Study Guide for Linear Algebra Exam 2

Size: px
Start display at page:

Transcription

1 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors u, v, and w in V and for all scalars c and d. 1. The sum of u and v, denoted by u + v, is in V. 2. u + v = v + u 3. ( u + v ) + w = u + ( v + w ) 4. There is a zero vector 0 in V such that u + 0 = u 5. For each u in V, there is a vector, u in V such that u + ( u) = 0 6. The scalar multiple of u by c, denoted by cu, is in V 7. c( u + v ) = cu + cv 8. ( c + d )u = cu + dv 9. c( du ) = ( cd )u 10. 1u = u Subspace A subspace of a vector space V, is a subset H of V that has three properties: a. The zero vector of V is in H b. H is closed under vector addition. That is for u and v in H, the sum u + v is in H c. H is closed under multiplication by scalars. That is, for each u in H and each scalar c, the vector cu is in H Null space The null space of an m x n matrix A, written as Nul A, is the set of all solutions to the homogeneous equation Ax = 0. In set notation: Nul A = { x : x is in R n and Ax = 0 } Column space The column space of an m x n matrix A, written Col A, is the set of all linear combinations of the columns of A. If A = [ a 1,, a n ], then Col A = Span{ a 1,, a n } Linear transformation A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector x in V a unique vector T( x ) in W, such that i. T( u + v ) = T( u ) + T( v ) for all u, v in V, and ii. T( cu ) = ct( u ) for all u in V and all scalars c

2 Linear independence An indexed set of vectors { v 1,, v p } is said to be linearly independent if the vector equation c 1v 1 + c 2v c pv p = 0 has only the trivial solution c 1 = 0,, c p = 0 Linear dependence An indexed set of vectors { v 1,, v p } is said to be linearly dependent if the vector equation c 1v 1 + c 2v c pv p = 0 has a nontrivial solution, that is, if there are some weights, c 1,, c p, not all zero such that the equation holds Linear dependence relation In such a case ( above ), this is called a linear dependence relation among v 1,, v p Basis Let H be a subspace of a vector space V. An indexed set of vectors B = { b 1,, b p } in V is a basis for H if i. B is a linearly independent set, and ii. the subspace spanned by B coincides with H; that is H = Span{ b 1,, b p } Coordinate vector Suppose the set B = { b 1,, b p } is a basis for V and x is in V. The coordinates of x relative to the basis B ( or the B coordinates of x ) are the weights c 1,, c n such that x = c 1b c nb n Dimension If V is spanned by a finite set, it is said to be finite dimensional and the dimension of V, written as dim V, is the number of vectors in the basis for V. The dimension of the zero space { 0 }, is defined to be zero. If V is not spanned by a finite set, it is said to be infinite dimensional Rank The rank of A is the dimension of the column space of A Change of coordinates matrix P B = [ b 1 b 2 b n ] = x = P B [ x ] B

3 Eigenvalue A scalar λ is called an eigenvalue of A if there is a nontrivial solution x of Ax = λx; such an x is called an eigenvector corresponding to λ Eigenvector An eigenvector of an n x n matrix A is a nonzero vector x such that Ax = λx for some scalar λ Eigenspace The set of all solutions to: ( A λi )x = 0 I is the null space of ( A λi ). This is called the Eigenspace of A corresponding to λ Diagonalizable A square matrix A is said to be diagonalizable if A is a similar to a diagonal matrix, that is: A = PDP 1 for some invertible matrix P and some diagonal matrix D Similar matrices We say that A is similar to B if there is an invertible matrix P such that PAP 1 = B, or A = PBP 1 Chapter.ThmNum theorem 3.2 If A is a triangular matrix, the det A is the product of the entries on the main diagonal of A. 3.3 row ops Let A be a square matrix a. If multiple of one row of A is added to another row to produce a matrix B, then det A = det B b. If two rows of A are interchanged to produce B, then det B = det A c. If one row of A is multiplied by k to produce B, then det B = k*det A 3.4 A square matrix A is invertible if and only if det A!= If A is an n x n matrix, then det A T = det A

