and also same determinants? [ ] Let A =. Find all eigenvalues and the corresponding eigenvectors of A. Then determine if A is diagonalizable. If so, diagonalize it (i.e., find a diagonal matrix D and an invertible matrix P such that A = P DP ). Finally, compute A 6. 5
6 56. The matrix A = 4 has one eigenvalue equal to. Diagonalize A. 57. Let u =, v =, and y = (a) Compute u v, u T v, the length of u, and the distance between u and v. (b) Find all the vectors x that are orthogonal to u. (c) Find all the vectors x that are orthogonal to both u and v. (d) Find the orthogonal projection of u onto v. (e) Find the orthogonal projection of y onto the subspace spanned by u and v. 58. Let u and v be orthogonal. Show that u + v = u + v. 59. Prove that nonzero and mutually orthogonal vectors are linearly independent. 6. Let {u,..., u p } be an orthogonal basis of a subspace W of R n. Let y W. Show that ( ) ( ) y u y up y = u +... u p. u u u p u p 6. What do we mean by orthonormal vectors? 6. Let U be an orthogonal matrix and u a unit vector. Show that Uu is also a unit vector. Show that the inner product of Ux and Uy for any x and y is the same as that of x and y. 63. Show that the determinant of an orthogonal matrix is or. 64. Do all the elementary row reductions preserve the orthogonality of a matrix? Why? / 8 / /3 65. The matrix 4/ 8 /3 / 8 / is an orthogonal matrix. (Verify that!) Find /3 its inverse. (It s simple to find the inverse matrix of an orthogonal matrix. You don t need to use the elementary row reduction.) Let y = 9, u = 5, and v =. Let W be the subspace of R 3 spanned by 5 u and v. Find the orthogonal projection of y onto W and the distance from y to W. 67. What is the Gram Schmidt orthogonalization process? Apply this process to u = 5, u =, and u 3 = to get three orthogonal vectors v, v, and v Work out Problems and 9 of Section
LINEAR ALGEBRA SUMMARY SHEET.
LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linearalgebrasummarysheet/ This document is a concise collection of many of the important theorems of linear algebra, organized
More information2. Every linear system with the same number of equations as unknowns has a unique solution.
1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationLinear Algebra Final Exam Study Guide Solutions Fall 2012
. Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize
More informationMath 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination
Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column
More informationMATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION
MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationMath 313 (Linear Algebra) Exam 2  Practice Exam
Name: Student ID: Section: Instructor: Math 313 (Linear Algebra) Exam 2  Practice Exam Instructions: For questions which require a written answer, show all your work. Full credit will be given only if
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationYORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions
YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For
More informationPRACTICE PROBLEMS FOR THE FINAL
PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show
More information1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det
What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix
More informationStudy Guide for Linear Algebra Exam 2
Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real
More information(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.
1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III
More informationftuiowamath2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST
me me ftuiowamath255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following
More informationMATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.
MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Rowcolumn rule: ijth entry of AB:
More information(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).
.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)
More informationLINEAR ALGEBRA 1, 2012I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS
LINEAR ALGEBRA, I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,
More informationANSWERS. E k E 2 E 1 A = B
MATH 7 Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationPractice Final Exam. Solutions.
MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be
More informationMath 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008
Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 78pm in 117 MacMillan What will be covered The exam will cover material from the lectures
More informationMATH 304 Linear Algebra Lecture 34: Review for Test 2.
MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1
More informationReview problems for MA 54, Fall 2004.
Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on
More informationMTH 464: Computational Linear Algebra
MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)
More information2018 Fall 2210Q Section 013 Midterm Exam II Solution
08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique
More informationMATH 240 Spring, Chapter 1: Linear Equations and Matrices
MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear
More informationMAT Linear Algebra Collection of sample exams
MAT 342  Linear Algebra Collection of sample exams Ax. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system
More information1. Select the unique answer (choice) for each problem. Write only the answer.
MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More information1 Last time: determinants
1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)
More informationI. Multiple Choice Questions (Answer any eight)
Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam  Course Instructor : Prashanth L.A. Date : Sep24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY
More informationYORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions
YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this
More informationChapter 3. Directions: For questions 111 mark each statement True or False. Justify each answer.
Chapter 3 Directions: For questions 111 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]
More informationSample Final Exam: Solutions
Sample Final Exam: Solutions Problem. A linear transformation T : R R 4 is given by () x x T = x 4. x + (a) Find the standard matrix A of this transformation; (b) Find a basis and the dimension for Range(T
More informationProblem # Max points possible Actual score Total 120
FINAL EXAMINATION  MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to
More information5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.
Linear Algebra  Test File  Spring Test # For problems  consider the following system of equations. x + y  z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the
More informationMATH 304 Linear Algebra Lecture 20: The GramSchmidt process (continued). Eigenvalues and eigenvectors.
MATH 304 Linear Algebra Lecture 20: The GramSchmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v
More informationThird Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.
Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More informationMATH 31  ADDITIONAL PRACTICE PROBLEMS FOR FINAL
MATH 3  ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left
More informationMATH. 20F SAMPLE FINAL (WINTER 2010)
MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total
More informationSolutions to Final Exam
Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns
More informationAssignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.
Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has
More informationMTH501 Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~
MTH501 Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is Onetoone Onto Question
More informationElementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.
Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4
More informationMath 2114 Common Final Exam May 13, 2015 Form A
Math 4 Common Final Exam May 3, 5 Form A Instructions: Using a # pencil only, write your name and your instructor s name in the blanks provided. Write your student ID number and your CRN in the blanks
More informationPRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.
Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence
More information(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =
. (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)
More information(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)
. Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is
More informationCheck that your exam contains 30 multiplechoice questions, numbered sequentially.
MATH EXAM SPRING VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result
More informationLINEAR ALGEBRA QUESTION BANK
LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,
More informationMath 54 HW 4 solutions
Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,
More informationAnnouncements Monday, October 29
Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,
More informationMath Final December 2006 C. Robinson
Math 2851 Final December 2006 C. Robinson 2 5 8 5 1 2 01 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the
More informationConceptual Questions for Review
Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
More informationM340L Final Exam Solutions May 13, 1995
M340L Final Exam Solutions May 13, 1995 Name: Problem 1: Find all solutions (if any) to the system of equations. Express your answer in vector parametric form. The matrix in other words, x 1 + 2x 3 + 3x
More informationQuestion 7. Consider a linear system A x = b with 4 unknown. x = [x 1, x 2, x 3, x 4 ] T. The augmented
Question. How many solutions does x 6 = 4 + i have Practice Problems 6 d) 5 Question. Which of the following is a cubed root of the complex number i. 6 e i arctan() e i(arctan() π) e i(arctan() π)/3 6
More informationMATH 1553 SAMPLE FINAL EXAM, SPRING 2018
MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 Name Circle the name of your instructor below: Fathi Jankowski Kordek Strenner Yan Please read all instructions carefully before beginning Each problem is worth
More informationDimension. Eigenvalue and eigenvector
Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, ranknullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,
More informationThis MUST hold matrix multiplication satisfies the distributive property.
The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients
More informationspring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra
spring, 2016. math 204 (mitchell) list of theorems 1 Linear Systems THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced RowEchelon Form THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem THEOREM
More informationMATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS
MATH Q MIDTERM EXAM I PRACTICE PROBLEMS Date and place: Thursday, November, 8, inclass exam Section : : :5pm at MONT Section : 9: :5pm at MONT 5 Material: Sections,, 7 Lecture 9 8, Quiz, Worksheet 9 8,
More informationMATH Spring 2011 Sample problems for Test 2: Solutions
MATH 304 505 Spring 011 Sample problems for Test : Solutions Any problem may be altered or replaced by a different one! Problem 1 (15 pts) Let M, (R) denote the vector space of matrices with real entries
More informationMath 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011 FIRST NAME: LAST NAME: STUDENT ID:
Math 2030, Matrix Theory and Linear Algebra I, Fall 20 Final Exam, December 3, 20 FIRST NAME: LAST NAME: STUDENT ID: SIGNATURE: Part I: True or false questions Decide whether each statement is true or
More informationWarmup. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions
Warmup True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be
More informationReview Notes for Linear Algebra True or False Last Updated: February 22, 2010
Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n
More informationReduction to the associated homogeneous system via a particular solution
June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one
More informationProblem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show
MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology  Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,
More informationMath 265 Linear Algebra Sample Spring 2002., rref (A) =
Math 265 Linear Algebra Sample Spring 22. It is given that A = rref (A T )= 2 3 5 3 2 6, rref (A) = 2 3 and (a) Find the rank of A. (b) Find the nullityof A. (c) Find a basis for the column space of A.
