Robotics I. Test November 29, 2013

Size: px
Start display at page:

Download "Robotics I. Test November 29, 2013"

Transcription

1 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected to the link by means of two transmission/reduction elements placed in series: a spur gear SG made of two toothed wheels, and a harmonic drive HD. The output shaft of the motor drives the smaller toothed wheel of radius r 1. The output axis of the larger wheel of radius r > r 1 is connected to the wave generator of the HD. Finally, the output axis of the flexspline is the joint axis of the robot link. The motor delivers a maximum torque T m,max =. [Nm], while the inertia of its rotor is J m = [kg m ]. The smaller wheel of the gear has radius r 1 = [cm]. The flexspline of the HD has 70 outer teeth. Finally, the link has an inertia J l = 5.88 [kg m ] around its rotation axis at the link base. a Neglecting dissipative effects and other inertial loads except rotor and link inertias, determine the radius r of the larger toothed wheel of the spur gear so that the reduction ratio n > 1 of the complete transmission is optimal in terms of motor torque needed to accelerate the link. b With the resulting optimal value n, determine the maximum angular acceleration θ l,max of the link that can be realized using this motor/transmission unit. Exercise [1 points] The K-107 robot developed by Robotics Research Co. USA is a modular 7-dof manipulator having all revolute joints and no spherical wrist or shoulder. Figure 1 shows a picture of the robot mounted on an inclined base and a few snaphots of the robot in motion mounted on a vertical base, in order to illustrate its dexterity. Figure 1: The Robotics Research K-107 robot A drawing of the K-107 robot for a particular configuration is shown in Fig., with indication of the seven revolute joint axes and the physical sizes in inches. Origin O 0 and axis x 0 of the base frame as well as origin O 7 and axis z 7 of the last frame are assigned as in the figure. a Assign the link frames and the table of parameters according to the Denavit-Hartenberg convention use the extra sheet for your sketch of the frames. b Provide the numerical values of the constant parameters and of the joint variables associated to the configuration shown in Fig.. 1

2 z 7 O 7 joint 7 joint 6 joint joint 3 joint 5 joint 1 joint 4 O 0 x 0 Figure : Drawing of the K-107 robot: In this configuration, joint axes 1, 3, 5, and 7 are on a common plane, while joint axes, 4, and 6 are normal to this plane Exercise 3 [1 points] Consider the planar RPR robot shown in Fig. 3, and the definition of joint variables q = q 1 q given therein. The three-dimensional task vector is r = p T α = fq, where p = px p y is the position of the end-effector and α is the orientation angle of the last link w.r.t. the x 0 axis. Assume that q 0 holds for the prismatic joint variable. a Solve the inverse kinematics problem for a given r d, providing the expression of all feasible solutions in closed form. b Compute the solutions q associated to r d = π/ [m,m,rad] i.e., such that fq = r d using the data L 1 = 1 [m] and L 3 = 0.7 [m], and sketch the robot configurations. c Draw the primary workspace in the plane of robot motion for generic values of L 1 and L 3, assuming that the prismatic joint range is bounded as q D with D > 0. " p = p % x $ # p ' y & L 3 q y 0 L 1 q 1 x0 Figure 3: A planar RPR robot with the definition of joint variables [10 minutes; open books]

3 Solutions November 9, 013 Exercise 1 [6 points] ahe reduction ratio of the gear is obtained by equating the absolute value of the linear velocities of the two wheels at the point of contact between the meshing teeth the wheels rotate in opposite directions. Denoting by ω i the angular velocity of toothed wheel i 1 = input, = output, ω 1 r 1 = ω r n SG = ω 1 = r = r r 1. The reduction ratio of the harmonic drive is n HD = # teeth of flexspline # teeth of circular spline # teeth of flexspline = 70 = 35, since the number of inner teeth of the circular spline always exceeds that in the outer side of the flexspline by. The complete transmission has then reduction ratio ω n = n SG n HD = r 35 = 17.5 r. The optimal value of the reduction ratio that minimizes the motor torque needed to accelerate the link at a desired value θ l is n Jl 5.88 = = J m = 4900 = 70. Thus, such reduction ratio is obtained by choosing r = 70/17.5 = 4 [cm] n SG =. bhe torque balance for the complete motor/transmission/load system is then T m = J m θm + 1 n J θ l l = J m n θl + 1 n J θ Jl Jm l l = J m + J l θ l = J l J m θl J m or also... = 1 n n J m + J l θl = J l n θ l As a result, the maximum angular acceleration of the link is θ l,max = T m,max = n T m,max =. J l J m J l = [rad/s ]. J l. Exercise [1 points] a A feasible assignment of the Denavit-Hartenberg frames is shown in Figure 4. The associated parameters are given in Table 1. We note that the mechanical modular structure of joints, 4, and 6 leads to the kinematic identities a 1 = a, a 3 = a 4, and a 5 = a 6 the absolute value is needed because of different possible choices for the positive directions of the x i axes. bhe numerical values of the constant parameters a i and d i are specified in inches in the same Table, together with the values of the joint variables q i = θ i π, +π] when the robot is in the shown configuration. In this configuration, the z i axes not lying in the plane i.e., for i =, 4, 6 are pointing outwards. 3

4 z 7 O 7 x 7 d 7 z 6 x 6 y 5 a 6 x 5 a 1 x a 5 y 1 a d 3 d 5 x 1 d 1 z z 4 z 0 O 0 x 0 x 3 y 3 x 4 a 4 a 3 Figure 4: Assignment of Denavit-Hartenberg frames for the K-107 robot i α i a i d i θ i 1 π/ a 1 = 4.00 d 1 = q 1 = 0 π/ a = q = π/4 3 π/ a 3 = d 3 = 1.50 = 0 4 π/ a 4 = q 4 = π/4 5 π/ a 5 =.5 d 5 = 1.50 q 5 = 0 6 π/ a 6 =.5 0 q 6 = π/ d 7 = q 7 = 0 Table 1: Denavit-Hartenberg parameters for the K-107 robot associated to the frames in Fig. 4 4

5 Exercise 3 [1 points] ahe direct kinematics for the given task is p x L 1 cos q 1 + q cos q 1 + π + L 3 cos q π p r = = p y = L 1 sin q 1 + q sin q 1 + π + L 3 sin q π α α q π L 1 cos q 1 q sin q 1 L 3 sin q 1 + = L 1 sin q 1 + q cos q 1 + L 3 cos q 1 + q π = fq. From a given r = r d, we can easily write the position w of the end-point of the second link as wx cos α L1 cos q 1 q sin q 1 w = = p L 3 =. w y sin α L 1 sin q 1 + q cos q 1 Squaring and summing the components of w yields q = + w x + w y L 1 = + p x L 3 cos α + p y L 3 sin α L 1. 1 Only the positive sign has been kept in 1, since we have assumed that only q 0 is feasible. Indeed, the value of q is real if and only if w L 1 namely, when the position w of the tip of the second link is in the workspace of the sub-structure RP made by the first two joints and links. With q from 1, we can always solve the following linear system for cos q 1 and sin q 1 L1 q cos q1 wx =, q L 1 sin q 1 w y yielding cos q1 sin q 1 1 L1 w x + q w y = L 1 + q L 1 w y q w x. Being L 1 + q > 0, we can skip division by this quantity when evaluating q 1 with the ATAN function. Thus, q 1 = ATAN {L 1 w y q w x, L 1 w x + q w y } = ATAN {L 1 p y L 3 sin α q p x L 3 cos α, L 1 p x L 3 cos α + q p y L 3 sin α} Finally, we have = α q 1 π. 3 There is only one feasible solution to the inverse kinematics problem, as given by eqs b With the data L 1 = 1 [m], L 3 = 0.7 [m], and r d = p x p y α = π/ [m,m,rad], the above formulas yield the resulting robot configuration is sketched in Fig. 5 q = q 1 q = [rad, m, rad] = [deg, m, deg]. 4 5

