Definitions for Quizzes


 Della Cannon
 1 years ago
 Views:
Transcription
1 Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does it need to be a part of your definition.] 1 Linear Equations Definition 1. A matrix is in reduced rowechelon form (RREF) if it satisfies all of the following conditions: a) If a row has nonzero entries, then the first nonzero entry is a 1, [called a leading 1]. b) If a column contains a leading 1, then all the other entries in that column are 0. c) If a row contains a leading 1, then each row above it contains a leading 1 further to the left. Definition 2 (1.3.2). The rank of a matrix A, written rank(a), is the number of leading 1 s in rref(a). Definition 3 (1.3.9). A vector b R n is called a linear combination of the vectors v 1,..., v m in R n if there exist scalars x 1,..., x m such that b = x 1 v x m v m. [Note that Ax is a linear combination of the columns of A. By convention, 0 is considered to be the unique linear combination of the empty set of vectors.] 2 Linear Transformations Definition 4 (2.1.1). A function T : R m R n is called a linear transformation if there exists an n m matrix A such that T (x) = Ax for all vectors x in R m. Definition 5. For a function T : X Y, X is called the domain and Y is called the target. A function T : X Y is called onetoone if for any y Y there is at most one input x X such that T (x) = y [(different inputs give different outputs)]. A function T : X Y is called onto if for any y Y there is at least one input x X such that T (x) = y [(every target element is an output)]. A function T : X Y is called invertible if for any y Y there is exactly one x X such that T (x) = y. [Note that a function is invertible if and only if it is both onetoone and onto.] 1
2 3 Subspaces of R n and Their Dimensions Definition 6 (3.1.1). The image of a function T : X Y is its set of outputs: im(t ) = {T (x) : x X}, [a subset of the target Y. Note that T is onto if and only if im(t ) = Y.] [For a linear transformation T : R m R n, the image is a subset of the target R n.] im(t ) = {T (x) : x R m }, Definition 7 (3.1.2). The set of all linear combinations of the vectors v 1,..., v m in R n is called their span: span(v 1, v 2,..., v m ) = {c 1 v c m v m : c 1,..., c m R}. [If span(v 1, v 2,..., v m ) = W for some subset W of R n, we say that the vectors v 1,..., v m span W. Thus span can be used as a noun or as a verb.] Definition 8 (3.1.1). The kernel of a linear transformation T : R m R n is its set of zeros: [a subset of the domain R m ]. ker(t ) = {x R m : T (x) = 0}, Definition 9 (3.2.6). A linear relation among the vectors v 1,..., v m R n is an equation of the form c 1 v c m v m = 0 for scalars c 1,..., c m R. [If c 1 = = c m = 0, the relation is called trivial, while if at least one of the c i in nonzero, the relation is nontrivial.] Definition 10 (3.2.1). A subset W of a vector space R n is called a subspace of R n if it has the following three properties: a) contains zero vector: 0 W. b) closed under addition: If w 1, w 2 W, then w 1 + w 2 W. c) closed under scalar multiplication: If w W and k R, then kw W. [Property a is needed only to assure that W is nonempty. If W contains any vector w, then it also contains 0w = 0, by property c. Properties b and c are together equivalent to W being closed under linear combinations.] Definition 11 (3.2.3). Let v 1,..., v m R n. a) A vector v i in the list v 1,..., v m is redundant if it is a linear combination of the preceding vectors v 1,..., v i 1. [Note that v 1 is redundant if and only if it equals 0, the unique linear combination of the empty set of vectors.] b) The vectors v 1,..., v m are called linearly independent (LI) if none of them are redundant. [Otherwise, they are linearly dependent (LD).] 2
3 c) The vectors v 1,..., v m form a basis of a subspace V of R n if they span V and are linearly independent. Definition 12 (3.3.3). The number of vectors in a basis of a subspace V of R n is called the dimension of V, denoted dim(v ). Definition 13. The nullity of a matrix A, written nullity(a), is the dimension of the kernel of A. Definition 14 (3.4.5). Given two n n matrices A and B, we say that A is similar to B, abbreviated A B, if there exists an invertible matrix S such that 4 Linear Spaces AS = SB or, equivalently, B = S 1 AS. Definition 15 (4.2.1). Let V and W be linear spaces. A function f : V W is called a linear transformation if, for all f, g V and k R, and [For a linear transformation T : V W, we let T (f + g) = T (f) + T (g) and T (kf) = kt (f). im(t ) = {T (f) : f V } ker(t ) = {f V : T (f) = 0}. Then im(t ) is a subspace