# Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Size: px
Start display at page:

Download "Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination"

## Transcription

1 Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column form): x + x =. The matrix form: Ax = b [ ] [ ] [ ] 4 4 x with A =, x =, and b =. 4 4 x. Matrix operations: addition/subtraction, scalar multiplication, matrix product, (AB = BA?) transpose, and inversion. The identity matrix, diagonal matrix, upper triangular matrix, and lower triangular matrix. (AB) T = B T A T. (AB) = B A (why?) Is the inverse of a diagonal (upper or lower triangular) matrix still diagonal (upper or lower triangular)?. Elementary row reductions and the corresponding elementary matrices. (Their relations?) Pivots. Echelon form U. Reduced echelon form R. Permutation matrix. Gaussian elimination. Use elementary row reduction to solve Ax = b and to find the inverse of an invertible matrix. 4 8 Exercise. Reduce A = to an echelon form and the reduced echelon form, and find out the pivots. Find the inverse of B = Matrix factorization: A = LU, A = LDU, P A = LU, and P A = LDU. The symmetric factorization A = LDL T for a symmetric matrix A. Exercise. Use A = LU to solve Ax = b. LU and LDU-factorize A =. Use x the LU factorization to solve y = z 5 5. Operation count (page 4), Matlab (page 9), and Section.7 will not be covered in the exam. Chapter. Vector Spaces. The concept of a vector space. Examples: R n, matrix space, polynomial space, space of continuous functions, space of sequences of real numbers, etc. Subspaces. Check if a given subset of a vector space is a subspace.

2 Exercise. Is the set of polynomials of degree a subspace of the space of all polynomials? Is the set of all matrices with determinant equal to 0 a subspace of the space of all matrices? Give a matrix A, why the set of all solutions x to Ax = 0 is a subspace? What is the zero vector of the vector space that consists of all matrices?. Linear combination. Linear dependence and independence. Span. Vectors u,..., u k are linearly dependent if and only if one of them is a linear combination of the others. Why? Exercise. If u, u, u are linearly independent, and au + u = u + bu + cu (a, b, c are numbers), then a =? b =? and c =? If each of u,..., u 5 is a linear combination of v,..., v 4 and each of v,..., v 4 is a linear combination of w,..., w, then each of u,..., u 5 is a linear combination of w,..., w, correct? Why n + vectorsinr n are always linearly dependent? Is a linear combination of 0, 5, and 7? Are ,, and linearly independent?. Solve Ax = 0 : free variables (if any). Solve Ax = b. Relation between solutions to Ax = b and to Ax = 0. How to check if Ax = b is consistent (i.e., there is at least one solution)? Rank of A = the number of pivots. Rank (A) = Rank (A T ). [ ] [ ] 0 5 Exercise. For A = and b =, solve Ax = 0 and Ax = b. Find conditions on b, b, b so that the system of equations 5 4 y = b 0 4 x b is solvable; z b and solve the system of equations when the conditions are satisfied. Rank (AB) = Rank (A) Rank (B)? Rank (A + B) = Rank (A + B)? 4. Basis: A group of vectors that are linearly independent and that span the entire space (i.e., any vector is a linear combination of these vectors. If u,..., u m and v,..., v n are two bases for a vector space, then m = n. Why? Dimension = number of a vectors in a basis. Exercise. Are 0 and linearly independent? If so, find another vector in R 0 so that all the three vectors together are still linearly independent. How to remove vectors, as fewer as possible, from a list of 5 vectors in R so that the remaining vectors are linearly independent? What is the dimension of the vector of polynomials of degree 4? Find a basis for this polynomial space. Final a basis for the vector space of all 4 matrices. What is the dimension of the space of all 5 5, symmetric matrices? 5. The four fundamental subspaces of a given matrix A : the column space of A, the null space of A, the row space of A, and the left null space of A. How to find their

3 dimensions and bases? Dimension of C(A) + dimension of N(A) = number of columns. Ax = b means b is in C(A), correct? Rank-one matrices. Equivalent statements for an invertible matrix. Exercise. Let A = Find a basis for C(A). Find a basis for N(A) Describe the four spaces of the matrix A = 0 0. If B = 4 a rank-one matrix? If so, find vectors a and b such that B = ab T. 6. Linear transformations. How to check a transformation is linear? If T : V W is a linear transformation, v,..., v n and w,..., w m are bases for V and W, respectively. How to find a the matrix A that represents T? Is A an m n or n m matrix? Exercise. Find the matrix for the reflection about the x-axis. Find the matrix that rotates any vector by π/4 counterclockwise. Let P denotes the space of all polynomials of degrees. Find the matrix that represents the linear transformation defined by differentiation with respect to the basis, x, and x. 7. Section.5 will not be covered in the exam. Chapter. Orthogonality. Inner product. Orthogonal or perpendicular vectors. Length of vector. Unit vectors. Distance. Nonzero, mutually orthogonal vectors are linearly independent? Why? Definition of the angle θ between two nonzero vectors in R n. Law of cosines. Why cos θ? The Cauchy Schwarz inequality. Exercise. Given a = and b =. Find a, a b, the cosine of the angle between a and b. Determine if a and b are orthogonal. If u and v are orthogonal, the u v = u + v. How to prove this? Show that for any two vectors x and y that x + y x + y.. Orthogonal subspaces. The orthogonal complement of a subspace. If two subspaces V and W are orthogoal, does it mean that W is the orthogonal complement of V? Why? In R n, if W = V then V = W and dim V + dim W = n. Given an m n matrix A. N(A) = C(A T ) and N(A T ) = C(A) : correct? why? Exercise. Find the orthogonal complement of the subspace spanned by a = 0 and b =.