6 c In order to determine the robot primary workspace for q D, we have to distinguish two cases. When L 1 L 3, the primary workspace is an annulus with inner and outer radius given by R in,l1 L 3 = L 1 L 3 0, R out = L 1 + D + L 3 > 0. Figure 6 shows the actual construction of the workspace in the case of a length L 1 strictly larger than L 3. In particular, for equal link lengths L 1 = L 3, the workspace is a circle of radius R out. When L 1 < L 3, the additional mobility provided by the prismatic joint allows to reduce, at least in part, the hole of radius L 3 L 1 at the center that would characterize the workspace of a R planar arm. It is easy to see that, starting with q = 0 and with the third link folded on the first one, the robot end-effector can access this inner part by progressively extending the second joint and pivoting with the third link or with its prolongation about the origin. When the second joint reaches its limit, the end-effector will be at a distance R in,l1 <L 3 from the origin, with = L 3 L 1 + D, R in,l1 <L 3 = 0 D = L 3 L 1. R in,l1 <L 3 Therefore, the workspace will be an annulus with inner radius R in,l1 <L 3 when D < L 3 L 1, or a circle of radius R out when D L 3 L 1. > 0 and outer radius R out y 0 q 1 x 0 # p = " & % $ "' " = # / Figure 5: The inverse kinematic solution 4 associated to r d = π/ [m, m, rad] R out = L 1 + D + L 3 L 3 at q =D q 1 L 1 + D q at q =0 R in = L 1 L 3 L 1 Figure 6: Primary workspace of RPR robot with prismatic joint in range [ D, +D], for L 1 > L 3 6

Robotics I. Classroom Test November 21, 2014

Robotics I. Classroom Test November 21, 2014 Robotics I Classroom Test November 21, 2014 Exercise 1 [6 points] In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of link 2 upper arm and is connected to the joint

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

Robotics I Midterm classroom test November 24, 2017

Robotics I Midterm classroom test November 24, 2017 xercise [8 points] Robotics I Midterm classroom test November, 7 Consider the -dof (RPR) planar robot in ig., where the joint coordinates r = ( r r r have been defined in a free, arbitrary way, with reference

More information

Robotics I June 11, 2018

Robotics I June 11, 2018 Exercise 1 Robotics I June 11 018 Consider the planar R robot in Fig. 1 having a L-shaped second link. A frame RF e is attached to the gripper mounted on the robot end effector. A B y e C x e Figure 1:

More information

Robotics I. June 6, 2017

Robotics I. June 6, 2017 Robotics I June 6, 217 Exercise 1 Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1 Appendix W Dynamic Models W.2 4 Complex Mechanical Systems W.2.1 Translational and Rotational Systems In some cases, mechanical systems contain both translational and rotational portions. The procedure

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

Selection of Servomotors and Reducer Units for a 2 DoF PKM

Selection of Servomotors and Reducer Units for a 2 DoF PKM Selection of Servomotors and Reducer Units for a 2 DoF PKM Hermes GIBERTI, Simone CINQUEMANI Mechanical Engineering Department, Politecnico di Milano, Campus Bovisa Sud, via La Masa 34, 20156, Milano,

More information

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration;

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration; Robotics I April, 6 Consider a planar R robot with links of length l = and l =.5. he end-effector should move smoothly from an initial point p in to a final point p fin in the robot workspace so that the

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

RECURSIVE INVERSE DYNAMICS

RECURSIVE INVERSE DYNAMICS We assume at the outset that the manipulator under study is of the serial type with n+1 links including the base link and n joints of either the revolute or the prismatic type. The underlying algorithm

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

1. This is a CLOSED BOOK, CLOSED NOTES exam. A list of equations for your reference is provided below.

1. This is a CLOSED BOOK, CLOSED NOTES exam. A list of equations for your reference is provided below. _ Instructions 1. This is a CLOSED BOOK, CLOSED NOTES exam. A list of equations for your reference is provided below. 2. Begin each problem on the printed sheet and continue on the lined paper provided.

More information

Kinematics for a Three Wheeled Mobile Robot

Kinematics for a Three Wheeled Mobile Robot Kinematics for a Three Wheeled Mobile Robot Randal W. Beard Updated: March 13, 214 1 Reference Frames and 2D Rotations î 1 y î 2 y w 1 y w w 2 y î 2 x w 2 x w 1 x î 1 x Figure 1: The vector w can be expressed

More information

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1.

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1. Robotics I July 8 Exercise Define the orientation of a rigid body in the 3D space through three rotations by the angles α β and γ around three fixed axes in the sequence Y X and Z and determine the associated

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av

More information

Ch. 5: Jacobian. 5.1 Introduction

Ch. 5: Jacobian. 5.1 Introduction 5.1 Introduction relationship between the end effector velocity and the joint rates differentiate the kinematic relationships to obtain the velocity relationship Jacobian matrix closely related to the

More information

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1 Section 4: TJW Rotation: Example 1 The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS37A (Spring 017) Solution Set #3 Problem 1 - Inertial properties In this problem, you will explore the inertial properties of a manipulator at its end-effector.

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

WEEK 1 Dynamics of Machinery

WEEK 1 Dynamics of Machinery WEEK 1 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J. Uicker, G.R.Pennock ve J.E. Shigley, 2003 Makine Dinamiği, Prof. Dr. Eres SÖYLEMEZ, 2013 Uygulamalı Makine Dinamiği, Jeremy

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 OUTCOME 3 BE ABLE TO DETERMINE RELATIVE AND RESULTANT VELOCITY IN ENGINEERING SYSTEMS Resultant

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A. Chapter 9 [ Edit ] Chapter 9 Overview Summary View Diagnostics View Print View with Answers Due: 11:59pm on Sunday, October 30, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics Robotics I Kinematics, Dynamics and Control of Robotic Manipulators Velocity Kinematics Dr. Christopher Kitts Director Robotic Systems Laboratory Santa Clara University Velocity Kinematics So far, we ve

More information

Circular motion minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor Page 1 of 22. Name: Class: Date: Time: Marks:

Circular motion minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor Page 1 of 22. Name: Class: Date: Time: Marks: Circular motion 2 Name: Class: Date: Time: 67 minutes Marks: 62 marks Comments: Page 1 of 22 1 A lead ball of mass 0.25 kg is swung round on the end of a string so that the ball moves in a horizontal circle

More information

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be 1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be equal to the initial mass of the starting rocket. Now

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

Rotational Motion. Rotational Motion. Rotational Motion

Rotational Motion. Rotational Motion. Rotational Motion I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant DE2-EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents Three-Dimensional

More information

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS MESA PROJECT Lesson of Mechanics and Machines done in the 5th A-M, 2012-2013 by the teacher Pietro Calicchio. THE GEARS To transmit high power are usually used gear wheels. In this case, the transmission

More information

Screw Theory and its Applications in Robotics

Screw Theory and its Applications in Robotics Screw Theory and its Applications in Robotics Marco Carricato Group of Robotics, Automation and Biomechanics University of Bologna Italy IFAC 2017 World Congress, Toulouse, France Table of Contents 1.

More information

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E -4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying

More information

Exam 1 January 31, 2012

Exam 1 January 31, 2012 Exam 1 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2: Planar Rigid ody Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2018 2-1 Chapter 2: Planar Rigid ody Kinematics Homework 2-2 Freeform c 2018 Chapter 2: Planar

More information

9 Kinetics of 3D rigid bodies - rotating frames

9 Kinetics of 3D rigid bodies - rotating frames 9 Kinetics of 3D rigid bodies - rotating frames 9. Consider the two gears depicted in the figure. The gear B of radius R B is fixed to the ground, while the gear A of mass m A and radius R A turns freely

More information

Chapter 8 Rotational Motion and Dynamics Reading Notes

Chapter 8 Rotational Motion and Dynamics Reading Notes Name: Chapter 8 Rotational Motion and Dynamics Reading Notes Section 8-1: Angular quantities A circle can be split into pieces called degrees. There are 360 degrees in a circle. A circle can be split into

More information

3. ROTATIONAL MOTION

3. ROTATIONAL MOTION 3. ROTATONAL OTON. A circular disc of mass 0 kg and radius 0. m is set into rotation about an axis passing through its centre and perpendicular to its plane by applying torque 0 Nm. Calculate the angular

More information

CHAPTER 8 TEST REVIEW MARKSCHEME

CHAPTER 8 TEST REVIEW MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II

INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.-Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Teach Yourself AP Physics in 24 Hours. and Equilibrium. Physics Rapid Learning Series

Teach Yourself AP Physics in 24 Hours. and Equilibrium. Physics Rapid Learning Series Rapid Learning Center Chemistry :: Biology :: Physics :: Math Rapid Learning Center Presents Teach Yourself AP Physics in 4 Hours 1/53 *AP is a registered trademark of the College Board, which does not

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Final Exam December 15, 2014

Final Exam December 15, 2014 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use the ME approved calculator only during the exam. Usage of mobile phones

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2

ω avg [between t 1 and t 2 ] = ω(t 1) + ω(t 2 ) 2 PHY 302 K. Solutions for problem set #9. Textbook problem 7.10: For linear motion at constant acceleration a, average velocity during some time interval from t 1 to t 2 is the average of the velocities

More information

A MOTORIZED GRAVITY COMPENSATION MECHANISM USED FOR THE NECK OF A SOCIAL ROBOT

A MOTORIZED GRAVITY COMPENSATION MECHANISM USED FOR THE NECK OF A SOCIAL ROBOT A MOTORIZED GRAVITY COMPENSATION MECHANISM USED FOR THE NECK OF A SOCIAL ROBOT Florentina Adascalitei 1, Ioan Doroftei 1, Ovidiu Crivoi 1, Bram Vanderborght, Dirk Lefeber 1 "Gh. Asachi" Technical University

More information

of the four-bar linkage shown in Figure 1 is T 12

of the four-bar linkage shown in Figure 1 is T 12 ME 5 - Machine Design I Fall Semester 0 Name of Student Lab Section Number FINL EM. OPEN BOOK ND CLOSED NOTES Wednesday, December th, 0 Use the blank paper provided for your solutions write on one side

More information

Exam 1 September 11, 2013

Exam 1 September 11, 2013 Exam 1 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use an approved calculator during the exam. Usage of mobile phones and other

More information

EN40: Dynamics and Vibrations. Final Examination Wed May : 2pm-5pm

EN40: Dynamics and Vibrations. Final Examination Wed May : 2pm-5pm EN40: Dynamics and Vibrations Final Examination Wed May 10 017: pm-5pm School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You

More information

Exam 3 April 16, 2014

Exam 3 April 16, 2014 Exam 3 Instructions: You have 60 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Rotational Mechanics Part III Dynamics. Pre AP Physics

Rotational Mechanics Part III Dynamics. Pre AP Physics Rotational Mechanics Part III Dynamics Pre AP Physics We have so far discussed rotational kinematics the description of rotational motion in terms of angle, angular velocity and angular acceleration and

More information

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a

More information

Moving Reference Frame Kinematics Homework

Moving Reference Frame Kinematics Homework Chapter 3 Moving Reference Frame Kinematics Homework Freeform c 2016 3-1 3-2 Freeform c 2016 Homework 3. Given: n L-shaped telescoping arm is pinned to ground at point. The arm is rotating counterclockwise

More information

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc.

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc. ECE569 Exam 1 October 28, 2015 1 Name: Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers carefully. Calculators

More information

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University Kinematics of a UR5 May 3, 28 Rasmus Skovgaard Andersen Aalborg University Contents Introduction.................................... Notation.................................. 2 Forward Kinematics for

More information

Angular Momentum L = I ω

Angular Momentum L = I ω Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To determine the torsional deformation of a perfectly elastic circular shaft. To determine the support reactions when these reactions cannot be determined solely from the moment equilibrium

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012 Kinematics, Dynamics, and Vibrations FE Review Session Dr. David Herrin March 7, 0 Example A 0 g ball is released vertically from a height of 0 m. The ball strikes a horizontal surface and bounces back.

More information

An experimental robot load identification method for industrial application

An experimental robot load identification method for industrial application An experimental robot load identification method for industrial application Jan Swevers 1, Birgit Naumer 2, Stefan Pieters 2, Erika Biber 2, Walter Verdonck 1, and Joris De Schutter 1 1 Katholieke Universiteit

More information

4.5 Shaft Misallignments and Flexible Couplings

4.5 Shaft Misallignments and Flexible Couplings 222 CHAPTER 4. MECHANISMS FOR MOTION TRANSMISSION 4.5 Shaft Misallignments and Flexible Couplings Mechanical systems always involve two or more shafts to transfer motion. There is always a finite accuracy

More information

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010 ME 35 - Machine Design I Spring Semester 010 Name of Student Lab. Div. Number EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 010 Please use the blank paper provided for your solutions. Write

More information

Final Examination Thursday May Please initial the statement below to show that you have read it

Final Examination Thursday May Please initial the statement below to show that you have read it EN40: Dynamics and Vibrations Final Examination Thursday May 0 010 Division of Engineering rown University NME: General Instructions No collaboration of any kind is permitted on this examination. You may

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Figure 1. A planar mechanism. 1

Figure 1. A planar mechanism. 1 ME 352 - Machine Design I Summer Semester 201 Name of Student Lab Section Number EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, July 2nd, 201 Use the blank paper provided for your solutions. Write on one

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

Chapter 6 & 10 HW Solution

Chapter 6 & 10 HW Solution Chapter 6 & 10 HW Solution Problem 6.1: The center-to-center distance is the sum of the two pitch circle radii. To mesh, the gears must have the same diametral pitch. These two facts are enough to solve

More information

Chapter 10 Practice Test

Chapter 10 Practice Test Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION PROLEM 7. The rotor of an electric motor has an angular velocity of 600 rpm when the load and power are cut off. The 0-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest.

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

Angular Momentum L = I ω

Angular Momentum L = I ω Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

INSTRUCTIONS TO CANDIDATES:

INSTRUCTIONS TO CANDIDATES: NATIONAL NIVERSITY OF SINGAPORE FINAL EXAMINATION FOR THE DEGREE OF B.ENG ME 444 - DYNAMICS AND CONTROL OF ROBOTIC SYSTEMS October/November 994 - Time Allowed: 3 Hours INSTRCTIONS TO CANDIDATES:. This

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

7.6 Journal Bearings

7.6 Journal Bearings 7.6 Journal Bearings 7.6 Journal Bearings Procedures and Strategies, page 1 of 2 Procedures and Strategies for Solving Problems Involving Frictional Forces on Journal Bearings For problems involving a

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections ) Today s Objectives: Students will be able to: a) Apply the three equations of

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections ) Today s Objectives: Students will be able to: a) Apply the three equations of PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION (Sections 17.2-17.3) Today s Objectives: Students will be able to: a) Apply the three equations of motion for a rigid body in planar motion. b) Analyze problems

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. A grinding wheel is used to sharpen chisels in a school workshop. A chisel is forced against the edge of the grinding wheel so that the tangential force on the wheel is a

More information

Chapter 8 Rotational Motion

Chapter 8 Rotational Motion Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

More information

Level 3 Physics, 2013

Level 3 Physics, 2013 91524 915240 3SUPERVISOR S Level 3 Physics, 2013 91524 Demonstrate understanding of mechanical systems 2.00 pm Monday 25 November 2013 Credits: Six Achievement Achievement with Merit Achievement with Excellence

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Test 7 wersja angielska

Test 7 wersja angielska Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with

More information