(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).


 Coral Powell
 1 years ago
 Views:
Transcription
1 .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b) = det(a). (b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). (c) det(a + B) = det(a) + det(b) (d) If one row of A is multiplied by k to produce B, then det(b) =k det(a). (e) det(ab) = det(a) det(b).(5pts) Determine which set is not a subspace of P n, the space of polynomials of degree at most n. (a) The set of p(t) in P n such that p() = p(). (b) The set of p(t) in P n such that p( t) = p(t). (c) The set of p(t) in P n such that p() =. (d) The set of p(t) in P n of the form p(t) =at + at where a is in R. (e) The set of p(t) in P n of the form p(t) =t + at where a is in R..(5pts) Determine which statement is always true. (a) The rows of a matrix A containing the pivot positions form a basis for Row A. (b) If H = Span {b,...,b n }, then {b,...,b n } is a basis for H. (c) A linearly independent set in a subspace H is a basis for H. (d) If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis of V. (e) A basis is a spanning set that is as large as possible.
2 5.(5pts) The set B = { t, t t,t t,t } is a basis for P, the space of polynomials of degree at most. Find the coordinate vector of p(t) = t+5t t relative to the basis B. (a) (b) (c) 6 5 (d) 6 5 (e) (5pts) Let A = Find a basis for Row (A). (a) (,,, ), (,,, ) (b) (,,, ), (,,, 6) (c) (,,, ), (,,, ), (,,, ) (d) (,,, ), (,,, ), (,,, ) (e) (,, 5, 6), (,,, ).(5pts) Let B =, and C = 8 the changeofcoordinates matrix from B to C. 5 (a) (b) (c), (d) 5 be bases for R. Find P C B, (e) (5pts) The eigenvalues of a certain matrix A are,, and. Determine which statement is true. (a) Ax = b is inconsistent for some b in R. (b) Ax = has only the trivial solution. (c) rank (A) = (d) A is not diagonalizable. (e) det(a) = 9.(5pts) Determine which vector is an eigenvector of the matrix 5.
3 (a) 5 (b) 5 (c) 5 (d) 5 (e) 5.(5pts) Let A =, and let B = for the transformation x! Ax. 6 5 (a) (b) (c) 8 6 5, be a basis of R. Find the Bmatrix (d) 5 (e) (pts) Let A = 5. Use cofactors to compute adj (A)..(pts) Let A = 5. Find an invertible matrix P and a diagonal matrix D such that A = PDP..(pts) Find the complex eigenvalues and eigenvectors of the matrix A =. The transformation x! Ax is the composition of a rotation and a scaling. Give the angle of the rotation and the scale factor r.
4 Solutions =( )( 5) + (6 ( 5)) = =. All but det(a + B) = det(a) + det(b) are standard rules for manipulating determinants. Note det 6= det + det. Since + 6=, the set of p(t) in Pn such that p() = is not closed under addition. The others are. Similarly, all but the set of p(t) in P n such that p() = are closed under scalar multiplication.. (d) is a theorem in the book and so is always true. The others are approximates statements of results from the book but none of the others is quite right. 5. p(t) =( t)+t+5t so t =( t)+(t t )+8t t =( t)+(t t )+8(t t )+6t 6. Reduce to echelon form The notation for the column vectors in the book uses parentheses so (a) is 6 correct.. Write = c + c 5. Either solve or by inspection c = c = so first column is. (b) is the only choice with this column but if you want ot work out the second column solve 8 = c + c 5 to get c =,c =.
