# Math 102 Final Exam - Dec 14 - PCYNH pm Fall Name Student No. Section A0

Size: px
Start display at page:

Download "Math 102 Final Exam - Dec 14 - PCYNH pm Fall Name Student No. Section A0"

## Transcription

1 Math 12 Final Exam - Dec 14 - PCYNH 122-6pm Fall 212 Name Student No. Section A No aids allowed. Answer all questions on test paper. Total Marks: 4 8 questions (plus a 9th bonus question), 5 points per question. The exam has 9 pages of questions, and two extra pages at the end. 1. Let A be the following matrix: A = (a) Under what conditions on b = (b 1, b 2, b ) does Ax = b have a solution? (b) Find a basis for the column space of A. (c) Find a basis for the nullspace of A. (d) What is the rank of A T? Solution: See worked out example on page 84. 1

2 2. Prove that rank(ab) min{rank(a), rank(b)}. Solution: First note that rank(ab) rank(a). To see this note that the columns of AB are linear combinations of columns of A; hence col(ab) col(a), and therefore rank(ab) rank(a). Similarly the rows of AB are linear combinations of the rows of B, and so row(ab) row(b), and since row rank is the same as column rank, i.e., the rank, it follows that rank(ab) rank(b). From this we can conclude that since rank(ab) is less than or equal to both rank(a) and rank(b), the statement in the questions is also true. 2

3 . Use the Gauss-Jordan elimination on [ A I ] to find A 1 where: A = 1 a b c 1 d e 1 f 1. Solution: 1 a b + ad c + fb + ea fda 1 d e + fd 1 f 1 Summarize your answer here: A 1 =

4 4. Suppose that A is an n n matrix and λ 1 S 1 λ 2 AS =... λn and let p(λ) = p n λ n + p n 1 λ n p be a polynomial of degree n in λ such that p(λ) = det(a λi). Show that p(a) = n n, where n n is an n n matrix of zeros. Solution: Note that p(λ) = Π n i=1 (λ λ i), since the λ i s are the roots of this polynomial. Also note that p(a) = p(sλs 1 ) = Sp(Λ)S 1. To see this last part remember that (SXS 1 ) i = SX i S 1. So if we show that p(λ) = we will have that p(a) =. And: p(λ) = Π n i=1(λ λ i I), and we can visualize Π n i=1 (Λ λ ii) as the product of Λ n-times, where each copy of Λ is has a zero replacing an element on the diagonal. For example, if the size was, we would have: λ 1 λ 1 λ 2 λ 2 λ λ You can see that this product is zero, and an argument by induction show that it is zero for any size Λ. 4

5 5. If V is the subspace of R 4 spanned by (1, 1,, 1) and (,, 1, ) find: (a) a basis for the orthogonal complement V ; (b) the projection matrix P onto V ; (c) the vector in V closest to the vector b = (, 1,, 1) V. Solution: (a) Basis is ( 1, 1,, ), ( 1,,, 1). (b) The projection is: (c) The closest vector is p = O P =

6 6. Let F n be matrices defined as follows: F 1 = [ 1 ] F 2 = [ ] F = F 4 = and in general, F n is an n n matrix with the main diagonal of 1s, immediately above the main diagonal it has 1s, and immediately below the main diagonal it has 1s, and all other entries are zero. Show that det(f n ) = det(f n 1 ) + det(f n 2 ). Conclude that det(f n ) computes what famous quantity? Solution: Take the cofactor expansion of det(f n ) along the first row. It gives ( 1) det(f n 1 ) + ( 1) 1+2 ( 1) det(f n 2 ), where it is clear that F n with the first row and first column removed is just F n 1, but F n with first row and second column removed is not exactly F n 2, in fact, if we remove the first row and second column of F n, the upper-left corner of the resulting matrix looks as follows: and observe that the determinant of this matrix is given by 1 times the determinant of the principal submatrix, which is det(f n 2 ). This means that det(f n ) is the n-th Fibonacci number. 6

7 7. Suppose that a small car-rental company has three locations: San Diego (SD), Los Angeles (LA) and San Francisco (SF). Every month half of those in SD and in LA go to SF, and the other half stay where they are. The cars in SF are split equally between SD and LA. Set up the transition matrix A, and find the steady state u corresponding to the eigenvalue λ = 1. Solution: and the steady state u = (1/, 1/, 1/). 1/2 1/2 1/2 1/2 1/2 1/2 7