4 . Projection onto a line (or a vector) and the corresponding projection matrix P. P T = P and P = P. Rank (P ) =? Projection onto a subspace, particular the column space of a matrix A. What is the projection matrix now? Exercise. Given a = and b =. Find the projection of b onto a. What is the matrix of the projection onto a? 4. Least-squares problem: formulation as a minimization problem, normal equation, the matrix A T A, relation to projection onto a subspace, geometrical interpretation. 0 Exercise. Solve Ax = b by least squares, and find p = Aˆx, if A = 0 and b =. For this A, find the projection matrix for the orthogonal projection onto the 0 column space of A. 5. Orthonormal vectors. Orthogonal matrices and their properties: Q T Q = I and Qx = x. Gram Schmidt orthogonalization process. A = QR factorization. 0 0 Exercise. Apply the Gram Schmidt process to a = 0, b =, and c =, and write the result in the form A = QR. QR factorize the matrix 0 0. Why 0 0 the determinant of an orthogonal matrix is always or? 6. The following will not be covered in the exam: Weighted least-squares (in Section.); Rectangular Matrices with Orthonormal Columns (in Section.4); Function Spaces and Fourier Series (in Section.4); and Section.5. Chapter 4. Determinants. What are the three basic properties that define the determinant of an n n matrix? What is the determinant of a diagonal matrix? an upper or lower triangular matrix? a matrix with one zero-row? a matrix with two identical rows? det(a T ) = det A? det(ab) = det A det B? det(a + B) = det A + det B? det(ca) = c det A (c is a number)? If rows (or columns) of A are linearly dependent, then det A = 0; correct?. Compute determinants using various kinds of properties of determinants and formulas: by elementary row reductions (be careful: such a reduction can change the value of the determinant); by expansion along one row or one column (the co-factor expansion); and by some formulas (especially for n = or. 4

5 Exercise. Compute the determinants of ,, and Cramer s rule for solving system of linear equations. Why this works? { x + x =, Exercise. Use Cramer s rule to solve the system of equations: x + 4x = Compute areas and volumes using determinants. Determine if A is invertible by det A. Exercise. Find the volume of the parallelogram defined by the vectors (, 0, ), (,, ), and (,, ). Exercise. Let A be the matrix with row vectors (, 0, ), (,, ), and (,, ). Calculate det A and determine if A is invertible. Chapter 5. Eigenvalues and Eigenvectors. Definition. How to compute eigenvalues and eigenvectors? Eigenvalues of a diagonal matrix and an upper (or lower) triangle matrix. If det A = 0 then 0 is an eigenvalue of A: correct? If λ is an eigenvalue of A then λ is an eigenvalue of A ; correct? Eigenvectors corresponding to different eigenvalues of a matrix are always linearly independent; correct? Why?. If A is an n n matrix, then its characteristic polynomial p(λ) = det(a λi) is a polynomial of degree exactly n. What is the coefficient of λ n and that of λ n of p(λ)? What is the constant term of p(λ)? The sum of diagonal entries of A equals the sum of all eigenvalues of A, right? Why? The det A equals the product of all eigenvalues of A, right? Why?. Diagonalization of a matrix: definition and calculation. An n n matrix is diagonalizable means the existence of n linearly independent eigenvectors of this matrix, right? why? How to compute A k if A is diagonalizable? What is the definition of e A? How to compute e A if A is diagonalizable? Exercise. Find a matrix that is not diagonalizable. [ ] Exercise. Diagonalize the following matrices A: and. Then compute A, A 0, and e A 4. Exercise. If A is Diagonalizable and all the eigenvalues of A have the absolute values strictly less than, then lim k A k = 0 (the zero matrix). Prove it. Exercise. Let H 0 = 0, H =, and H n+ = (H n+ + H n )/ (n = 0,,... ). Find a general expression of H n and find the limit lim n H n. 5

6 4. Complex matrices. Inner product and length of vectors. Hermitian. If A is Hermitian, then for any vector (complex-valued) x: x H Ax is always real. Why? [ ] [ ] i i Exercise. Let A = and x =. Find A + i H. Is A Hermitan? Find x H Ax. 5. What is an orthogonal matrix? What is a unitary matrix? If A is orthogonal or unitary, then Ax = x ; correct? If λ is an eigenvalue of an orthogonal or unitary matrix, then λ = ; why? What is A if A is orthogonal or unitary? 6. Properties of eigenvalues of a realy, symmetric or Hermitian matrix: always real, and eigenvectors corresponding to different eigenvalues are orthogonal. Spectral Theorem (page 97): A = QΛQ T for a real and symmetric A with Q orthogonal and Λ diagonal; A = UΛU H for a Hermitan A with U unitary and Λ diagonal. The table Real versus Complex on page 88. [ ] 4 Exercise. Find orthogonal Q and diagonal Λ for A = [ ] [ 0 i 0 + i diagonal Λ for A = or A = + i + i i ] 4.. Find unitary Q and 7. Similar matrices: B = M AM is similar to A. Diagonalizable A is similar to a diagonal matrix. Similar matrices have same eigenvalues and the same characteristic polynomial. Diagonalization of Hermitan matrices: The Spectral Theorem. Triangularization of any matrix (Schur s lemma): For any A, there is unitary U such that U AU = T, a triangular matrix. Jordanization of any matrix: A is similar to its Jordan form. What is a Jordan form? Exercise. If a 5 5 matrix A has the eigenvalues λ = λ = 0 with one linearly independent eigenvector, and λ = λ 4 = λ 5 = with only two linearly independent eigenvectors. Find all Jordan blocks of A and all possible Jordan forms of A. 8. The following will not be covered in the exam: Examples of differential equations in Section 5. (pages, 4, and 7); Examples,, and 4 on pages 60 6; differential equations in Section 5.4; stabilities in Section 5. and Section 5.4, and Example 6 on page 00. Chapter 6. Positive Definite Matrices. Associate a symmetric matrix with a quadratic form. Definition of positive definiteness and semi-definiteness of a symmetric matrix. Tests for the positive definiteness of a real symmetric matrix A: () By the definition: x T Ax > 0 for any x 0; (This usually involves completing the squares.) () All eigenvalues are positive; () All principal submatrices have positive determinants; and (4) A = R T R for nonsingular matrix R. 0 Exercise. Let A = 0 4. Write down the quadratic form x T Ax. 4 6

7 Exercise. Decide if each of the following matrices is positive definite: ,, Exercise. If A is real, symmetric and positive definite, then each of its diagonal entries must be positive.. What are the singular values of a matrix? Singular value decomposition (SVD): A = UΣV T. How to find Σ, V, and U? Exercise. If A is a matrix and the eigenvalues of A T A are 8, 4, and 0, what is Σ? If A is a 4 matrix and the eigenvalues of A T A are 8, 4,, and 0, what is Σ?. How to find the minimum of P (x) = (/)x T Ax b T x? How to find minimum of P (x) = (/)x T Ax b T x under the constraint Cx = d? 4. What is the Rayleigh quotient for a symmetric matrix A? Exercise. Find the minimum value of R(x) = x x x + x. x + x 5. The following will not be covered in the exam: pages 6 of Section 6.; Applications of SVD in Section 6.; Intertwining of the eigenvalues in Section 6.4; and Section

### Conceptual Questions for Review

Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

### Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

### MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

### Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

### Linear Algebra Primer

Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................

### Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

### Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

### 2. Every linear system with the same number of equations as unknowns has a unique solution.

1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

### IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

### MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

### HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe

### Cheat Sheet for MATH461

Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

### Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

### A Brief Outline of Math 355

A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

### SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

### IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

### 18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

### I. Multiple Choice Questions (Answer any eight)

Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

### 1. General Vector Spaces

1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

### MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

### 1 9/5 Matrices, vectors, and their applications

1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric

### Math Linear Algebra Final Exam Review Sheet

Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

### MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

### Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

### Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

### (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

. (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

### MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

### 235 Final exam review questions

5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

### ANSWERS. E k E 2 E 1 A = B

MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

### Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

### 1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

### MAT Linear Algebra Collection of sample exams

MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

### PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

### MATH 369 Linear Algebra

Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine

### ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2

MATH 7- Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the Cauchy-Schwartz inequality

### 33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM (UPDATED MARCH 17, 2018) The final exam will be cumulative, with a bit more weight on more recent material. This outline covers the what we ve done since the

### MATH 1553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE

MATH 553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE In studying for the final exam, you should FIRST study all tests andquizzeswehave had this semester (solutions can be found on Canvas). Then go

### A Review of Linear Algebra

A Review of Linear Algebra Mohammad Emtiyaz Khan CS,UBC A Review of Linear Algebra p.1/13 Basics Column vector x R n, Row vector x T, Matrix A R m n. Matrix Multiplication, (m n)(n k) m k, AB BA. Transpose

### BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

### MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES 1 Complex matrices Recall that the complex numbers are given by a + ib where a and b are real and i is the imaginary unity, ie, i 2 = 1 In what we describe below,

### LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

### MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

### Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

### 1. Select the unique answer (choice) for each problem. Write only the answer.

MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

### homogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45

address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test

### Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

### MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

### LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

### Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

### Reduction to the associated homogeneous system via a particular solution

June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

### Some notes on Linear Algebra. Mark Schmidt September 10, 2009

Some notes on Linear Algebra Mark Schmidt September 10, 2009 References Linear Algebra and Its Applications. Strang, 1988. Practical Optimization. Gill, Murray, Wright, 1982. Matrix Computations. Golub

### The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

### Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

### ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex

### Lecture Summaries for Linear Algebra M51A

These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

### Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Lecture 18, Friday 18 th November 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Mathematics

### Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

### There are six more problems on the next two pages

Math 435 bg & bu: Topics in linear algebra Summer 25 Final exam Wed., 8/3/5. Justify all your work to receive full credit. Name:. Let A 3 2 5 Find a permutation matrix P, a lower triangular matrix L with

### Linear Algebra Highlights

Linear Algebra Highlights Chapter 1 A linear equation in n variables is of the form a 1 x 1 + a 2 x 2 + + a n x n. We can have m equations in n variables, a system of linear equations, which we want to

### 7. Symmetric Matrices and Quadratic Forms

Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

### Exercise Sheet 1.

Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

### Problem # Max points possible Actual score Total 120

FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

### Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

### Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

### Chapter 3 Transformations

Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

### 2018 Fall 2210Q Section 013 Midterm Exam II Solution

08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

### 1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

### 6 Inner Product Spaces

Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space

### (b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

### Elementary linear algebra

Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

### Linear Algebra. Workbook

Linear Algebra Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: November 21 Student: Fall 2011 Checklist Name: A B C D E F F G H I J 1 2 3 4 5 6 7 8 9 10 xxx xxx xxx

### Math 307 Learning Goals

Math 307 Learning Goals May 14, 2018 Chapter 1 Linear Equations 1.1 Solving Linear Equations Write a system of linear equations using matrix notation. Use Gaussian elimination to bring a system of linear

### Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

### Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

### Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

### MATH 220 FINAL EXAMINATION December 13, Name ID # Section #

MATH 22 FINAL EXAMINATION December 3, 2 Name ID # Section # There are??multiple choice questions. Each problem is worth 5 points. Four possible answers are given for each problem, only one of which is

### MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

### Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

### Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

### Math 310 Final Exam Solutions

Math 3 Final Exam Solutions. ( pts) Consider the system of equations Ax = b where: A, b (a) Compute deta. Is A singular or nonsingular? (b) Compute A, if possible. (c) Write the row reduced echelon form

### Solving a system by back-substitution, checking consistency of a system (no rows of the form

MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

### Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.)

page 121 Index (Page numbers set in bold type indicate the definition of an entry.) A absolute error...26 componentwise...31 in subtraction...27 normwise...31 angle in least squares problem...98,99 approximation

### YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

### Stat 159/259: Linear Algebra Notes

Stat 159/259: Linear Algebra Notes Jarrod Millman November 16, 2015 Abstract These notes assume you ve taken a semester of undergraduate linear algebra. In particular, I assume you are familiar with the

### Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

### PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

### 5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

### Linear Algebra Massoud Malek

CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

### orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

### Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

### Math 102 Final Exam - Dec 14 - PCYNH pm Fall Name Student No. Section A0

Math 12 Final Exam - Dec 14 - PCYNH 122-6pm Fall 212 Name Student No. Section A No aids allowed. Answer all questions on test paper. Total Marks: 4 8 questions (plus a 9th bonus question), 5 points per

### Math 265 Linear Algebra Sample Spring 2002., rref (A) =

Math 265 Linear Algebra Sample Spring 22. It is given that A = rref (A T )= 2 3 5 3 2 6, rref (A) = 2 3 and (a) Find the rank of A. (b) Find the nullityof A. (c) Find a basis for the column space of A.

### Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

### Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Lectures 13 15, Tuesday 8 th and Friday 11 th November 016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE

### AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

### Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent

### TBP MATH33A Review Sheet. November 24, 2018

TBP MATH33A Review Sheet November 24, 2018 General Transformation Matrices: Function Scaling by k Orthogonal projection onto line L Implementation If we want to scale I 2 by k, we use the following: [

### Online Exercises for Linear Algebra XM511

This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2