5 8. Since is an eigenvalue, the null space has dimension at least and since there are two more distinct eigenvalues, all three eigenspaces have dimension exactly. Hence the rank is as is the dimension of the column space. Therefore (a) is true. To see the others note that the determinant is ( ) =. The matrix is diagonalizable since there are three distinct eigenvalues a 9. Since two rows are equal, the matrix has a nontrivial null space and either by row reduction or inspection 5 is an eigenvector with eigenvalue. This is not a good multiple choice problem since the quickest way to get the answer is to evaluate the matrix on the answers. To work out the characteristic polynomial, find the root(s) and then the eigenvectors is a waste a time.. 9 = =9 +( 5) 5 so the first column is = =6 +( 9) 5 so the first column is The B matrix is There are 9 cofactors C, =( ) + det = C, =( ) + det = C, =( ) + det = C, =( ) + det = C, =( ) + det = C, =( ) + det = C, =( ) + det =
6 C, =( ) + det = C, =( ) + det = So the i, j rmth entry in the adjunct of A is C j,i so the adjunct is 5. The characteristic polynomial is det and since this matrix is upper triangular, the determinant is ( )( )( ) so the eigenvalues are, and and all eigenspaces are dimensional. The eigenspace for is the null space for 5. One vector in this null space is 5 so it is a basis. The eigenspace for is the null space for 5. One vector in this null space is 5 so it is a basis. The eigenspace for is the null space for 5. One vector in this null space is 8 65 so it is a basis. Hence P = 8 65 and D = 5. You need do no further work since the results in the book tell you that these choices will work out.. The characteristic equation is det are = ± p 6 =± i. The eigenspace for + i is the null space for eigenspace. =( ) += + 8. The roots i i and i is a basis for the
7 The eigenspace for the conjugate i i is the null space for and i i is a basis for the eigenspace. To work out the angle and the scaling, results in the book say that the scaling is by = p + = p and the angle of rotation counterclockwise is where + i = p (cos + i sin ). Hence is 5 degrees or radians.. (a) (b) (c) ( ) (e). (a) (b) ( ) (d) (e). (a) (b) ( ) (d) (e). (a) (b) (c) ( ) (e) 5. (a) ( ) (c) (d) (e) 6. ( ) (b) (c) (d) (e). (a) ( ) (c) (d) (e) 8. ( ) (b) (c) (d) (e) 9. (a) (b) ( ) (d) (e). (a) (b) (c) (d) ( )
(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.
1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More information1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?
. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in
More information2. Every linear system with the same number of equations as unknowns has a unique solution.
1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations
More informationStudy Guide for Linear Algebra Exam 2
Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real
More information1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det
What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix
More informationDIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix
DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that
More informationMath 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam
Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system
More informationand let s calculate the image of some vectors under the transformation T.
Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =
More informationMath Final December 2006 C. Robinson
Math 2851 Final December 2006 C. Robinson 2 5 8 5 1 2 01 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the
More informationCalculating determinants for larger matrices
Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det
More informationRemark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial
More informationThis MUST hold matrix multiplication satisfies the distributive property.
The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients
More informationWarmup. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions
Warmup True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be
More information1. Let A = (a) 2 (b) 3 (c) 0 (d) 4 (e) 1
. Let A =. The rank of A is (a) (b) (c) (d) (e). Let P = {a +a t+a t } where {a,a,a } range over all real numbers, and let T : P P be a linear transformation dedifined by T (a + a t + a t )=a +9a t If
More informationSolutions to Final Exam
Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns
More informationLINEAR ALGEBRA REVIEW
LINEAR ALGEBRA REVIEW SPENCER BECKERKAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More informationftuiowamath2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST
me me ftuiowamath255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following
More information(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)
. Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is
More information1. In this problem, if the statement is always true, circle T; otherwise, circle F.
Math 1553, Extra Practice for Midterm 3 (sections 4565) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation
More information2018 Fall 2210Q Section 013 Midterm Exam II Solution
08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationMATH 220 FINAL EXAMINATION December 13, Name ID # Section #
MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is
More information1. Select the unique answer (choice) for each problem. Write only the answer.
MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +
More informationQuestion 7. Consider a linear system A x = b with 4 unknown. x = [x 1, x 2, x 3, x 4 ] T. The augmented
Question. How many solutions does x 6 = 4 + i have Practice Problems 6 d) 5 Question. Which of the following is a cubed root of the complex number i. 6 e i arctan() e i(arctan() π) e i(arctan() π)/3 6
More informationLinear Algebra: Sample Questions for Exam 2
Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and
More informationLINEAR ALGEBRA SUMMARY SHEET.
LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linearalgebrasummarysheet/ This document is a concise collection of many of the important theorems of linear algebra, organized
More informationReview problems for MA 54, Fall 2004.
Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationYORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions
YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For
More informationMATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION
MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether
More informationDimension. Eigenvalue and eigenvector
Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, ranknullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,
More informationThird Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.
Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot
More informationPRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.
Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence
More informationRecall : Eigenvalues and Eigenvectors
Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector
More informationWhat is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix
Professor Joana Amorim, jamorim@bu.edu What is on this week Vector spaces (continued). Null space and Column Space of a matrix............................. Null Space...........................................2
More informationMath 315: Linear Algebra Solutions to Assignment 7
Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are
More informationMATH. 20F SAMPLE FINAL (WINTER 2010)
MATH. 20F SAMPLE FINAL (WINTER 2010) You have 3 hours for this exam. Please write legibly and show all working. No calculators are allowed. Write your name, ID number and your TA s name below. The total
More informationMATH 240 Spring, Chapter 1: Linear Equations and Matrices
MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationc c c c c c c c c c a 3x3 matrix C= has a determinant determined by
Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More informationQuestion: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of AcI?
Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of AcI? Property The eigenvalues
More informationEigenvalues and Eigenvectors
5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS n n Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),
More informationRemark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called
More informationChapter 3. Directions: For questions 111 mark each statement True or False. Justify each answer.
Chapter 3 Directions: For questions 111 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]
More informationMath 1553, Introduction to Linear Algebra
Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has courselevel learning goals that pertain to the entire course, and sectionlevel
More informationChapter 4  MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in
Chapter 4  MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column
More informationAnnouncements Monday, October 29
Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,
More information(Practice)Exam in Linear Algebra
(Practice)Exam in Linear Algebra May 016 First Year at The Faculties of Engineering and Science and of Health This test has 10 pages and 16 multiplechoice problems. In twosided print. It is allowed to
More informationMath 110 Linear Algebra Midterm 2 Review October 28, 2017
Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections
More information4. Linear transformations as a vector space 17
4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation
More informationLINEAR ALGEBRA QUESTION BANK
LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,
More informationIn Class Peer Review Assignment 2
Name: Due Date: Tues. Dec. 5th In Class Peer Review Assignment 2 D.M. 1 : 7 (7pts) Short Answer 8 : 14 (32pts) T/F and Multiple Choice 15 : 30 (15pts) Total out of (54pts) Directions: Put only your answers
More informationChapter 2:Determinants. Section 2.1: Determinants by cofactor expansion
Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates
More informationMATH 221, Spring Homework 10 Solutions
MATH 22, Spring 28  Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the
More informationSolving a system by backsubstitution, checking consistency of a system (no rows of the form
MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary
More informationMATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018
Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry
More informationPractice Final Exam. Solutions.
MATH Applied Linear Algebra December 6, 8 Practice Final Exam Solutions Find the standard matrix f the linear transfmation T : R R such that T, T, T Solution: Easy to see that the transfmation T can be
More informationspring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra
spring, 2016. math 204 (mitchell) list of theorems 1 Linear Systems THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced RowEchelon Form THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem THEOREM
More informationDeterminants by Cofactor Expansion (III)
Determinants by Cofactor Expansion (III) Comment: (Reminder) If A is an n n matrix, then the determinant of A can be computed as a cofactor expansion along the jth column det(a) = a1j C1j + a2j C2j +...
More informationQuizzes for Math 304
Quizzes for Math 304 QUIZ. A system of linear equations has augmented matrix 2 4 4 A = 2 0 2 4 3 5 2 a) Write down this system of equations; b) Find the reduced rowechelon form of A; c) What are the pivot
More informationComputationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity:
Diagonalization We have seen that diagonal and triangular matrices are much easier to work with than are most matrices For example, determinants and eigenvalues are easy to compute, and multiplication
More informationReview Notes for Linear Algebra True or False Last Updated: February 22, 2010
Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n
More informationEigenvalues and Eigenvectors
5 Eigenvalues and Eigenvectors 5.2 THE CHARACTERISTIC EQUATION DETERMINANATS nn Let A be an matrix, let U be any echelon form obtained from A by row replacements and row interchanges (without scaling),
More informationMTH 464: Computational Linear Algebra
MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)
More informationOnline Exercises for Linear Algebra XM511
This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2
More informationLinear Algebra Final Exam Study Guide Solutions Fall 2012
. Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize
More informationMath 215 HW #9 Solutions
Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith
More informationMATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics
MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones
More informationChapter 3. Determinants and Eigenvalues
Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory
More informationMath 323 Exam 2 Sample Problems Solution Guide October 31, 2013
Math Exam Sample Problems Solution Guide October, Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification
More informationLinear Algebra Practice Final
. Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis
More informationLinear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.
Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the
More informationMath 4A Notes. Written by Victoria Kala Last updated June 11, 2017
Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...
More informationMath 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination
Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column
More informationAMS10 HW7 Solutions. All credit is given for effort. (5 pts for any missing sections) Problem 1 (20 pts) Consider the following matrix 2 A =
AMS1 HW Solutions All credit is given for effort. ( pts for any missing sections) Problem 1 ( pts) Consider the following matrix 1 1 9 a. Calculate the eigenvalues of A. Eigenvalues are 1 1.1, 9.81,.1
More informationMAT Linear Algebra Collection of sample exams
MAT 342  Linear Algebra Collection of sample exams Ax. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system
More informationMath 2114 Common Final Exam May 13, 2015 Form A
Math 4 Common Final Exam May 3, 5 Form A Instructions: Using a # pencil only, write your name and your instructor s name in the blanks provided. Write your student ID number and your CRN in the blanks
More information235 Final exam review questions
5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an
More informationEigenvalues, Eigenvectors, and Diagonalization
Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will
More informationEquality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.
Introduction Matrix Operations Matrix: An m n matrix A is an mbyn array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read
More informationLinear Algebra M1  FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.
Linear Algebra M1  FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:
More informationCity Suburbs. : population distribution after m years
Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence
More informationNo books, notes, any calculator, or electronic devices are allowed on this exam. Show all of your steps in each answer to receive a full credit.
MTH 309001 Fall 2016 Exam 1 10/05/16 Name (Print): PID: READ CAREFULLY THE FOLLOWING INSTRUCTION Do not open your exam until told to do so. This exam contains 7 pages (including this cover page) and 7
More informationConceptual Questions for Review
Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations (continued)
1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix
More informationMATH 235. Final ANSWERS May 5, 2015
MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your
More information4. Determinants.
4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.
More informationPRACTICE PROBLEMS FOR THE FINAL
PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show
More informationExamples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions.
The exam will cover Sections 6.6.2 and 7.7.4: True/False 30% Definitions 0% Computational 60% Skip Minors and Laplace Expansion in Section 6.2 and p. 304 (trajectories and phase portraits) in Section
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationMATH 1553 PRACTICE MIDTERM 3 (VERSION B)
MATH 1553 PRACTICE MIDTERM 3 (VERSION B) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.
More informationMath 20F Practice Final Solutions. Jorel Briones
Math 2F Practice Final Solutions Jorel Briones Jorel Briones / Math 2F Practice Problems for Final Page 2 of 6 NOTE: For the solutions to these problems, I skip all the row reduction calculations. Please
More informationProblem 1: Solving a linear equation
Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution
More informationMatrices related to linear transformations
Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas
More informationMath 20F Final Exam(ver. c)
Name: Solutions Student ID No.: Discussion Section: Math F Final Exam(ver. c) Winter 6 Problem Score /48 /6 /7 4 /4 5 /4 6 /4 7 /7 otal / . (48 Points.) he following are rue/false questions. For this problem
More information5.3.5 The eigenvalues are 3, 2, 3 (i.e., the diagonal entries of D) with corresponding eigenvalues. Null(A 3I) = Null( ), 0 0
535 The eigenvalues are 3,, 3 (ie, the diagonal entries of D) with corresponding eigenvalues,, 538 The matrix is upper triangular so the eigenvalues are simply the diagonal entries, namely 3, 3 The corresponding
More information