8 8. Prove Schur s Lemma: for any (square) matrix A, there exists a unitary matrix U such that U 1 AU = T where T is upper triangular. Make sure that you explain, as part of your proof, why every square matrix has at least one unit eigenvector. Proof: Steps: (a) Let Ax 1 = λ 1 x 1 where x 1 is a unitary eigenvector. (Every matrix has at least one eigenvector; we divide it by its norm.) To show that there is at least one eigenvector (non zero by dfn.) note that each A has at least one eigenvalue, since p(λ) = det(a λi) has at least one root (it is a polynomial of degree n = size of A). Let λ 1 be this eigenvalue; note that det(a λ 1 I) =, and so A λ 1 I is singular, and hence has a non-trivial nullspace. Let x 1 be a non-trivial vector in N(A λ 1 I). (b) Let U 1 = [ ] x 1 q 2 q... q n, where {q1 = x 1, q 2, q,..., q n } are obtained by the Gram-Schmidt orthonormalization procedure from, say, the linearly independent set {x 1, e i1, e i2,..., e in 1 }. (c) We show that U 1 1 AU 1 = λ 1. AU 1 = A [ x 1 q 2 q... q n ] = [ Ax 1 Aq 2 Aq... Aq n ] = [ ] λ 1 x 1 Aq 2 Aq... Aq n λ 1 = U 1 U1 1 Aq 2 U1 1 Aq... U1 1 Aq n. (d) Repeat with the principal submatrix. (e) In the end (Π 1 i=n U i 1 )A(Π n i=1 U 1) gives us an upper triangular matrix, and since a product of unitary matrices is unitary, and the inverse of a unitary matrix is also unitary, the lemma follows with U = (Π n i=1 U i). 8

9 9. Bonus Question: Use Schur s Lemma (question 8) to show the following: A is unitarily diagonalizable A is normal. If A is unitarily diagonalizable, then there exists a unitary matrix U such that U 1 AU = D; then AA H = (UDU 1 )(UDU 1 ) H = UDU H UD H U H = UDD H U H = UD H DU H and so A is normal. = UD H U H UDU H = A H A, Suppose that A is normal. By Schur s Lemma, for any matrix A, U H AU = T, where T is upper triangular. Since A is normal, so is T : T T H = (U H AU)(U H AU) H = U H AA H U = U H A H AU = T H T. But an upper-triangular matrix is normal iff it is in fact diagonal. We can show this by induction on the size of T ; if it is 1 1 it is always diagonal. For the induction step, notice that the principal submatrix of an upper (resp. lower) triangular matrix is also upper (resp. lower) triangular matrix, and furthermore the principal submatrix of LT (resp. T L) is product of the principal submatrix of L (resp. T ) times the principal submatrix of T (resp. L). These observations make the proof of the induction step easy. 9

10 extra page 1

11 extra page 11

### Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

### PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL Here are a slew of practice problems for the final culled from old exams:. Let P be the vector space of polynomials of degree at most. Let B = {, (t ), t + t }. (a) Show

### LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

### Conceptual Questions for Review

Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

### (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

. (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

### Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

### I. Multiple Choice Questions (Answer any eight)

Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

### MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

### MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

### Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

### Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

### MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

### Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

### 235 Final exam review questions

5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

### MAT Linear Algebra Collection of sample exams

MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

### 1 Last time: least-squares problems

MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

### Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

### Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

### MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

### UNIT 6: The singular value decomposition.

UNIT 6: The singular value decomposition. María Barbero Liñán Universidad Carlos III de Madrid Bachelor in Statistics and Business Mathematical methods II 2011-2012 A square matrix is symmetric if A T

### Cheat Sheet for MATH461

Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

### MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

### MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

### Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

### Math Final December 2006 C. Robinson

Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

### Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

### Math 314/ Exam 2 Blue Exam Solutions December 4, 2008 Instructor: Dr. S. Cooper. Name:

Math 34/84 - Exam Blue Exam Solutions December 4, 8 Instructor: Dr. S. Cooper Name: Read each question carefully. Be sure to show all of your work and not just your final conclusion. You may not use your

### MATH 1553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE

MATH 553, Intro to Linear Algebra FINAL EXAM STUDY GUIDE In studying for the final exam, you should FIRST study all tests andquizzeswehave had this semester (solutions can be found on Canvas). Then go

### Linear Algebra in Actuarial Science: Slides to the lecture

Linear Algebra in Actuarial Science: Slides to the lecture Fall Semester 2010/2011 Linear Algebra is a Tool-Box Linear Equation Systems Discretization of differential equations: solving linear equations

### HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe

### Math 310 Final Exam Solutions

Math 3 Final Exam Solutions. ( pts) Consider the system of equations Ax = b where: A, b (a) Compute deta. Is A singular or nonsingular? (b) Compute A, if possible. (c) Write the row reduced echelon form

### 18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

### MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

### Spring 2014 Math 272 Final Exam Review Sheet

Spring 2014 Math 272 Final Exam Review Sheet You will not be allowed use of a calculator or any other device other than your pencil or pen and some scratch paper. Notes are also not allowed. In kindness

### Linear Algebra Lecture Notes-II

Linear Algebra Lecture Notes-II Vikas Bist Department of Mathematics Panjab University, Chandigarh-64 email: bistvikas@gmail.com Last revised on March 5, 8 This text is based on the lectures delivered

### MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES 1 Complex matrices Recall that the complex numbers are given by a + ib where a and b are real and i is the imaginary unity, ie, i 2 = 1 In what we describe below,

### Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

### q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis.

Exam Review Material covered by the exam [ Orthogonal matrices Q = q 1... ] q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis

### Linear Algebra Primer

Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................