of the target W and ker(t ) is a subspace of the domain V, so im(t ) and ker(t ) are each linear spaces.] [If the image of T is finite dimensional, then dim(im T ) is called the rank of T, and if the kernel of T is finite dimensional, then dim(ker T ) is called the nullity of T.] Definition 16 (4.2.2). An invertible linear transformation T is called an isomorphism [(from the Greek for same structure ). The linear space V is said to be isomorphic to the linear space W, written V W, if there exists an isomorphism T : V W.] 5 Orthogonality and Least Squares Definition 17 (5.1.1). Two vectors v, w R n are called perpendicular or orthogonal if v w = 0. A vector x R n is orthogonal to a subspace V R n if x is orthogonal to all vectors v V. Definition 18 (5.1.1). The length (or magnitude or norm) of a vector v R n is v = v v. A vector u R n is called a unit vector if its length is 1 [(i.e., u = 1 or u u = 1)]. 3
4 Definition 19 (5.1.2). The vectors u 1,..., u m R n are called orthonormal if they are all unit vectors and all orthogonal to each other: { 1 if i = j u i u j = 0 if i j. Definition 20 (5.1.12). [By the CauchySchwarz inequality, angle between two nonzero vectors x, y R n to be [With this definition, we have the formula θ = arccos x y x y. x y = x y cos θ x y x y for the dot product in terms of the lengths of two vectors and the angle between them.] = x y x y 1], so we may define the Definition 21 (5.3.1). A linear transformation T : R n R n is called orthogonal if it preserves the length of vectors: T (x) = x, for all x R n. [If T (x) = Ax is an orthogonal transformation, we say that A is an orthogonal matrix.] Definition 22 (5.3.5). For an m n matrix A, the transpose A T of A is the n m matrix whose ijth entry is the jith entry of A: [A T ] ij = A ji. [The rows of A become the columns of A T, and the columns of A become the rows of A T.] A square matrix A is symmetric if A T = A and skewsymmetric if A T = A. Definition 23 (5.4.4). Let A be an n m matrix. Then a vector x R m is called a leastsquares solution of the system Ax = b if the distance between Ax and b is as small as possible: Definition 24 (5.5.2). b Ax b Ax for all x R m. The norm (or magnitude) of an element f of an inner product space is f = f, f. Two elements f, g of an inner product space are called orthogonal (or perpendicular) if f, g = 0. The distance between two elements of an inner product space is defined to be [the norm of their difference]: dist(f, g) = f g. The angle θ between two elements f, g of an inner product space is defined by the formula ( ) f, g θ = cos 1. f g 4
5 6 Determinants Definition 25 (6.3.2). An orthogonal matrix A with det A = 1 is called a rotation matrix, [and the linear transformation T (x) = Ax is called a rotation]. Definition 26. The mparallelepiped defined by the vectors v 1,..., v m R n is the set of all vectors in R n of the form c 1 v c m v m, where 0 c i 1. [A 2parallelepiped is also called a parallelogram.] The mvolume V (v 1,..., v m ) of this mparallelepiped is defined to be V (v 1,..., v m ) = v 1 v 2 v m. [In the case m = n, this is just det A, where A is the square matrix with columns v 1,..., v n R n.] 7 Eigenvalues and Eigenvectors Definition 27 (7.1.1). Let A be an n n matrix. A nonzero vector v R n is called an eigenvector of A if [Av is a scalar multiple of v, i.e.,] Av = λv for some scalar λ. [The scalar λ is called the eigenvalue of A associated with the eigenvector v. λeigenvector.] We sometimes call v a Definition 28 (7.2.6). An eigenvalue λ 0 of a square matrix A has algebraic multiplicity k if [λ 0 is a root of multiplicity k of the characteristic polynomial f A (λ), meaning that we can write] f A (λ) = (λ 0 λ) k g(λ) for some polynomial g(λ) with g(λ 0 ) 0. [We write AM(λ 0 ) = k.] Definition 29 (7.3.1). Let λ be an eigenvalue of an n n matrix A. The λeigenspace of A, denoted E λ, is defined to be E λ = ker(a λi n ) [or] = {v R n : Av = λv} [= {λeigenvectors of A} {0}]. Definition 30 (7.3.2). The dimension of the λeigenspace E λ multiplicity of λ, [written GM(λ). We have = ker(a λi n ) is called the geometric GM(λ) = dim(e λ ) = dim(ker(a λi n )) = nullity(a λi n ) = n rank(a λi n )]. 5
6 Definition 31 (7.3.3). Let A be an n n matrix. A basis of R n consisting of eigenvectors of A is called an eigenbasis for A. Definition 32 (7.4.2). Consider a linear transformation T : R n R n given by T (x) = Ax. T is called diagonalizable if there exists a basis D of R n such that the Dmatrix of T is diagonal. A is called diagonalizable if A is similar to some diagonal matrix D, i.e., if there exists an invertible matrix S such that S 1 AS is diagonal. 6
MATH 240 Spring, Chapter 1: Linear Equations and Matrices
MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear
More information235 Final exam review questions
5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an
More information1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det
What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix
More informationProofs for Quizzes. Proof. Suppose T is a linear transformation, and let A be a matrix such that T (x) = Ax for all x R m. Then
Proofs for Quizzes 1 Linear Equations 2 Linear Transformations Theorem 1 (2.1.3, linearity criterion). A function T : R m R n is a linear transformation if and only if a) T (v + w) = T (v) + T (w), for
More informationStudy Guide for Linear Algebra Exam 2
Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real
More information1. General Vector Spaces
1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule
More information2. Every linear system with the same number of equations as unknowns has a unique solution.
1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations
More informationMath 4A Notes. Written by Victoria Kala Last updated June 11, 2017
Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...
More informationMATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)
MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationFinal Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2
Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.15.4, 6.16.2 and 7.17.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch
More informationTopic 2 Quiz 2. choice C implies B and B implies C. correctchoice C implies B, but B does not imply C
Topic 1 Quiz 1 text A reduced rowechelon form of a 3 by 4 matrix can have how many leading one s? choice must have 3 choice may have 1, 2, or 3 correctchoice may have 0, 1, 2, or 3 choice may have 0,
More informationGlossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the
More informationElementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.
Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4
More informationTBP MATH33A Review Sheet. November 24, 2018
TBP MATH33A Review Sheet November 24, 2018 General Transformation Matrices: Function Scaling by k Orthogonal projection onto line L Implementation If we want to scale I 2 by k, we use the following: [
More informationLinear Algebra Highlights
Linear Algebra Highlights Chapter 1 A linear equation in n variables is of the form a 1 x 1 + a 2 x 2 + + a n x n. We can have m equations in n variables, a system of linear equations, which we want to
More informationChapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0.
Chapter Find all x such that A x : Chapter, so that x x ker(a) { } Find all x such that A x ; note that all x in R satisfy the equation, so that ker(a) R span( e, e ) 5 Find all x such that A x 5 ; x x
More informationIMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET
IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each
More informationFinal Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015
Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,
More informationChapter 2 Subspaces of R n and Their Dimensions
Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all ntuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together
More informationLecture Summaries for Linear Algebra M51A
These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture
More informationAnswers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3
Answers in blue. If you have questions or spot an error, let me know. 3 4. Find all matrices that commute with A =. 4 3 a b If we set B = and set AB = BA, we see that 3a + 4b = 3a 4c, 4a + 3b = 3b 4d,
More informationLINEAR ALGEBRA REVIEW
LINEAR ALGEBRA REVIEW SPENCER BECKERKAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for
More informationMath 217 Midterm 1. Winter Solutions. Question Points Score Total: 100
Math 7 Midterm Winter 4 Solutions Name: Section: Question Points Score 8 5 3 4 5 5 6 8 7 6 8 8 Total: Math 7 Solutions Midterm, Page of 7. Write complete, precise definitions for each of the following
More informationLinear Algebra Practice Problems
Linear Algebra Practice Problems Page of 7 Linear Algebra Practice Problems These problems cover Chapters 4, 5, 6, and 7 of Elementary Linear Algebra, 6th ed, by Ron Larson and David Falvo (ISBN3 = 97868783762,
More informationIr O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )
Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O
More information(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.
1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III
More informationLecture 1: Review of linear algebra
Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, leastsquares and leastnorm solutions Subspaces, basis, and dimension Change of basis and similarity transformations
More informationMATH 31  ADDITIONAL PRACTICE PROBLEMS FOR FINAL
MATH 3  ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left
More informationSolutions to Final Exam
Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns
More information1. In this problem, if the statement is always true, circle T; otherwise, circle F.
Math 1553, Extra Practice for Midterm 3 (sections 4565) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation
More informationRemark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial
More informationDimension. Eigenvalue and eigenvector
Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, ranknullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,
More informationVector Spaces and Linear Transformations
Vector Spaces and Linear Transformations Wei Shi, Jinan University 2017.11.1 1 / 18 Definition (Field) A field F = {F, +, } is an algebraic structure formed by a set F, and closed under binary operations
More informationCity Suburbs. : population distribution after m years
Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence
More informationMA 265 FINAL EXAM Fall 2012
MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators
More informationQuizzes for Math 304
Quizzes for Math 304 QUIZ. A system of linear equations has augmented matrix 2 4 4 A = 2 0 2 4 3 5 2 a) Write down this system of equations; b) Find the reduced rowechelon form of A; c) What are the pivot
More informationftuiowamath2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST
me me ftuiowamath255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following
More informationSUMMARY OF MATH 1600
SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You
More information6 Inner Product Spaces
Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space
More informationLecture 7: Positive Semidefinite Matrices
Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.
More informationhomogeneous 71 hyperplane 10 hyperplane 34 hyperplane 69 identity map 171 identity map 186 identity map 206 identity matrix 110 identity matrix 45
address 12 adjoint matrix 118 alternating 112 alternating 203 angle 159 angle 33 angle 60 area 120 associative 180 augmented matrix 11 axes 5 Axiom of Choice 153 basis 178 basis 210 basis 74 basis test
More informationSolutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015
Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See
More informationALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA
ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND
More informationLinear Algebra Practice Final
. Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis
More informationFinal Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions
Final Exam Linear Algebra Summer Math SX (3) Corrin Clarkson August th, Name: Solutions Instructions: This is a closed book exam. You may not use the textbook, notes or a calculator. You will have 9 minutes
More informationSolving a system by backsubstitution, checking consistency of a system (no rows of the form
MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary
More informationLINEAR ALGEBRA SUMMARY SHEET.
LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linearalgebrasummarysheet/ This document is a concise collection of many of the important theorems of linear algebra, organized
More informationMATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (inclass portion) January 22, 2003
MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (inclass portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space
More informationRemark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.
Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called
More informationEigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A.
Eigenspaces 1. (a) Find all eigenvalues and eigenvectors of A = (b) Find the corresponding eigenspaces. [ ] 1 1 1 Definition. If A is an n n matrix and λ is a scalar, the λeigenspace of A (usually denoted
More informationGeneralized Eigenvectors and Jordan Form
Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least
More informationOnline Exercises for Linear Algebra XM511
This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2
More informationMATH 304 Linear Algebra Lecture 20: The GramSchmidt process (continued). Eigenvalues and eigenvectors.
MATH 304 Linear Algebra Lecture 20: The GramSchmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v
More informationAnnouncements Monday, October 29
Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,
More informationLINEAR ALGEBRA REVIEW
LINEAR ALGEBRA REVIEW JC Stuff you should know for the exam. 1. Basics on vector spaces (1) F n is the set of all ntuples (a 1,... a n ) with a i F. It forms a VS with the operations of + and scalar multiplication
More informationDIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix
DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that
More informationLinear Algebra Review. Vectors
Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors
More informationWhat is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix
Professor Joana Amorim, jamorim@bu.edu What is on this week Vector spaces (continued). Null space and Column Space of a matrix............................. Null Space...........................................2
More information1. Select the unique answer (choice) for each problem. Write only the answer.
MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +
More information1 9/5 Matrices, vectors, and their applications
1 9/5 Matrices, vectors, and their applications Algebra: study of objects and operations on them. Linear algebra: object: matrices and vectors. operations: addition, multiplication etc. Algorithms/Geometric
More informationNATIONAL UNIVERSITY OF SINGAPORE MA1101R
Student Number: NATIONAL UNIVERSITY OF SINGAPORE  Linear Algebra I (Semester 2 : AY25/26) Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES. Write down your matriculation/student number clearly in the
More informationMath 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination
Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column
More informationFinal Exam Practice Problems Answers Math 24 Winter 2012
Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the
More informationEquality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.
Introduction Matrix Operations Matrix: An m n matrix A is an mbyn array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read
More informationMath Final December 2006 C. Robinson
Math 2851 Final December 2006 C. Robinson 2 5 8 5 1 2 01 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the
More informationChapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015
Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal
More informationMath Linear Algebra Final Exam Review Sheet
Math 151 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a componentwise operation. Two vectors v and w may be added together as long as they contain the same number n of
More informationIntroduction to Linear Algebra, Second Edition, Serge Lange
Introduction to Linear Algebra, Second Edition, Serge Lange Chapter I: Vectors R n defined. Addition and scalar multiplication in R n. Two geometric interpretations for a vector: point and displacement.
More informationPractice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5
Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,
More informationMath 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam
Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system
More informationLINEAR ALGEBRA 1, 2012I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS
LINEAR ALGEBRA, I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,
More information(v, w) = arccos( < v, w >
MA322 Sathaye Notes on Inner Products Notes on Chapter 6 Inner product. Given a real vector space V, an inner product is defined to be a bilinear map F : V V R such that the following holds: For all v
More informationLinear Algebra Final Exam Review
Linear Algebra Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.
More informationAfter we have found an eigenvalue λ of an n n matrix A, we have to find the vectors v in R n such that
7.3 FINDING THE EIGENVECTORS OF A MATRIX After we have found an eigenvalue λ of an n n matrix A, we have to find the vectors v in R n such that A v = λ v or (λi n A) v = 0 In other words, we have to find
More informationMATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION
MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether
More informationMath 21b: Linear Algebra Spring 2018
Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each
More informationMATH 1553 SAMPLE FINAL EXAM, SPRING 2018
MATH 1553 SAMPLE FINAL EXAM, SPRING 2018 Name Circle the name of your instructor below: Fathi Jankowski Kordek Strenner Yan Please read all instructions carefully before beginning Each problem is worth
More informationMath 224, Fall 2007 Exam 3 Thursday, December 6, 2007
Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank
More informationControl Systems. Linear Algebra topics. L. Lanari
Control Systems Linear Algebra topics L Lanari outline basic facts about matrices eigenvalues  eigenvectors  characteristic polynomial  algebraic multiplicity eigenvalues invariance under similarity
More informationGRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.
GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,
More informationELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices
ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex
More informationConceptual Questions for Review
Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.
More informationLinear Algebra Massoud Malek
CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product
More informationLINEAR ALGEBRA QUESTION BANK
LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,
More information(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).
.(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)
More informationDot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.
Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................
More informationChapter 6: Orthogonality
Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products
More informationDefinition (T invariant subspace) Example. Example
Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin
More informationMAT 242 CHAPTER 4: SUBSPACES OF R n
MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)
More informationNo books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question.
Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fillintheblank question. Name: Section: Question Points
More informationMath 323 Exam 2 Sample Problems Solution Guide October 31, 2013
Math Exam Sample Problems Solution Guide October, Note that the following provides a guide to the solutions on the sample problems, but in some cases the complete solution would require more work or justification
More informationx y + z = 3 2y z = 1 4x + y = 0
MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem
More informationELE/MCE 503 Linear Algebra Facts Fall 2018
ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2
More informationMATH 115A: SAMPLE FINAL SOLUTIONS
MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication
More informationMATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.
MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.
More informationDSGA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.
DSGA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1
More informationChapter 3 Transformations
Chapter 3 Transformations An Introduction to Optimization Spring, 2014 WeiTa Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases
More informationW2 ) = dim(w 1 )+ dim(w 2 ) for any two finite dimensional subspaces W 1, W 2 of V.
MA322 Sathaye Final Preparations Spring 2017 The final MA 322 exams will be given as described in the course web site (following the Registrar s listing. You should check and verify that you do not have
More informationReview of Linear Algebra
Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=
More information