More information235 Final exam review questions
5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an
More information1 9/5 Matrices, vectors, and their applications
1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric
More informationHOSTOS COMMUNITY COLLEGE DEPARTMENT OF MATHEMATICS
HOSTOS COMMUNITY COLLEGE DEPARTMENT OF MATHEMATICS MAT 217 Linear Algebra CREDIT HOURS: 4.0 EQUATED HOURS: 4.0 CLASS HOURS: 4.0 PREREQUISITE: PRE/COREQUISITE: MAT 210 Calculus I MAT 220 Calculus II RECOMMENDED
More informationMATH 235. Final ANSWERS May 5, 2015
MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your
More informationMATH 220 FINAL EXAMINATION December 13, Name ID # Section #
MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is
More informationDIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix
DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that
More informationLinear Algebra: Sample Questions for Exam 2
Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and
More informationGRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.
GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,
More informationftuiowamath2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST
me me ftuiowamath2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number
More informationFinal Examination 201NYC05 December and b =
. (5 points) Given A [ 6 5 8 [ and b (a) Express the general solution of Ax b in parametric vector form. (b) Given that is a particular solution to Ax d, express the general solution to Ax d in parametric
More informationANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2
MATH 7 Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the CauchySchwartz inequality
More informationSolving a system by backsubstitution, checking consistency of a system (no rows of the form
MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary
More informationSolutions to Final Exam 2011 (Total: 100 pts)
Page of 5 Introduction to Linear Algebra November 7, Solutions to Final Exam (Total: pts). Let T : R 3 R 3 be a linear transformation defined by: (5 pts) T (x, x, x 3 ) = (x + 3x + x 3, x x x 3, x + 3x
More informationPractice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5
Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,
More informationMath113: Linear Algebra. Beifang Chen
Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary
More informationMATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (inclass portion) January 22, 2003
MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (inclass portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space
More informationTest 3, Linear Algebra
Test 3, Linear Algebra Dr. Adam GrahamSquire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all
More informationSummer Session Practice Final Exam
Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.
More information1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?
. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in
More informationEigenvalues and Eigenvectors A =
Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector
More informationLecture 12: Diagonalization
Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors
More informationEK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016
EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will
More information(Practice)Exam in Linear Algebra
(Practice)Exam in Linear Algebra May 016 First Year at The Faculties of Engineering and Science and of Health This test has 10 pages and 16 multiplechoice problems. In twosided print. It is allowed to
More information0 2 0, it is diagonal, hence diagonalizable)
MATH 54 TRUE/FALSE QUESTIONS FOR MIDTERM 2 SOLUTIONS PEYAM RYAN TABRIZIAN 1. (a) TRUE If A is diagonalizable, then A 3 is diagonalizable. (A = P DP 1, so A 3 = P D 3 P = P D P 1, where P = P and D = D
More informationMATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9
MATH 155, SPRING 218 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 Name Section 1 2 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 1 points. The maximum score
More informationMATH 2360 REVIEW PROBLEMS
MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1
More informationMATH 1553 PRACTICE FINAL EXAMINATION
MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master
More informationNo books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question.
Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question. Name: Section: Question Points
More informationEquality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.
Introduction Matrix Operations Matrix: An m n matrix A is an mbyn array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read
More information