### A Brief Outline of Math 355

A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

### ANSWERS. E k E 2 E 1 A = B

MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

### MATH Spring 2011 Sample problems for Test 2: Solutions

MATH 304 505 Spring 011 Sample problems for Test : Solutions Any problem may be altered or replaced by a different one! Problem 1 (15 pts) Let M, (R) denote the vector space of matrices with real entries

### Reduction to the associated homogeneous system via a particular solution

June PURDUE UNIVERSITY Study Guide for the Credit Exam in (MA 5) Linear Algebra This study guide describes briefly the course materials to be covered in MA 5. In order to be qualified for the credit, one

### Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

### MATH 223 FINAL EXAM APRIL, 2005

MATH 223 FINAL EXAM APRIL, 2005 Instructions: (a) There are 10 problems in this exam. Each problem is worth five points, divided equally among parts. (b) Full credit is given to complete work only. Simply

### Math 308 Practice Test for Final Exam Winter 2015

Math 38 Practice Test for Final Exam Winter 25 No books are allowed during the exam. But you are allowed one sheet ( x 8) of handwritten notes (back and front). You may use a calculator. For TRUE/FALSE

### SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

### MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

### Practice Final Exam Solutions for Calculus II, Math 1502, December 5, 2013

Practice Final Exam Solutions for Calculus II, Math 5, December 5, 3 Name: Section: Name of TA: This test is to be taken without calculators and notes of any sorts. The allowed time is hours and 5 minutes.

### EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016

EK102 Linear Algebra PRACTICE PROBLEMS for Final Exam Spring 2016 Answer the questions in the spaces provided on the question sheets. You must show your work to get credit for your answers. There will

### Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

### Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions

Warm-up True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be

### Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

### Math 407: Linear Optimization

Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

### Check that your exam contains 30 multiple-choice questions, numbered sequentially.

MATH EXAM SPRING VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result

### MATH 221, Spring Homework 10 Solutions

MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

### EXAM. Exam 1. Math 5316, Fall December 2, 2012

EXAM Exam Math 536, Fall 22 December 2, 22 Write all of your answers on separate sheets of paper. You can keep the exam questions. This is a takehome exam, to be worked individually. You can use your notes.

### 2. Every linear system with the same number of equations as unknowns has a unique solution.

1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

### Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

### Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

### 1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

. Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

### Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

### Schur s Triangularization Theorem. Math 422

Schur s Triangularization Theorem Math 4 The characteristic polynomial p (t) of a square complex matrix A splits as a product of linear factors of the form (t λ) m Of course, finding these factors is a

### Solution of Linear Equations

Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

### Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018

Lecture 13: Orthogonal projections and least squares (Section 3.2-3.3) Thang Huynh, UC San Diego 2/9/2018 Orthogonal projection onto subspaces Theorem. Let W be a subspace of R n. Then, each x in R n can

### Math Linear Algebra Final Exam Review Sheet

Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

### IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

### MATH 1B03 Day Class Final Exam Bradd Hart, Dec. 13, 2013

MATH B03 Day Class Final Exam Bradd Hart, Dec. 3, 03 Name: ID #: The exam is 3 hours long. The exam has questions on page through ; there are 40 multiple-choice questions printed on BOTH sides of the paper.

### The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

### IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

### Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

### Chapter 6: Orthogonality

Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

### YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #2 Solutions

YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 3. M Test # Solutions. (8 pts) For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For this

### Recall the convention that, for us, all vectors are column vectors.

Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

### MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

### W2 ) = dim(w 1 )+ dim(w 2 ) for any two finite dimensional subspaces W 1, W 2 of V.

MA322 Sathaye Final Preparations Spring 2017 The final MA 322 exams will be given as described in the course web site (following the Registrar s listing. You should check and verify that you do not have

### 1. General Vector Spaces

1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

### [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

### Notes on basis changes and matrix diagonalization

Notes on basis changes and matrix diagonalization Howard E Haber Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 April 17, 2017 1 Coordinates of vectors and matrix

### Problem # Max points possible Actual score Total 120

FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

### Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

### Econ Slides from Lecture 7

Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

### Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

### MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

### Name: Final Exam MATH 3320

Name: Final Exam MATH 3320 Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling. (1) State the following

### DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

### Practice problems for Exam 3 A =

Practice problems for Exam 3. Let A = 2 (a) Determine whether A is diagonalizable. If so, find a matrix S such that S AS is diagonal. If not, explain why not. (b) What are the eigenvalues of A? Is A diagonalizable?

### 5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

### Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

### What is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix

Professor Joana Amorim, jamorim@bu.edu What is on this week Vector spaces (continued). Null space and Column Space of a matrix............................. Null Space...........................................2

### Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

### Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

### 1 9/5 Matrices, vectors, and their applications

1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric

### MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS There will be eight problems on the final. The following are sample problems. Problem 1. Let F be the vector space of all real valued functions on

### 1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

### Eigenvalues and Eigenvectors

/88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

### 18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

### Fall 2016 MATH*1160 Final Exam

Fall 2016 MATH*1160 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie Dec 16, 2016 INSTRUCTIONS: 1. The exam is 2 hours long. Do NOT start until instructed. You may use blank