4 3.6 multiplicative property If A and B are n x n matrices, then det AB = ( det A )( det B ) 3. Formula for det A as a product of pivots det A ( 1 ) r * ( product of pivots in U ) ; when A is invertible 0 ; when A is not invertible 4.1 If v 1,, v p are in a vector space V, then Span{ v 1,, v p } is a subspace of V 4.2 The null space of an m x n matrix A is a subspace of R n, Equivalently, the set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns is a subspace or R n PROOF: Nul A is a subset of R n because A has n columns. Show that Nul A satisfies the three properties of subspaces: 1. Of course 0 is in Nul A let u and v represent two vectors in Nul A, then Au = 0 and Av = 0 2. A( u + v ) = Au + Av = = 0 ( using a property of matrix multiplication ), and thus closed under vector addition 3. A( cu ) = c( Au ) = c( 0 ) = 0 ( where c is any scalar ), which shows that cu is in Nul A, thus, Nul A is a subspace of R n 4.3 The column space of an m x n matrix A is a subspace of R n 4.4 An indexed set { v 1,, v p } of two or more vectors, with v 1!= 0, is linearly dependent if and only if some v j ( with j > 1 ) is a linear combination of the preceding vectors v 1,, v j spanning set theorem Let S = { v 1,, v p } be a set in V and let H = Span{ v 1,, v p }. a. If one of the vectors in S say, v k is a linear combination of the remaining vectors in S, then the set formed from S by removing v k still spans H b. If H!= { 0 }, some subset of S is a basis for H 4.6 The pivot columns of a matrix A form a basis for Col A

5 4.7 unique representation theorem Let B = { b 1,, b n } be a basis for a vector space V. Then for each x in V, there exists a unique set of scalars c 1,,c n such that x = c 1b c nb n PROOF: Since B spans V, there exists scalars such that x = c 1b c nb n holds true. Suppose x also has the representation: x = d 1b d nb n for scalars d 1,, d n. Then subtracting, we have: 0 = x x = ( c 1 d 1 )b ( c n d n )b n Since B is linearly independent, the weights in the second equation must all be zero. That is, c j = d j for 1 <= j <= n 4.8 Let B = { b 1,, b n } be a basis for a vector space V. Then the coordinate mapping x > [ x ] B is a one to one linear transformation from V onto R n. 4.9 The vector space V has a basis B = { b 1,, b n }, then any set in V containing more than n vectors must be linearly dependent 4.10 If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors 4.12 Basis Theorem Let V be a p dimensional vector space, p >= 1. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as B 4.14 The rank theorem The dimensions of the column space and the row space of an m x n matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation: rank A + dim Nul A = n

6 IMT cont d Let A be an m x n matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix. m. The columns of A form a basis for R n. n. Col A = R n o. dim Col A = n p. rank A = n q. Nul A = { 0 } r. dim Nul A= The eigenvalues of a triangular matrix are the entries on its main diagonal. IMT the END!! Let A be an n x n matrix. Then A is invertible if and only if: s. The number 0 is not an eigenvalue of A 5.2 If v 1,, v r are eigenvectors that correspond to distinct eigenvalues λ 1,, λ r of an n x n matrix A, then the set { v 1,, v r } is linearly independent 5.3 Properties of determinants Let A and B be n x n matrices. a. A is invertible if and only if det A!= 0 b. det AB = ( det A )( det B ) c. det A T = det A d. If A is triangular, then det A is the product of the entries on the main diagonal of A e. A row replacement operation on A does not change the determinant. A row interchange changes the sign of the determinant. A row scaling also scales the determinant by the same as the scalar factor 5.4 If n x n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues ( with the same multiplicities ) 5.5 The digitalization theorem An n x n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In fact, A = PDP 1, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are the eigenvalues of A that correspond, respectively, to the eigenvectors in P. 5.6 An n x n matrix with n distinct eigenvalues is diagonalizable

7 5.7 Let A be an m x n matrix whose distinct eigenvalues are λ 1,, λ p a. For 1 <= k <= p, the dimension of the Eigenspace for λ k is less than or equal to the multiplicity of the eigenvalue λ k b. The matrix A is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals n, and this happens if and only if the dimension of the eigenspace for each λ k equals the multiplicity of λ k c. If A is diagonalizable and B k is a basis for the eigenspace corresponding to λ k for each k, then the total collection of vectors in the sets B 1,, B 1 forms an eigenvector basis for R n

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

Solutions to Final Exam

Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

Announcements Monday, October 29

Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

2. Every linear system with the same number of equations as unknowns has a unique solution.

1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

Eigenvalues and Eigenvectors

5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

Linear Algebra: Sample Questions for Exam 2

Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and

Summer Session Practice Final Exam

Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

Math 3191 Applied Linear Algebra

Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

Eigenvalues and Eigenvectors

5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

and let s calculate the image of some vectors under the transformation T.

Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra

spring, 2016. math 204 (mitchell) list of theorems 1 Linear Systems THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced Row-Echelon Form THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem THEOREM

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

Announcements Wednesday, November 01

Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

Linear Algebra Final Exam Study Guide Solutions Fall 2012

. Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

Solving a system by back-substitution, checking consistency of a system (no rows of the form

MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

. Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

Math Linear Algebra Final Exam Review Sheet

Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

Math 2114 Common Final Exam May 13, 2015 Form A

Math 4 Common Final Exam May 3, 5 Form A Instructions: Using a # pencil only, write your name and your instructor s name in the blanks provided. Write your student ID number and your CRN in the blanks

Math 54 HW 4 solutions

Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

Math Final December 2006 C. Robinson

Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

Practice Final Exam. Solutions.

MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be

Test 3, Linear Algebra

Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is One-to-one Onto Question

Math 323 Exam 2 Sample Problems Solution Guide October 31, 2013

Math Exam Sample Problems Solution Guide October, Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification

Eigenvalues, Eigenvectors, and Diagonalization

Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

Math 2331 Linear Algebra

5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

Definitions for Quizzes

Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

Math 3191 Applied Linear Algebra

Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

Name: Final Exam MATH 3320

Name: Final Exam MATH 3320 Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling. (1) State the following

MATH 221, Spring Homework 10 Solutions

MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

Announcements Wednesday, November 01

Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

1 Last time: inverses

MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

What is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix

Professor Joana Amorim, jamorim@bu.edu What is on this week Vector spaces (continued). Null space and Column Space of a matrix............................. Null Space...........................................2

Online Exercises for Linear Algebra XM511

This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

Vector space and subspace

Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

2018 Fall 2210Q Section 013 Midterm Exam II Solution

08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp

MTHSC 3 Section 4.3 Linear Independence in Vector Spaces; Bases Definition Let V be a vector space and let { v. v 2,..., v p } V. If the only solution to the equation x v + x 2 v 2 + + x p v p = is the

I. Multiple Choice Questions (Answer any eight)

Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

Chapter 1. Vectors, Matrices, and Linear Spaces

1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

235 Final exam review questions

5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

Lecture Summaries for Linear Algebra M51A

These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

Linear Algebra Summary. Based on Linear Algebra and its applications by David C. Lay

Linear Algebra Summary Based on Linear Algebra and its applications by David C. Lay Preface The goal of this summary is to offer a complete overview of all theorems and definitions introduced in the chapters

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

TMA4115 - Calculus 3 Lecture 21, April 3 Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 www.ntnu.no TMA4115 - Calculus 3, Lecture 21 Review of last week s lecture Last week

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

Econ Slides from Lecture 7

Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

1. Select the unique answer (choice) for each problem. Write only the answer.

MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

MATH10212 Linear Algebra Lecture Notes

MATH10212 Linear Algebra Lecture Notes Last change: 23 Apr 2018 Textbook Students are strongly advised to acquire a copy of the Textbook: D. C. Lay. Linear Algebra and its Applications. Pearson, 2006.

Eigenvalues and Eigenvectors 7.1 Eigenvalues and Eigenvecto

7.1 November 6 7.1 Eigenvalues and Eigenvecto Goals Suppose A is square matrix of order n. Eigenvalues of A will be defined. Eigenvectors of A, corresponding to each eigenvalue, will be defined. Eigenspaces

Sept. 26, 2013 Math 3312 sec 003 Fall 2013

Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Section 4.1: Vector Spaces and Subspaces Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

Third Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.

Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is

MATH 1553 PRACTICE FINAL EXAMINATION

MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master

City Suburbs. : population distribution after m years

Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

1. Let A = (a) 2 (b) 3 (c) 0 (d) 4 (e) 1

. Let A =. The rank of A is (a) (b) (c) (d) (e). Let P = {a +a t+a t } where {a,a,a } range over all real numbers, and let T : P P be a linear transformation dedifined by T (a + a t + a t )=a +9a t If

Math 2331 Linear Algebra

4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan